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The number of Diophantine quintuples 11

By ALAN FILIPIN (Zagreb) and YASUTSUGU FUJITA (Narashino)

Abstract. A set of m distinct positive integers is called a Diophantine m-tuple
if the product of any two of its distinct elements increased by 1 is a perfect square.
It is known that there does not exist a Diophantine sextuple and that there are only
finitely many Diophantine quintuples. In this paper, we prove that there are at most
10°¢ Diophantine quintuples, which improves the known bounds.

1. Introduction

A set {a1,...,a,} of m distinct positive integers is called a Diophantine
m-tuple if a;a; + 1 is a perfect square for any ¢, j with 1 <4 < j <m. This area
of research has been studied through the ages.

Diophantus of Alexandria was the first who studied the existence of such sets.
However, the first example {1,3,8,120} of a Diophantine quadruple was found
by Fermat. In 1969, BAKER and DAVENPORT [1] proved that {1, 3,8} cannot be
extended to a Diophantine quintuple. Recently, this result was generalized by
DuJELLA [5], who proved that the Diophantine triple {k — 1,k + 1,4k} cannot
be extended to a Diophantine quintuple for integer k£ > 1, and by DUJELLA and
PETHO [10] who proved that the Diophantine pair {1,3} cannot be extended to a
Diophantine quintuple. One generalization of it was given by the second author
([12]; see also [4]) who proved that the Diophantine pair {k — 1,k + 1} cannot be
extended to a Diophantine quintuple for integer k£ > 1. Other generalizations can
be found in [6], [15], [16]. All those results support a folklore conjecture, which
states that there does not exist a Diophantine quintuple. Actually, there is even
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stronger version of this conjecture, that a Diophantine triple can be extended to a
quadruple with a larger element in the unique way. In 2004, DUJELLA [8] proved
that there does not exist a Diophantine sextuple and that there exist only finitely
many Diophantine quintuples, and he furthermore proved that the number of
Diophantine quintuples is bounded by 10193 (see [9]). This bound was recently
reduced by the second author in [14] where he proved that there are at most 10276
Diophantine quintuples.

In this paper we furthermore improve this bound and prove the following
theorem.

Theorem 1.1. The number of Diophantine quintuples is less than 10%.

To prove this, we use the already known methods and results mostly from
[14], but significantly improve some of them. We first recall some useful results
on extending Diophantine triples. We transform that problem to the system of
simultaneous Diophantine equations which induces binary recurrence sequences.
Then, we improve some congruence relations which give us the better lower bo-
unds for the solutions. After that, using the improvement of Rickert’s theorem in
our special case, which is the important part here, we get an upper bound for the
solutions. Combining this with the results from [14], we get the upper bounds
for b and d in a Diophantine quintuple {a,b,c,d,e} where a < b < ¢ < d < e.
After we get those upper bounds we prove Theorem 1.1 along the same lines as
Theorem 4 in [9] and Theorem 1.3 in [14].

It is to be noted that our idea on the improvement of Rickert’s theorem can
be applicable to the D(—1)-quadruple {1,b,¢,d} (1 < b < ¢ < d), which means
that b, ¢, d are integers such that the product of any two of 1, b, ¢, d decreased
by 1 is a perfect square. In [11], we improve the known upper bounds for ¢ in
terms of b to 9.5b* by improving Rickert’s theorem. This bound is smaller than
the result ¢ < min{2.56%, 10146} obtained recently in [3] for b < 1036.

2. Preliminaries

Our first goal is to prove the following theorem.

Theorem 2.1. Suppose that {a,b,c,d,e} is a Diophantine quintuple with
a<b<ec<d<e Then, b<5-10%* and d < 10199,

So, in this section we will give some necessary preliminaries here. Let {a, b, c}
be a Diophantine triple with ¢ < b < ¢ such that ab+ 1 = r2, ac+ 1 = s2,
bc +1 = t2, where 7, s, t are positive integers. Assume that {a,b,c,d} is a
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Diophantine quadruple. Then, there exist positive integers x, y, z satisfying
ad+1=2% bd+1=19y% cd+ 1 = 2% Eliminating d from these equations, we
obtain the system of simultaneous Diophantine equations

az? —cx’ =a—c, (2.1)

b2 — ey’ =b—c (2.2)
The solutions of equations (2.1) and (2.2) are respectively given by z = v, and
z = w, with positive integers m and n, where
Vo = 20, V1 =829+ CTo, Umt2 = 28Umt1 — Um,
wo = 21, w1 =1tz1+cyr, Wpyo = 2tWhp1 — Wy
with some integers zo, 21, xg,y1 (cf. [7, Section 2]). We first find the bounds for
b and c on the following assumption.

Assumption 2.2. vg,, = ws, has a solution withm > 3, n > 2 and |z¢| = 1,
and ¢ > b°.

Note that Assumption 2.2 together with Lemma 3 1) in [7] implies zp = 21 =
+1 and zg =y = 1.
Firstly, we find connection between indices m and n.

Lemma 2.3. On Assumption 2.2, we have m < 1.2n.

PROOF. The proof proceeds along the same lines as Lemma 3 in [8]. Since
|z0| = |21] =20 =y1 = 1 and ¢ > b® > 85, we have

Vo > v1(25 — 1)2"71 = (c £ 5)(25 — 1)1

> <1_ Vac+1

> c(2s — 1)*™71 > 0.984¢(2s — 1)*™ !
C

and

T
o < w1 (2027 = (1) (20)2 1< (1 N W) .
C

(2t)*"71 < 1.016¢(2t)%" L.

Hence, we see from va,, = wa, that (2s — 1)?™~1 < 1.033(2¢)?" . Since

(25 — 1)1 > 1.9942m 1 (g¢)2m—1)/2
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and
1.033(2t)%" 1 < 1.033 - 22" Y (be + 1)~ D/2 < 2001220~ D)/2(2n=1)/2,
we obtain 1.9942"—14(2m=1)/2¢m < 2 00127p(27~1)/2¢" | which yields
1.9942m=1em < 900127120 1)/10,

Therefore, either m < (12n—1)/10 or 2m — 1 < 2.02n holds. If the former holds,
then m < 1.2n — 0.1 and if the latter holds, then m < 1.0ln + 0.5. If n = 2,
then m < max{1.2n —0.1,1.01n + 0.5} < 2.52, which contradicts the assumption
m > 3. Hence, n > 3 and we obtain m < 1.2n. O

Now we are ready to find lower bounds for n in terms of a, b and ¢, using
congruence relations.

Lemma 2.4. On Assumption 2.2, the following hold.
(i) If b > 2a, then n > 0.178a/2p~1c!/2,
(ii) If b > 1.45a, then n > 0.0033a/2b~1c!/2.
(iii) If b < 2a, then n > a~'/2c!/8,

PROOF. The proof proceeds along the same lines as the one of Lemma 20 (i)
(I) in [13]. By Lemma 4 in [7] with |z9| = |21| = o = y1 = 1, we have

+am? 4+ sm = +bn® +tn  (mod 4c). (2.3)

(i) Suppose that n < 0.178a'/2b~'¢'/2. Lemma 2.3 and ¢ > b° > 8° together
imply that

am? <1.22.0.178%a%b %2c < ¢, sm <1.2-0.178Vac + 1a'/?b~1c!/? < ¢,
bn? < 0.178%ab~ e < c, tn< 0.178\/Wa1/2b_101/2 <ec.
Thus we have an equality in (2.3):
+am? 4 sm = +bn? + tn. (2.4)

If zo = 1, then am? + sm = bn? + tn. We see from b > 2a that bn? + tn >
2an? + 1.414sn and from m < 1.2n that am? + sm < 1.44an? + 1.2sn, which
are contradictions. If z; = —1, then bn/m —am/n = t/m — s/n. We know by
Lemma 3 in [8] that n < m and bn/m — am/n < b. On the other hand,

t s 1 ¢t s b
Lot (A ) 2 5 (08331414 — 1)—
m n - (1.2 s )n > (0.833 )0.178>b7
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which is a contradiction. Therefore, we obtain n > 0.178a/2b~1¢1/2,

(ii) Suppose that n < 0.0033a'/26~'¢'/2. Then, equation (2.4) holds. If zp=1,
then bn? + tn > 1.45an? + 1.204sn and am? + sm < 1.44an? + 1.2sn, which are
contradictions. If zg = —1, then bn/m — am/n < b and

t s 1 b
P > (12 -1.204 — 1) 00033 > b,
which are also contradictions. Therefore, we obtain n > 0.0033a'/2b=1¢!/2.

(iii) Suppose that n < a~'/2¢}/8. Squaring both sides of congruence (2.3)
yields

{(am® —bn?)? — (m* + 7L2)}2 =4m?n? (mod c). (2.5)

Since it is easy to check that both sides of (2.5) are less than ¢, (2.5) is an equation,
that is,

F(am? —n?) =m +n, (2.6)

We also easily see that equation (2.4) holds, where the signs in (2.4) and (2.6) are
taken simultaneously. Hence, we have m(s — 1) = n(t 4+ 1), which together with

(2.4) implies
2
t+1
‘a < + ) —bln
s—1
This shows that

B (s+t)(s—1) o (s+t)(s—1) s—1 s—1 _1/2.1/8
Tl L1 —b(s— 1) 2at+bsta—b) 26 ~ 4a ¢ ¢

s+t

s—1

which contradicts the assumption. Therefore, we obtain n > a~1/2¢1/8, (]

Now, we will improve Rickert’s theorem in our special case which plays an
important role here.

Theorem 2.5. Let a, b and N be integers with 0 < a < b—5, b > 8 and
N > 9.5a/b*(b— a)?, where a’ = max{b—a,a}. Assume that N is divisible by ab.

Then the numbers 6 = /1 + b/N and 6, = /1 + a/N satisty

{ } <32.01a’bN>1 )
max >l q
a

for all integers py, p2, ¢ with ¢ > 0, where

log(16.01a=1a’bN)
A=1 2.
* log(1.687a=1b=1(b —a)~2N?2) <

6, — 22

6, - 2
q q

)
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Remark 2.6. The essential difference from the provious result ([13, The-
orem 21] or [2, Theorem 3.2]) is in A. Since A in Theorem 2.5 is smaller than
others, we can get the weaker condition N > 9.5a'b?(b — a)? for A < 2 and apply
Theorem 2.5 with N = abc on Assumption 2.2.

We need the following lemma.

Lemma 2.7 ([13, Lemma 22]; see also [17, Lemma 3.1], [2, Lemma 2.1]).
Let 04,...,0,, be arbitrary real numbers and 0y = 1. Assume that there exist
positive real numbers [, p, L, P and positive integers D, f with f dividing D and
with L > D, having the following property. For each positive integer k, we can
find rational numbers p;j; (0 < 4,5 < m) with nonzero determinant such that
f~1Dkpiji (0 <i,5 <m) are integers and

m

Zpijkej

J=0

pijl < pP* (0 < i, j <m), <IL* (0<i<m).

max{ Qm—p—m }>cq_A
q

holds for all integers p1, ..., pm,q with ¢ > 0, where

Then
o, -

ge ey

5= log(DP)

= m and c_l:me_lpDP(max{lﬂf_ll})A.

PROOF OF THEOREM 2.5. In our situation, we take m = 2 and 64, 05 as in
Theorem 2.5. The only difference from the proof of Theorem 21 in [13] is the
way to take D. We here show that we may take D = 4ab(b — a)?N (whereas
D = 2a*b?(b — a)?N is taken in [13]).

For 1 <14,j <2, let p;j(z) be the polynomial defined by

() = ks 1+ a;z)F"ighi R (4 — ag)y ko
pij(z) = Z N 1+4a;x)" e H hy (a; —ay) )
J

ij I#j
where k;y; = k + 6; with J;; the Kronecker delta, >, y denotes the sum over all
non-negative integers hg, hi, ho satisfying hg + hy + ha = k;; — 1, and Hlij

denotes the product from [ = 0 to | = 2 omitting I = j (which is the expression
(3.7) in [17] with v = 1/2). Substituting © = 1/N, we have

(Pijk =) pij (;,) => (k}zé)cigl 11 <liil>’ (2.7)

ij 1#]
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where .
N kii+h
N + a.)e—h; H(“j —a) :
(N +aj)k=hi 14
Now we take ag =0, a1 = a, as = b and N = abNy for some integer Ny. If j =0,
then

Cij =

qFiithothi—kpkia+ho+ha—k Nk
Ny—ho

Since ki + hj +hy — k < ky + kij —1 —k < k, we have akka’“CiB1 € Z for all 1.
If j =1, then

|Cio| = NTogkiathipkizthe

a’“bk]\féC
(bNo + 1)k7h1

akioJrhoJrhlfk(b _ a)k12+h2Nk

|Oi1| = (bNo + 1)k7h1

. aki0+h0 (b _ a)ki2+h2 _

Since ki + by < ki + ki; — 1 < 2k, we have ak(b — a)szkCi_ll € Z for all i.
If j = 2, then |Cjq| = bliothotha=k(p _ gyka+hi Nk /(g Ny + 1)¥="2 and we have
¥ (b —a)?*N*C},! € Z for all i. It follows that a¥b*(b — a)** N¥C,;' € Z for all

i, j. Since
ohj+h; <k + %) c7Z
h;
for all j (see the proof of Lemma 4.3 in [17]), we obtain
2= H4ab(b—a)?N}*p;;(1/N) € Z for all i, j, which means that we may take f = 2
and D = 4ab(b — a)?N.
As in the proof of Theorem 21 in [13], we may take

27 b\ 27 b\ o
Z_M(l_N) , L_4<1—N>N,

7N\ 1/2 8 (1 3b—a
p=(1+ a , p:M,
ON ¢
where
2(2b — ifb—a>
_Ja ( a) i a> a, (2.8)
(b—a)?)(a+0b) ifb—a<a.

Hence, we easily see from the assumptions that

_ 16.01a'bN L _ 1.687N2 . 32.01d/bN

DP = > —
a ’ D>ab(b—a)2’ s a

Therefore, the assertion follows from Lemma 2.7. ([l
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We are now ready to give an upper bounds for b and c first.

Lemma 2.8 (cf. [7, Lemma 12]). Let N = abc and let 61, 02 be as in
Theorem 2.5. Then all positive solutions of the system of Diophantine equations

(2.1) and (2.2) satisfy
c
}< 2&2 .

max {

Lemma 2.9. Let {a,b, c,d} be a Diophantine quadruple witha < b < ¢ < d.
Assume that ¢ > 9.5a’b(b — a)?/a. Then,

sbx
9, — =
L abz

tay
y — —2

)

 abz

41og(4.001a'/?(a’)'/2b%¢) 1og(1.299a /212 (b — a)~'¢)
log(0.1053a(a’) 101 (b — a)~2¢)

log z <

PRrROOF. Putting ¢ = abz, p1 = sbx and ps = tay, we see from Theorem 2.5
and Lemma 2.8 that

2
227% < 16.005ad/b*c? < (4‘001a1/2(a’)1/2b20> .

Since
1 log(1.687ab(b— a)2c?) - 210g(1.299a'/2b/2(b — a)~"'c)
—_\ 1.687a(b—a)—2c N=1p—=1(}h _ 4)—2.)’
2—X log +:087alb—a) log(0.1053a(a’)~1b=1(b — a)~2c¢)
we obtain the assertion. O

Lemma 2.10. On Assumption 2.2, we have
log z > nlog(4bc).

PROOF. The proof proceeds along the same lines as the one of Lemma 25
in [13]. Indeed, the assertion immediately follows from the following inequalities:

w2n>2%/5(z1\/5+y1ﬁ)(t+\/%)2n> (t+Vbe)™ > (4be)". O

Proposition 2.11. On Assumption 2.2, the following hold.
(1) b < 101°.
(2) e < b
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PROOF. Note that ¢ > b° implies ¢ > 9.5a’b(b — a)?/a. For, if b > 10, then
b° > 9.5a’b(b — a)?/a; otherwise, b = 8 and the same inequality clearly holds. By
Lemmas 2.9 and 2.10 we have

log(4.001a'/?(a')*/2b%c) log(1.299a"/26/%(b — a)~'¢)

1" log(4bc) log(0.1053a(a’)~1b=1(b — a)~2c) : (2.9)

(1) Suppose first that b > 2a. Then by (2.9) we have

log(2.83b%c) log(1.299b'/2
no 0g(2.83bc) log(1.299b c). (2.10)
4 log(4bc) log(0.1053b%c)

Since the right-hand side of this inequality is a decreasing function with respect
to ¢, we obtain

log(2.83b%) 1og(1.2996°5)  8-5.5 22

1< log{d¥)log(o1053) ¢ 110 = 5 A0

where

Fub) = log(1.1390) log(1.049b)
" Jog(1.2596) log(0.1053b)

Combining this inequality with Lemma 2.4 implies that

B a2 < 2 g ),

which yields b*/3 < 165f1(b). Since fi(b) is a decreasing function for b > 10, if
b > 53, then 165 f,(b) < 165f,(53) < 377, which contradicts b%/2 > 53%/2 > 385.
Therefore, we obtain b < 52.

Secondly, suppose that b < 2a. Then by (2.9) we have

log(4.00163¢) log(0.1856bc)

< log(4bc) log(0.4212b=3¢)

n
4
where we used the fact that b—a > 7, which is attained by the pair {a, b} = {8, 15},
and we obtain

m < ST Rb)=450),
where
log(1.19b) log(0.7553b)
f2(0) = log(1.259b) log(0.6489b) "
It follows from Lemma 2.4 that
a-1/201/8

1 < 4f2 (b),
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which yields b/8 < 16f2(b). Since fa(b) is decreasing for b > 2, if b > 178, then
16f5(b) < 16£5(17%) < 17, which contradicts b'/® > 17. Therefore, we obtain
b < 109, which gives an upper bound in all the cases.

(2) Suppose that ¢ > . We also have inequality (2.9). The proof is divided
into three cases.

Suppose first that b > 2a. Then, we have inequality (2.10). By ¢ > b°, we

have
log(2.83b'2) log(1.2996%%)  12-9.5 57

o< < (b) = 21 (b)
4 = " log(4b19) log(0.1053b%) 10-5 M T g5t

where

log(1.091b) log(1.028b)
(b) = log(1.148b) log(0.6375b) "
Lemma 2.4 now shows that

SR < o),
that is, b7/2 < 52g;(b). Since g;(b) is decreasing for b > 2, we have 52¢;(b) <
52¢;(8) < 66, which contradicts b7/2 > 87/2 > 1100.
Suppose secondly that 1.45a < b < 2a. We see from (2.9) that
n  log(2.76b%c)log(4.083¢c)  log(2.76b'?)1og(4.083b%) 12-9 9
1 Tog(100) 1og(0.42126=3¢) ~ Tog(@b1Tog(0.421265) ~ 1062 = 592()
g g g g

where

log(1.089b) log(1.17b)
g2(b) = :
log(1.148b) log(0.8657b)

By Lemma 2.4 we have
0.0033a1/2b_1cl/2
4
yielding b* < 2182g,(b). Since b > 15 holds for b < 2a and g»(b) is decreasing for
b > 2, we see that 2182¢,(b) < 2182¢5(15) < 2400, which contradicts b* > 15% >
50000.

Finally, suppose that b < 1.45a. By (2.9) we have
log(4.00163¢) 1 .1856b log(4.0015'2)1 .1856b10
n o 0g(4.001b°¢) log(0 2356 c) - 0g(4.0016*#) 1og(0.18566") < 2g3(b) < 2,
4 log(4bc) log(1.093b—3¢) log(4b19) log(1.0935)

where

9
—go(b
< 592( )a

log(1.123b) log(0.8451b)
g3(b) = :
log(1.148b) log(1.014b)

Thus we have n < 8, which together with Lemma 2.4 implies that a=1/2¢/8 < 8,
and hence b < 27. In this range, there does not exist a Diophantine pair satisfying
a+ 2 < b < 1.45a. This completes the proof of Proposition 2.11. ([
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3. Proof of Theorem 2.1

In this section we find the upper bounds for b and d. We first review some
results on Diophantine quintuples from Sections 2 and 3 in [14]. Suppose that
{a,b, c,d, e} is a Diophantine quintuple with a < b < ¢ < d < e. Then, there exist
integers «, 3, 7y, ¢ such that

ae+1=0a? be+1=p% ce+1=1% de+1=26%

from which we obtain the system of Diophantine equations.

ad* —da® = a —d, (3.1)
b6 —dp* =b—d, (3.2)
c6? —dy* = c—d. (3.3)

The solutions of equations (3.1), (3.2) and (3.3) respectively are given by § = U,
0 =V; and § = W}, with positive integers ¢, j and k, where

Up==%x1, Ui==dz+d, Uyo=2z2U;41 — U,
Vw==1, Vi=2dy+d, Vj2=2yVjy1 -V
Wo==x1, Wiy ==x2+4+d, Wiyys=22Wgy1 — Wi.

The indices satisfy 4 < i < j <k <2 and 7 > 6 and all of ¢, 7 and k are even.
Moreover, {a,b,c,d} contains a standard triple {A, B,C} with A < B < C = d.
Hence, the quadruple {A, B,d, e} is considered as the one in Section 2, v,, and
wy, in Section 2 correspond to two of U;, V; and Wy, and Assumption 2.2 holds if
C =d > B% > b°, which is exactly the case where {4, B,C} is a standard triple
of the first kind in the sense of Definition 3.1 in [14].

PROOF OF THEOREM 2.1. Suppose that d > 10'%. Then, Proposition 4.3
in [14] enables us to assume that {a, b, ¢, d} contains a standard triple of the first
kind. Hence, d > b° and Proposition 2.11 (1) implies that b < 101°. It follows
from Proposition 2.11 (2) that d < b° < 10%°, which contradicts d > 101°°. Hence,
d < 100 Since d > 4abe > 4b2, we conclude that b < 0.5 - 10°0 = 5 - 10%°. O
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4. The number of Diophantine quintuples

We are now left to prove our main theorem.

PROOF OF THEOREM 1.1. Assume that {a,b,c,d, e} is a Diophantine quin-
tuple such that @ < b < ¢ < d < e. We consider the cases d < b® and d > b°
separately.

Suppose first that d < b°. Theorem 2.1 implies b < 5 - 10* and d < 100,
We first bound the number of pairs {a,b}. If b < 103!, then the number of pairs
is at most 10%2. And if 103! < b < 5-10%, by (8) in [9] we have

1
logb > iw(b) log w(b),

where w(b) denotes the number of distinct prime factors of b. Now, if 2¢(®) >
b9-38  then by the displayed inequality above we have w(b) < 38.41 which yields
b < 3-10%, a contradiction. Hence, 2¢(®) < 933 and the number of pairs {a, b}
is less than (see the proof of Theorem 1 in [9]):

5.-104°—1 5-10% -1 5.1049
D AR N s 2/ b0-38db < 6 - 10%8.
b=1031+1 b=1031+1 103t

Therefore, the number of pairs {a, b} is less than 6 - 10%%.

For a fixed pair {a,b} the number ¢ such that {a,b,c} is a Diophantine
triple belongs to the union of finitely many binary recurrent sequences, and the
number of those sequences is less than or equal to the number of solutions of
the congruence t3 = 1 (mod b) such that —0.710%7 < to < 0.716%75 (cf. [7,
Lemma 1]). This congruence comes from bc + 1 = 2 and t? = t2 = t3 (mod b).
If b < 1034, then the number of the sequences is less than or equal to 2 - 0.71 -
103497 < 4.5.10%. And assuming 10%* < b < 5-10*°, we conclude as above
2w() < p0-51 Hence, the number of sequences is less than 2 - 2¢(®)+1 < 4. 051 <
9-10% (cf. [9, Lemma 1]). Moreover, each sequence ¢ = t,, satisfies (2r —1)*~! <
t, = v/bc + 1. Since we know by the assumption that bc < d/4 < b°/4, we obtain
(1.64v/b)"~! < 0.516°/2 and v < 3. Hence, the number of elements contained in
each of the sequences is less than or equal to 3. Furthermore, the second author
proved in [13] and [14] that for a fixed Diophantine triple {a,b,c} there are at
most four ways for it to be extended to a quintuple. Consequently, we see that
the number of Diophantine quintuples is less than

6-10%.9.10%°.3.4 < 7-10%.
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Suppose secondly that d > °. Then, b < d*/% < 10*° and the number of
the pairs {a, b} is less than 10%°. For a fixed pair {a,b} the number of sequences
attached to the third element c is less than 2 - 0.71 - 1020975 < 2. 105 and the
number of elements contained in each of the sequences is less than or equal to
v < 6 (note that by Proposition 2.11 be < b°/4 and (1.64v/b)*~1 < 0.516%/2). Tt
follows that the number of Diophantine quintuples is less than

10%0.2.10% .64 < 10°".

To sum up, we obtain the bound 10°° as in the assertion. [l

5. Concluding remarks

In this section, we explain that the upper bound 106 is (more or less) best
possible when we use Rickert’s theorem.

We first consider whether one can further improve Theorem 2.5, that is, whet-
her one can take better quantities in Lemma 2.7. In order to do it (essentially),
we have to reduce “\”, that is, make L larger or D, P smaller.

For L, following [2, p. 186] one can see that

1 1 o phtl/2 1 2k + 1 (4k\ . _gn
I | — > dr = : 2 s
N N3k Jo o (x4 a)3ktl a2k=1/2N3k 4k — 1\ k

where « = 1+ b/N. By Stirling’s formula

n! = V2rn" 1 2etn " with 0 < py, < Ton’
n

1 2%+1 [2a (27 O\ 7"

L= 88— /— | —=N .
(N) 708 1V 3k <4a2 )

Hence, the value L one could take is at most 27(1 + b/N)2N?, which is merely
1.1 times larger than our choice L = 27(1 — b/N)?N? in our situation N = abe.

For P, we have to estimate |A(z)| = |2(z — a)(z — b)|. Let I'; be the contour
defined by |z — a;| = min;z;{|a; — a;|/2}. Then, we have |A(z)| < 3a(a + 2b)/8
on Iy and |A(2)| < 3(3b — a)(b—a)?/8 on I'y. On I'y, we have |A(z2)| < 3¢/8,
where ( is defined in (2.8). Since

1 N
[,
r

ai\1/2
()| (00 8)" = |, e oartacy
. nll—a/(2N)
T maxger, |A(Z)‘k7

we have

where r; is the radius of T';,
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and p, P satisfy |pijx| = |pi;(1/N)| < pP* for all i, j, k, we see that the lower
bound for P is 8/(3¢). This value 8/(3(¢) is less than one third of our choice
P =8(1+ (3b—a)/(2N))/C.

For D, we show that in our situation N = abc, if kaijk € Z for all 4, j, k,
then D = 0 (mod ab(b — a)2N). It suffices to prove this for k = 1 and i # j.
Then, since hg = hy = hy = 0, we see from (2.7) that

N+aj
N(aj — a;)?(a; — a;)

Dijk = Ci;l = with | & {i,7}.

Considering the cases (i,7) = (0,1), (0,2), (1,2), one can find that if

ged(a, b) = ged(a,be + 1) = ged(b,ac + 1) = ged(b — a,ac+ 1)
=ged(b—a,bc+1) =1, (5.1)

then Dp;; € Z implies D =0 (mod ab(b — a)>N). It is easy to check that there
exist (infinitely) many Diophantine triples {a,b, ¢} satisfying (5.1) (for example,
the triple { K —1,4K,144K3 — 192K? + 76 K — 8} satisfies (5.1) if K =0 (mod 2)
and K =2 (mod 3)). Hence, the value D one could take is at least ab(b — a)?N,
which is one fourth of our choice D = 4ab(b — a)?N.

To sum up, the lower bound for N such that A < 2 can be improved only
by a constant multiple (for example, if b > 2a and N > 0.05b%(b — a)3, then
A < 2). Therefore, Theorem 2.5 even with the improved assumption on N cannot
be applied to a Diophantine quadruple containing a standard triple of the second
or the third kind in general.

Secondly, we consider whether the bound d < 1
Theorem 2.1, we proved d < 10'°° by using Proposition 4.3 in [14], which states
that if d > 10'%°, then a Diophantine quadruple {a, b, c,d} contains a standard
triple of the first kind, to which Theorem 2.5 can be applied. In the proof of the

019 can be reduced. In

proposition, it is shown that if d > 10'% and if {a,b, c,d} contains a standard
triple of the second or the third kind, then d%1° < 7.2 -10'®. This does not lead
to a contradiction if d > 10%?. Hence, in order to ensure that {a,b, c,d} contains
a triple of the first kind, we have to assume that d > 101%°.

Also we cannot significantly reduce the bound for b by this method. We got
the bound b < 10'° only on the assumption 2.2 and in our proof we use the fact
that our quadruple {a, b, c,d} contains the triple of the first kind.

Consequently, it is deduced that we cannot essentially improve the bound
10%6 using Rickert’s theorem. In order to do that or to settle the conjecture on
Diophantine quintuples, either another tool or a significant advance in computer
technology would be necessary.
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