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The number of Diophantine quintuples II

By ALAN FILIPIN (Zagreb) and YASUTSUGU FUJITA (Narashino)

Abstract. A set of m distinct positive integers is called a Diophantine m-tuple

if the product of any two of its distinct elements increased by 1 is a perfect square.

It is known that there does not exist a Diophantine sextuple and that there are only

finitely many Diophantine quintuples. In this paper, we prove that there are at most

1096 Diophantine quintuples, which improves the known bounds.

1. Introduction

A set {a1, . . . , am} of m distinct positive integers is called a Diophantine

m-tuple if aiaj + 1 is a perfect square for any i, j with 1 ≤ i < j ≤ m. This area

of research has been studied through the ages.

Diophantus of Alexandria was the first who studied the existence of such sets.

However, the first example {1, 3, 8, 120} of a Diophantine quadruple was found

by Fermat. In 1969, Baker and Davenport [1] proved that {1, 3, 8} cannot be

extended to a Diophantine quintuple. Recently, this result was generalized by

Dujella [5], who proved that the Diophantine triple {k − 1, k + 1, 4k} cannot

be extended to a Diophantine quintuple for integer k > 1, and by Dujella and

Pethő [10] who proved that the Diophantine pair {1, 3} cannot be extended to a

Diophantine quintuple. One generalization of it was given by the second author

([12]; see also [4]) who proved that the Diophantine pair {k− 1, k+1} cannot be

extended to a Diophantine quintuple for integer k > 1. Other generalizations can

be found in [6], [15], [16]. All those results support a folklore conjecture, which

states that there does not exist a Diophantine quintuple. Actually, there is even
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stronger version of this conjecture, that a Diophantine triple can be extended to a

quadruple with a larger element in the unique way. In 2004, Dujella [8] proved

that there does not exist a Diophantine sextuple and that there exist only finitely

many Diophantine quintuples, and he furthermore proved that the number of

Diophantine quintuples is bounded by 101930 (see [9]). This bound was recently

reduced by the second author in [14] where he proved that there are at most 10276

Diophantine quintuples.

In this paper we furthermore improve this bound and prove the following

theorem.

Theorem 1.1. The number of Diophantine quintuples is less than 1096.

To prove this, we use the already known methods and results mostly from

[14], but significantly improve some of them. We first recall some useful results

on extending Diophantine triples. We transform that problem to the system of

simultaneous Diophantine equations which induces binary recurrence sequences.

Then, we improve some congruence relations which give us the better lower bo-

unds for the solutions. After that, using the improvement of Rickert’s theorem in

our special case, which is the important part here, we get an upper bound for the

solutions. Combining this with the results from [14], we get the upper bounds

for b and d in a Diophantine quintuple {a, b, c, d, e} where a < b < c < d < e.

After we get those upper bounds we prove Theorem 1.1 along the same lines as

Theorem 4 in [9] and Theorem 1.3 in [14].

It is to be noted that our idea on the improvement of Rickert’s theorem can

be applicable to the D(−1)-quadruple {1, b, c, d} (1 < b < c < d), which means

that b, c, d are integers such that the product of any two of 1, b, c, d decreased

by 1 is a perfect square. In [11], we improve the known upper bounds for c in

terms of b to 9.5b4 by improving Rickert’s theorem. This bound is smaller than

the result c < min{2.5b6, 10146} obtained recently in [3] for b < 1036.

2. Preliminaries

Our first goal is to prove the following theorem.

Theorem 2.1. Suppose that {a, b, c, d, e} is a Diophantine quintuple with

a < b < c < d < e. Then, b < 5 · 1049 and d ≤ 10100.

So, in this section we will give some necessary preliminaries here. Let {a, b, c}
be a Diophantine triple with a < b < c such that ab + 1 = r2, ac + 1 = s2,

bc + 1 = t2, where r, s, t are positive integers. Assume that {a, b, c, d} is a
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Diophantine quadruple. Then, there exist positive integers x, y, z satisfying

ad + 1 = x2, bd + 1 = y2, cd + 1 = z2. Eliminating d from these equations, we

obtain the system of simultaneous Diophantine equations

az2 − cx2 = a− c, (2.1)

bz2 − cy2 = b− c. (2.2)

The solutions of equations (2.1) and (2.2) are respectively given by z = vm and

z = wn with positive integers m and n, where

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,

w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn

with some integers z0, z1, x0, y1 (cf. [7, Section 2]). We first find the bounds for

b and c on the following assumption.

Assumption 2.2. v2m = w2n has a solution with m ≥ 3, n ≥ 2 and |z0| = 1,

and c > b5.

Note that Assumption 2.2 together with Lemma 3 1) in [7] implies z0 = z1 =

±1 and x0 = y1 = 1.

Firstly, we find connection between indices m and n.

Lemma 2.3. On Assumption 2.2, we have m ≤ 1.2n.

Proof. The proof proceeds along the same lines as Lemma 3 in [8]. Since

|z0| = |z1| = x0 = y1 = 1 and c > b5 ≥ 85, we have

v2m > v1(2s− 1)2m−1 = (c± s)(2s− 1)2m−1

≥
(
1−

√
ac+ 1

c

)
c(2s− 1)2m−1 > 0.984c(2s− 1)2m−1

and

w2n < w1(2t)
2n−1 = (c±t)(2t)2n−1≤

(
1 +

√
bc+ 1

c

)
c(2t)2n−1 < 1.016c(2t)2n−1.

Hence, we see from v2m = w2n that (2s− 1)2m−1 < 1.033(2t)2n−1. Since

(2s− 1)2m−1 > 1.9942m−1(ac)(2m−1)/2
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and

1.033(2t)2n−1 < 1.033 · 22n−1(bc+ 1)(2n−1)/2 < 2.0012nb(2n−1)/2c(2n−1)/2,

we obtain 1.9942m−1a(2m−1)/2cm < 2.0012nb(2n−1)/2cn, which yields

1.9942m−1cm < 2.0012nc(12n−1)/10.

Therefore, either m < (12n− 1)/10 or 2m− 1 < 2.02n holds. If the former holds,

then m < 1.2n − 0.1 and if the latter holds, then m < 1.01n + 0.5. If n = 2,

then m < max{1.2n− 0.1, 1.01n+0.5} ≤ 2.52, which contradicts the assumption

m ≥ 3. Hence, n ≥ 3 and we obtain m < 1.2n. ¤

Now we are ready to find lower bounds for n in terms of a, b and c, using

congruence relations.

Lemma 2.4. On Assumption 2.2, the following hold.

(i) If b ≥ 2a, then n > 0.178a1/2b−1c1/2.

(ii) If b ≥ 1.45a, then n > 0.0033a1/2b−1c1/2.

(iii) If b < 2a, then n > a−1/2c1/8.

Proof. The proof proceeds along the same lines as the one of Lemma 20 (i)

(I) in [13]. By Lemma 4 in [7] with |z0| = |z1| = x0 = y1 = 1, we have

±am2 + sm ≡ ±bn2 + tn (mod 4c). (2.3)

(i) Suppose that n ≤ 0.178a1/2b−1c1/2. Lemma 2.3 and c > b5 ≥ 85 together

imply that

am2 ≤ 1.22 · 0.1782a2b−2c < c, sm ≤ 1.2 · 0.178√ac+ 1a1/2b−1c1/2 < c,

bn2 ≤ 0.1782ab−1c < c, tn ≤ 0.178
√
bc+ 1a1/2b−1c1/2 < c.

Thus we have an equality in (2.3):

±am2 + sm = ±bn2 + tn. (2.4)

If z0 = 1, then am2 + sm = bn2 + tn. We see from b ≥ 2a that bn2 + tn >

2an2 + 1.414sn and from m ≤ 1.2n that am2 + sm < 1.44an2 + 1.2sn, which

are contradictions. If z1 = −1, then bn/m − am/n = t/m − s/n. We know by

Lemma 3 in [8] that n ≤ m and bn/m− am/n < b. On the other hand,

t

m
− s

n
≥

(
1

1.2
· t
s
− 1

)
s

n
> (0.833 · 1.414− 1)

b

0.178
> b,
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which is a contradiction. Therefore, we obtain n > 0.178a1/2b−1c1/2.

(ii) Suppose that n≤ 0.0033a1/2b−1c1/2. Then, equation (2.4) holds. If z0=1,

then bn2 + tn > 1.45an2 + 1.204sn and am2 + sm < 1.44an2 + 1.2sn, which are

contradictions. If z0 = −1, then bn/m− am/n < b and

t

m
− s

n
>

(
1

1.2
· 1.204− 1

)
b

0.0033
> b,

which are also contradictions. Therefore, we obtain n > 0.0033a1/2b−1c1/2.

(iii) Suppose that n ≤ a−1/2c1/8. Squaring both sides of congruence (2.3)

yields

{
(am2 − bn2)2 − (m2 + n2)

}2 ≡ 4m2n2 (mod c). (2.5)

Since it is easy to check that both sides of (2.5) are less than c, (2.5) is an equation,

that is,

∓(am2 − bn2) = m+ n, (2.6)

We also easily see that equation (2.4) holds, where the signs in (2.4) and (2.6) are

taken simultaneously. Hence, we have m(s − 1) = n(t + 1), which together with

(2.4) implies ∣∣∣∣∣a
(
t+ 1

s− 1

)2

− b

∣∣∣∣∣n =
s+ t

s− 1
.

This shows that

n =
(s+ t)(s− 1)

|a(t+ 1)2 − b(s− 1)2| =
(s+ t)(s− 1)

2(at+ bs+ a− b)
>

s− 1

2b
>

s− 1

4a
> a−1/2c1/8,

which contradicts the assumption. Therefore, we obtain n > a−1/2c1/8. ¤

Now, we will improve Rickert’s theorem in our special case which plays an

important role here.

Theorem 2.5. Let a, b and N be integers with 0 < a ≤ b − 5, b ≥ 8 and

N ≥ 9.5a′b2(b− a)2, where a′ = max{b− a, a}. Assume that N is divisible by ab.

Then the numbers θ1 =
√
1 + b/N and θ2 =

√
1 + a/N satisfy

max

{∣∣∣∣θ1 −
p1
q

∣∣∣∣ ,
∣∣∣∣θ2 −

p2
q

∣∣∣∣
}

>

(
32.01a′bN

a

)−1

q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(16.01a−1a′bN)

log(1.687a−1b−1(b− a)−2N2)
< 2.
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Remark 2.6. The essential difference from the provious result ([13, The-

orem 21] or [2, Theorem 3.2]) is in λ. Since λ in Theorem 2.5 is smaller than

others, we can get the weaker condition N ≥ 9.5a′b2(b− a)2 for λ < 2 and apply

Theorem 2.5 with N = abc on Assumption 2.2.

We need the following lemma.

Lemma 2.7 ([13, Lemma 22]; see also [17, Lemma 3.1], [2, Lemma 2.1]).

Let θ1, . . . , θm be arbitrary real numbers and θ0 = 1. Assume that there exist

positive real numbers l, p, L, P and positive integers D, f with f dividing D and

with L > D, having the following property. For each positive integer k, we can

find rational numbers pijk (0 ≤ i, j ≤ m) with nonzero determinant such that

f−1Dkpijk (0 ≤ i, j ≤ m) are integers and

|pijk| ≤ pP k (0 ≤ i, j ≤ m),

∣∣∣∣
m∑

j=0

pijkθj

∣∣∣∣ ≤ lL−k (0 ≤ i ≤ m).

Then

max

{∣∣∣∣θ1 −
p1
q

∣∣∣∣ , . . . ,
∣∣∣∣θm − pm

q

∣∣∣∣
}

> cq−λ

holds for all integers p1, . . . , pm, q with q > 0, where

λ = 1 +
log(DP )

log(L/D)
and c−1 = 2mf−1pDP

(
max{1, 2f−1l})λ .

Proof of Theorem 2.5. In our situation, we take m = 2 and θ1, θ2 as in

Theorem 2.5. The only difference from the proof of Theorem 21 in [13] is the

way to take D. We here show that we may take D = 4ab(b − a)2N (whereas

D = 2a2b2(b− a)2N is taken in [13]).

For 1 ≤ i, j ≤ 2, let pij(x) be the polynomial defined by

pij(x) =
∑

ij

(
k + 1

2

hj

)
(1 + ajx)

k−hjxhj

∏

l 6=j

(−kil
hl

)
(aj − al)

−kil−hl ,

where kil = k + δil with δil the Kronecker delta,
∑

ij denotes the sum over all

non-negative integers h0, h1, h2 satisfying h0 + h1 + h2 = kij − 1, and
∏

l 6=j

denotes the product from l = 0 to l = 2 omitting l = j (which is the expression

(3.7) in [17] with ν = 1/2). Substituting x = 1/N , we have

(pijk =) pij

(
1

N

)
=

∑

ij

(
k + 1

2

hj

)
C−1

ij

∏

l 6=j

(−kil
hl

)
, (2.7)
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where

Cij =
Nk

(N + aj)k−hj

∏

l 6=j

(aj − al)
kil+hl .

Now we take a0 = 0, a1 = a, a2 = b and N = abN0 for some integer N0. If j = 0,

then

|Ci0| = Nh0aki1+h1bki2+h2 =
aki1+h0+h1−kbki2+h0+h2−kNk

Nk−h0
0

.

Since kil + hj + hl − k ≤ kil + kij − 1− k ≤ k, we have akbkNkC−1
i0 ∈ Z for all i.

If j = 1, then

|Ci1| = ah1bkNk
0

(bN0 + 1)k−h1
· aki0+h0(b− a)ki2+h2 =

aki0+h0+h1−k(b− a)ki2+h2Nk

(bN0 + 1)k−h1
.

Since kil + hl ≤ kil + kij − 1 ≤ 2k, we have ak(b − a)2kNkC−1
i1 ∈ Z for all i.

If j = 2, then |Ci2| = bki0+h0+h2−k(b − a)ki1+h1Nk/(aN0 + 1)k−h2 and we have

bk(b − a)2kNkC−1
i2 ∈ Z for all i. It follows that akbk(b − a)2kNkC−1

ij ∈ Z for all

i, j. Since

2hj+h′
j

(
k + 1

2

hj

)
∈ Z

for all j (see the proof of Lemma 4.3 in [17]), we obtain

2−1{4ab(b−a)2N}kpij(1/N) ∈ Z for all i, j, which means that we may take f = 2

and D = 4ab(b− a)2N .

As in the proof of Theorem 21 in [13], we may take

l =
27

64

(
1− b

N

)−1

, L =
27

4

(
1− b

N

)2

N3,

p =

(
1 +

a′

2N

)1/2

, P =
8
(
1 + 3b−a

2N

)

ζ
,

where

ζ =

{
a2(2b− a) if b− a ≥ a,

(b− a)2(a+ b) if b− a < a.
(2.8)

Hence, we easily see from the assumptions that

DP <
16.01a′bN

a
,

L

D
>

1.687N2

ab(b− a)2
, c−1 <

32.01a′bN
a

.

Therefore, the assertion follows from Lemma 2.7. ¤
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We are now ready to give an upper bounds for b and c first.

Lemma 2.8 (cf. [7, Lemma 12]). Let N = abc and let θ1, θ2 be as in

Theorem 2.5. Then all positive solutions of the system of Diophantine equations

(2.1) and (2.2) satisfy

max

{∣∣∣∣θ1 −
sbx

abz

∣∣∣∣ ,
∣∣∣∣θ2 −

tay

abz

∣∣∣∣
}

<
c

2a
z−2.

Lemma 2.9. Let {a, b, c, d} be a Diophantine quadruple with a < b < c < d.

Assume that c > 9.5a′b(b− a)2/a. Then,

log z <
4 log(4.001a1/2(a′)1/2b2c) log(1.299a1/2b1/2(b− a)−1c)

log(0.1053a(a′)−1b−1(b− a)−2c)
.

Proof. Putting q = abz, p1 = sbx and p2 = tay, we see from Theorem 2.5

and Lemma 2.8 that

z2−λ < 16.005aa′b4c2 <
(
4.001a1/2(a′)1/2b2c

)2

.

Since

1

2− λ
=

log(1.687ab(b− a)−2c2)

log 1.687a(b−a)−2c
16.01a′b

<
2 log(1.299a1/2b1/2(b− a)−1c)

log(0.1053a(a′)−1b−1(b− a)−2c)
,

we obtain the assertion. ¤

Lemma 2.10. On Assumption 2.2, we have

log z > n log(4bc).

Proof. The proof proceeds along the same lines as the one of Lemma 25

in [13]. Indeed, the assertion immediately follows from the following inequalities:

w2n >
1

2
√
b

(
z1
√
b+ y1

√
c
)(
t+

√
bc

)2n
>

(
t+

√
bc

)2n
> (4bc)n. ¤

Proposition 2.11. On Assumption 2.2, the following hold.

(1) b < 1010.

(2) c < b9.
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Proof. Note that c > b5 implies c > 9.5a′b(b − a)2/a. For, if b ≥ 10, then

b5 > 9.5a′b(b− a)2/a; otherwise, b = 8 and the same inequality clearly holds. By

Lemmas 2.9 and 2.10 we have

n

4
<

log(4.001a1/2(a′)1/2b2c) log(1.299a1/2b1/2(b− a)−1c)

log(4bc) log(0.1053a(a′)−1b−1(b− a)−2c)
. (2.9)

(1) Suppose first that b ≥ 2a. Then by (2.9) we have

n

4
<

log(2.83b3c) log(1.299b1/2c)

log(4bc) log(0.1053b−4c)
. (2.10)

Since the right-hand side of this inequality is a decreasing function with respect

to c, we obtain

n

4
<

log(2.83b8) log(1.299b5.5)

log(4b6) log(0.1053b)
<

8 · 5.5
6

f1(b) =
22

3
f1(b),

where

f1(b) =
log(1.139b) log(1.049b)

log(1.259b) log(0.1053b)
.

Combining this inequality with Lemma 2.4 implies that

0.178

4
a1/2b−1c1/2 <

22

3
f1(b),

which yields b2/3 < 165f1(b). Since f1(b) is a decreasing function for b ≥ 10, if

b ≥ 53, then 165f1(b) ≤ 165f1(53) < 377, which contradicts b3/2 ≥ 533/2 > 385.

Therefore, we obtain b ≤ 52.

Secondly, suppose that b < 2a. Then by (2.9) we have

n

4
<

log(4.001b3c) log(0.1856bc)

log(4bc) log(0.4212b−3c)
,

where we used the fact that b−a ≥ 7, which is attained by the pair {a, b} = {8, 15},
and we obtain

n

4
<

8 · 6
6 · 2f2(b) = 4f2(b),

where

f2(b) =
log(1.19b) log(0.7553b)

log(1.259b) log(0.6489b)
.

It follows from Lemma 2.4 that

a−1/2c1/8

4
< 4f2(b),
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which yields b1/8 < 16f2(b). Since f2(b) is decreasing for b ≥ 2, if b ≥ 178, then

16f2(b) ≤ 16f2(17
8) < 17, which contradicts b1/8 ≥ 17. Therefore, we obtain

b < 1010, which gives an upper bound in all the cases.

(2) Suppose that c > b9. We also have inequality (2.9). The proof is divided

into three cases.

Suppose first that b ≥ 2a. Then, we have inequality (2.10). By c > b9, we

have
n

4
<

log(2.83b12) log(1.299b9.5)

log(4b10) log(0.1053b5)
<

12 · 9.5
10 · 5 g1(b) =

57

25
g1(b),

where

g1(b) =
log(1.091b) log(1.028b)

log(1.148b) log(0.6375b)
.

Lemma 2.4 now shows that

0.178

4
a1/2b−1c1/2 <

57

25
g1(b),

that is, b7/2 < 52g1(b). Since g1(b) is decreasing for b ≥ 2, we have 52g1(b) ≤
52g1(8) < 66, which contradicts b7/2 ≥ 87/2 > 1100.

Suppose secondly that 1.45a ≤ b < 2a. We see from (2.9) that

n

4
<

log(2.76b3c) log(4.083c)

log(4bc) log(0.4212b−3c)
<

log(2.76b12) log(4.083b9)

log(4b10) log(0.4212b6)
<

12 · 9
10 · 6g2(b) =

9

5
g2(b),

where

g2(b) =
log(1.089b) log(1.17b)

log(1.148b) log(0.8657b)
.

By Lemma 2.4 we have

0.0033

4
a1/2b−1c1/2 <

9

5
g2(b),

yielding b4 < 2182g2(b). Since b ≥ 15 holds for b < 2a and g2(b) is decreasing for

b ≥ 2, we see that 2182g2(b) ≤ 2182g2(15) < 2400, which contradicts b4 ≥ 154 >

50000.

Finally, suppose that b < 1.45a. By (2.9) we have

n

4
<

log(4.001b3c) log(0.1856bc)

log(4bc) log(1.093b−3c)
<

log(4.001b12) log(0.1856b10)

log(4b10) log(1.093b6)
< 2g3(b) < 2,

where

g3(b) =
log(1.123b) log(0.8451b)

log(1.148b) log(1.014b)
.

Thus we have n < 8, which together with Lemma 2.4 implies that a−1/2c1/8 < 8,

and hence b ≤ 27. In this range, there does not exist a Diophantine pair satisfying

a+ 2 < b < 1.45a. This completes the proof of Proposition 2.11. ¤
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3. Proof of Theorem 2.1

In this section we find the upper bounds for b and d. We first review some

results on Diophantine quintuples from Sections 2 and 3 in [14]. Suppose that

{a, b, c, d, e} is a Diophantine quintuple with a < b < c < d < e. Then, there exist

integers α, β, γ, δ such that

ae+ 1 = α2, be+ 1 = β2, ce+ 1 = γ2, de+ 1 = δ2,

from which we obtain the system of Diophantine equations.

aδ2 − dα2 = a− d, (3.1)

bδ2 − dβ2 = b− d, (3.2)

cδ2 − dγ2 = c− d. (3.3)

The solutions of equations (3.1), (3.2) and (3.3) respectively are given by δ = Ui,

δ = Vj and δ = Wk with positive integers i, j and k, where

U0 = ±1, U1 = ±x+ d, Ui+2 = 2xUi+1 − Ui,

V0 = ±1, V1 = ±y + d, Vj+2 = 2yVj+1 − Vj ,

W0 = ±1, W1 = ±z + d, Wk+2 = 2zWk+1 −Wk.

The indices satisfy 4 ≤ i ≤ j ≤ k ≤ 2i and j ≥ 6 and all of i, j and k are even.

Moreover, {a, b, c, d} contains a standard triple {A,B,C} with A < B < C = d.

Hence, the quadruple {A,B, d, e} is considered as the one in Section 2, vm and

wn in Section 2 correspond to two of Ui, Vj and Wk, and Assumption 2.2 holds if

C = d > B5 ≥ b5, which is exactly the case where {A,B,C} is a standard triple

of the first kind in the sense of Definition 3.1 in [14].

Proof of Theorem 2.1. Suppose that d > 10100. Then, Proposition 4.3

in [14] enables us to assume that {a, b, c, d} contains a standard triple of the first

kind. Hence, d > b5 and Proposition 2.11 (1) implies that b < 1010. It follows

from Proposition 2.11 (2) that d < b9 < 1090, which contradicts d > 10100. Hence,

d ≤ 10100. Since d > 4abc > 4b2, we conclude that b < 0.5 · 1050 = 5 · 1049. ¤
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4. The number of Diophantine quintuples

We are now left to prove our main theorem.

Proof of Theorem 1.1. Assume that {a, b, c, d, e} is a Diophantine quin-

tuple such that a < b < c < d < e. We consider the cases d < b5 and d > b5

separately.

Suppose first that d < b5. Theorem 2.1 implies b < 5 · 1049 and d < 10100.

We first bound the number of pairs {a, b}. If b ≤ 1031, then the number of pairs

is at most 1062. And if 1031 < b < 5 · 1049, by (8) in [9] we have

log b >
1

2
ω(b) logω(b),

where ω(b) denotes the number of distinct prime factors of b. Now, if 2ω(b) ≥
b0.38, then by the displayed inequality above we have ω(b) < 38.41 which yields

b < 3 · 1030, a contradiction. Hence, 2ω(b) < b0.38, and the number of pairs {a, b}
is less than (see the proof of Theorem 1 in [9]):

5·1049−1∑

b=1031+1

2ω(b)+1 < 2
5·1049−1∑

b=1031+1

b0.38 < 2

∫ 5·1049

1031
b0.38db < 6 · 1068.

Therefore, the number of pairs {a, b} is less than 6 · 1068.
For a fixed pair {a, b} the number c such that {a, b, c} is a Diophantine

triple belongs to the union of finitely many binary recurrent sequences, and the

number of those sequences is less than or equal to the number of solutions of

the congruence t20 ≡ 1 (mod b) such that −0.71b0.75 < t0 < 0.71b0.75 (cf. [7,

Lemma 1]). This congruence comes from bc + 1 = t2 and t2 = t2n ≡ t20 (mod b).

If b ≤ 1034, then the number of the sequences is less than or equal to 2 · 0.71 ·
1034·0.75 < 4.5 · 1025. And assuming 1034 < b < 5 · 1049, we conclude as above

2ω(b) < b0.51. Hence, the number of sequences is less than 2 · 2ω(b)+1 < 4 · b0.51 <

9 · 1025 (cf. [9, Lemma 1]). Moreover, each sequence t = tν satisfies (2r− 1)ν−1 <

tν =
√
bc+ 1. Since we know by the assumption that bc < d/4 < b5/4, we obtain

(1.64
√
b)ν−1 < 0.51b5/2 and ν ≤ 3. Hence, the number of elements contained in

each of the sequences is less than or equal to 3. Furthermore, the second author

proved in [13] and [14] that for a fixed Diophantine triple {a, b, c} there are at

most four ways for it to be extended to a quintuple. Consequently, we see that

the number of Diophantine quintuples is less than

6 · 1068 · 9 · 1025 · 3 · 4 < 7 · 1095.
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Suppose secondly that d > b5. Then, b < d1/5 < 1020 and the number of

the pairs {a, b} is less than 1040. For a fixed pair {a, b} the number of sequences

attached to the third element c is less than 2 · 0.71 · 1020·0.75 < 2 · 1015 and the

number of elements contained in each of the sequences is less than or equal to

ν ≤ 6 (note that by Proposition 2.11 bc < b9/4 and (1.64
√
b )ν−1 < 0.51b9/2). It

follows that the number of Diophantine quintuples is less than

1040 · 2 · 1015 · 6 · 4 < 1057.

To sum up, we obtain the bound 1096 as in the assertion. ¤

5. Concluding remarks

In this section, we explain that the upper bound 1096 is (more or less) best

possible when we use Rickert’s theorem.

We first consider whether one can further improve Theorem 2.5, that is, whet-

her one can take better quantities in Lemma 2.7. In order to do it (essentially),

we have to reduce “λ”, that is, make L larger or D,P smaller.

For L, following [2, p. 186] one can see that
∣∣∣∣Ii

(
1

N

)∣∣∣∣ >
1

πN3k

∫ ∞

0

xk+1/2

(x+ α)3k+1
dx =

1

α2k−1/2N3k
· 2k + 1

4k − 1

(
4k

k

)
2−6k,

where α = 1 + b/N . By Stirling’s formula

n! =
√
2πnn−1/2eµn−n with 0 < µn <

1

12n
,

we have ∣∣∣∣Ii
(

1

N

)∣∣∣∣ > 0.8 · 2k + 1

4k + 1

√
2α

3πk

(
27

4α2
N3

)−k

.

Hence, the value L one could take is at most 27(1 + b/N)2N3, which is merely

1.1 times larger than our choice L = 27(1− b/N)2N3 in our situation N = abc.

For P , we have to estimate |A(z)| = |z(z − a)(z − b)|. Let Γj be the contour

defined by |z − aj | = mini 6=j{|aj − ai|/2}. Then, we have |A(z)| ≤ 3a2(a+ 2b)/8

on Γ0 and |A(z)| ≤ 3(3b − a)(b − a)2/8 on Γ2. On Γ1, we have |A(z)| ≤ 3ζ/8,

where ζ is defined in (2.8). Since

∣∣∣∣pii
(

1

N

)∣∣∣∣
(
1 +

ai
N

)1/2

=
1

2π

∣∣∣∣
∫

Γi

(1 + z/N)

(z − ai)(A(z))k
dz

∣∣∣∣

≥ ri(1− a/(2N))

maxz∈Γi |A(z)|k
, where ri is the radius of Γi,
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and p, P satisfy |pijk| = |pij(1/N)| ≤ pP k for all i, j, k, we see that the lower

bound for P is 8/(3ζ). This value 8/(3ζ) is less than one third of our choice

P = 8(1 + (3b− a)/(2N))/ζ.

For D, we show that in our situation N = abc, if Dkpijk ∈ Z for all i, j, k,

then D ≡ 0 (mod ab(b − a)2N). It suffices to prove this for k = 1 and i 6= j.

Then, since h0 = h1 = h2 = 0, we see from (2.7) that

pijk = C−1
ij =

N + aj
N(aj − ai)2(aj − al)

with l 6∈ {i, j}.

Considering the cases (i, j) = (0, 1), (0, 2), (1, 2), one can find that if

gcd(a, b) = gcd(a, bc+ 1) = gcd(b, ac+ 1) = gcd(b− a, ac+ 1)

= gcd(b− a, bc+ 1) = 1, (5.1)

then Dpijk ∈ Z implies D ≡ 0 (mod ab(b− a)2N). It is easy to check that there

exist (infinitely) many Diophantine triples {a, b, c} satisfying (5.1) (for example,

the triple {K−1, 4K, 144K3−192K2+76K−8} satisfies (5.1) if K ≡ 0 (mod 2)

and K ≡ 2 (mod 3)). Hence, the value D one could take is at least ab(b− a)2N ,

which is one fourth of our choice D = 4ab(b− a)2N .

To sum up, the lower bound for N such that λ < 2 can be improved only

by a constant multiple (for example, if b ≥ 2a and N > 0.05b2(b − a)3, then

λ < 2). Therefore, Theorem 2.5 even with the improved assumption on N cannot

be applied to a Diophantine quadruple containing a standard triple of the second

or the third kind in general.

Secondly, we consider whether the bound d ≤ 10100 can be reduced. In

Theorem 2.1, we proved d ≤ 10100 by using Proposition 4.3 in [14], which states

that if d > 10100, then a Diophantine quadruple {a, b, c, d} contains a standard

triple of the first kind, to which Theorem 2.5 can be applied. In the proof of the

proposition, it is shown that if d > 10100 and if {a, b, c, d} contains a standard

triple of the second or the third kind, then d0.19 < 7.2 · 1018. This does not lead

to a contradiction if d > 1099. Hence, in order to ensure that {a, b, c, d} contains

a triple of the first kind, we have to assume that d > 10100.

Also we cannot significantly reduce the bound for b by this method. We got

the bound b < 1010 only on the assumption 2.2 and in our proof we use the fact

that our quadruple {a, b, c, d} contains the triple of the first kind.

Consequently, it is deduced that we cannot essentially improve the bound

1096 using Rickert’s theorem. In order to do that or to settle the conjecture on

Diophantine quintuples, either another tool or a significant advance in computer

technology would be necessary.
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