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On prime radical of submodules

By ABDULRASOOL AZIZI (Shiraz)

Abstract. Let R be a commutative ring with identity. A proper submodule N

of an R-module M is called P -prime [resp. P -primary], if for each r ∈ R and a ∈ M ,

ra ∈ N implies that a ∈ N or r ∈ P = (N : M) [resp. r ∈ P =
√

(N : M) ]. The

intersection of all prime submodules of M containing a submodule B denoted by rad(B)

is called the radical of B. We will try to formulate and find the forms of elements of

rad(B), and we study when the radicals of primary submodules are prime.

1. Introduction

Throughout this paper all rings are commutative with identity and all mo-

dules are unitary. Also we consider R to be a ring, M a unitary R-module, B a

submodule of M , and N the set of positive integers. By B ≤ M [resp. B < M ],

we mean B is a submodule [resp. a proper submodule] of M .

It is said that N < M is a prime submodule of M , if the condition ra ∈ N ,

r ∈ R and a ∈ M implies that a ∈ N or rM ⊆ N (see [1], [2], [4]–[6], [8], [12]–[15],

[17]–[21]).

For any subset B of M , the envelope of B, E(B) (or EM (B)) is

E(B) = {x | x = ra, rna ∈ B, for some r ∈ R, a ∈ M, n ∈ N}.
Recall that a ring R is called absolutely flat (or Von Neumann regular), in

case Rx = Rx2, for every x ∈ R.

In general E(B) is not a submodule of M , indeed according to [8, Propo-

sition 2.1], R is an absolutely flat ring if and only if E(B) is a submodule of M
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for any submodule B of every R-module M . The submodule of M generated by

E(B) is denoted by 〈E(B)〉 and it is a module version of the radical of ideals,

and obviously B ⊆ 〈E(B)〉.
The intersection of all prime submodules of M containing B is denoted by

rad(B) or radM (B). If there does not exist any prime submodule of M contain-

ing B, then we consider rad(B) = M .

It is said that a module M satisfies the radical formula (s.t.r.f.), if 〈E(B)〉 =
rad(B) for every submodule B of M . We say a ring R s.t.r.f., if every R-module

s.t.r.f. The s.t.r.f. concept has been studied in many papers recently, see for

example [2], [4], [8], [13]–[15], [17]–[21].

Recall that an R-module M is multiplication if every submodule of M is of

the form IM , where I is an ideal of R (see [10]).

An R-module 0 6= S is said to be P -secondary, if for each r ∈ R, rS = S or

r ∈ P =
√
Ann(S). If S is a P -secondary module, then P is a prime ideal of R.

Evidently every divisible module over an integral domain is 0-secondary.

According to [16, Section 6], a secondary representation of an R-module M ,

is an expression of M as a finite sum of Pi-secondary submodules Si, that is

M = S1+S2+S3+ · · ·+Sn. If M has a secondary representation, then it is said

that M is a secondary representable module.

Recall that a serial module is a module in which every two submodules are

comparable. A module M [resp. ring R] is called distributive [resp. arithmetical ],

when I+(J ∩K) = (I+J)∩ (I+K), for every three arbitrary submodules [resp.

ideals] I, J and K of M [resp. R]. By [7, Theorem 2.16] M is distributive if and

only if MM is a serial module for every maximal ideal M of R.

In Section 2 of this paper we will find the forms of elements of radicals

of submodules for some particular modules such as modules over rings of Krull

dimension zero, multiplication modules and secondary representable modules. In

Section 3 we will find the formulas of radical of primary submodules. It is proved

that rad(Q) = PM , if Q is a P -primary submodule of a distributive module M .

Also we introduce some modules of which the radicals of primary submodules are

prime submodules.

2. Some formulas for radicals of submodules

Throughout this section, we consider:

A = {(B,M) | M is a module and B ≤ M},
and we suppose B to be the class of all modules.
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Definition 1. Let φ : A −→ B be a function such that φ(B,M) ≤ M for any

(B,M) ∈ A. We will say that a module M is φ-radical, if radM (B) ⊆ φ(B,M),

for every B ≤ M . If every R-module is φ-radical, then we will say the ring R is

φ-radical.

We define φ0 : A −→ B by φ0(B,M) = 〈EM (B)〉. Then a module M is

φ0-radical if and only if M s.t.r.f.

We consider N(R) to be the nilradical of R, which is the intersection of all

prime ideals (or all nilpotent elements) of R. Evidently for every submodule B

of any R-module M , we have:

B +N(R)M ⊆ B +
√
(B : M)M ⊆ 〈E(B)〉 ⊆ rad(B). (∗)

In the following, we are trying to study the equalities B+N(R)M = rad(B)

and B +
√
(B : M)M = rad(B). Hence throughout this paper, we consider:

φ1(B,M) = B +
√
(B : M)M, φ2(B,M) = B +N(R)M,

φ3(B,M) =
√
(B : M)M.

From (∗) in the above, if a module M is φi-radical, for some 1 ≤ i ≤ 3, then

φi(B,M) = 〈E(B)〉 = rad(B) for every submodule B of M . In particular M

s.t.r.f.

Definition 2. It will be said that φ commutes with the localization, if φ :

A −→ B is a function such that φ(B,M) ≤ M for any (B,M) ∈ A, and

φ(BM,MM) ⊆ (φ(B,M))M for each (B,M) ∈ A and every maximal ideal M

of R.

According to [19, Lemma 1.5], φ0 commutes with the localization.

Lemma 2.1. Let M be an R-module and suppose φ commutes with the

localization. If for any maximal ideal M of R, the RM-module MM is φ-radical,

then M is φ-radical.

Proof. Let B be a proper submodule of an R-module M and M a maximal

ideal of R. According to [19, Proposition 1.6], (radM (B))M ⊆ radMM
(BM).

Hence by our assumption (radM (B))M ⊆ φ(BM,MM) ⊆ (φ(B,M))M, for each

maximal ideal M of R. Therefore radM (B) ⊆ φ(B,M). ¤

Note that if for a submodule B of an R-module M , the ideal (B : M) is

a prime ideal, then B need not be a prime submodule. For example consider

M = Z⊕Z, B = 0⊕ 2Z, and R = Z. Then (B : M) = 0 is a prime ideal, however

B is not a prime submodule of M , because 2(0, 1) ∈ B, but (0, 1) /∈ B. Compare

this note with the following lemma, which its proof is straightforward.
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Lemma 2.2. Let B be a submodule of an R-module M . If (B : M) is a

maximal ideal of R, then B is a prime submodule of M .

Theorem 2.3. Let R be a ring. Then the following are equivalent:

(i) rad(B) = B +N(R)M , for every submodule B of any R-module M ;

(ii) rad(B) = B + N(R)M , for every submodule B of any finitely generated

R-module M ;

(iii) rad(B) = B +
√
(B : M)M , for every submodule B of any R-module M ;

(iv) rad(B) = B+
√
(B : M)M , for every submodule B of any finitely generated

R-module M ;

(v) dimR = 0.

Proof. (i) =⇒ (iii) Note that N(R) ⊆
√
(B : M).

(iii) =⇒ (iv) The proof is clear.

(iv) =⇒ (v) We show that R/N(R) is an absolutely flat ring, and so by [3,

p. 44, Ex. 11], dimR = 0. Let I be an ideal of R containing N(R) and consider

M = R/I ⊕R.

Evidently (0 : M) = 0, and by our assumption, M is φ1-radical, so 〈EM (0)〉 =
rad(0) =

√
(0 : M)M = N(R)M = (I/I)⊕N(R).

Suppose that an R-module M ′ is a direct sum of two R-modules M1 and M2,

i.e., M ′ = M1 ⊕M2, then according to [2, Lemma 2.3], 〈EM ′(0)〉 = 〈EM1(0)〉 ⊕
〈EM2(0)〉. Thus 〈EM (0)〉 = 〈ER/I(I/I)〉 ⊕ 〈ER(0)〉 = (

√
I/I) ⊕ N(R). Conse-

quently I/I =
√
I/I, that is

√
I = I, for every ideal I of R containing N(R).

Therefore R/N(R) is an absolutely flat ring.

(v) =⇒ (i) According to [3, Proposition 3.11], for any maximal ideal M of

R, (N(R))M = N(RM), hence the function φ2 commutes with the localization,

so by (2.1), we can assume that (R,M) is a local ring of dimension zero, and thus

N(R) = M.

Let B be a proper submodule of an R-module M . Now since M ⊆ (B +

MM : M), we have (B + MM : M) = M or B + MM = M . So by (2.2),

rad(B) ⊆ B +MM = B +N(R)M .

(i) =⇒ (ii) The proof is clear.

(ii) =⇒ (iv) The proof is similar to that of (i) =⇒ (iii). ¤

Recall that an R-module M is called weak multiplication if every prime sub-

module of M is of the form IM , where I is an ideal of R (see [1], [5]). According

to [5, Theorem 2.7], every finitely generated weak multiplication module is a

multiplication module.
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According to P. Gabriel [11], a module M is finitely annihilated if there

exists a finite subset T of M with Ann(T ) = Ann(M). Evidently every finitely

generated module is finitely annihilated.

In [10], the ideal θ(M) is introduced as θ(M) =
∑

a∈M (Ra : M).

Lemma 2.4 ([9, Proposition 4]). Every multiplication module over a local

ring is cyclic.

The following is a generalization of [12, Theorem 5.6(II)].

Proposition 2.5. Let M be an R-module. Then the following are equiva-

lent:

(i) M is a finitely annihilated locally cyclic module;

(ii) M is a finitely generated multiplication module;

(iii) M is a finitely generated module and rad(B) =
√
(B : M)M , for every sub-

module B of M ;

(iv) M is a finitely generated module and N = (N : M)M , for every prime

submodule N of M ;

(v) θ(M)M = M , and PM 6= M for every maximal ideal P of R containing

Ann(M), and rad(B) =
√
(B : M)M for every submodule B of M .

Proof. (i) =⇒ (ii) By [10, Theorem 3.1], if M 6= PM , for any maximal ideal

P of R containing Ann(M), thenM is finitely generated. On the contrary letM =

MM , for some maximal ideal M of R containing Ann(M). By our assumption

MM is a cyclic RM-module, and MM = MMMM, then by Nakayama’s lemma

there exist r ∈ R and s ∈ R \M such that (r/s)MM = 0 and 1− (r/s) ∈ MM.

Suppose that T = {t1, t2, t3, . . . , tn} is a finite subset of M with Ann(T ) =

Ann(M). Then (r/s)(ti/1) = 0, for each 1 ≤ i ≤ n. So there exists si ∈ R \M
with sirti = 0, for each 1 ≤ i ≤ n. Put s̄ = s1s2s3 . . . sn. Then s̄r ∈ Ann(T ) =

Ann(M) ⊆ M. Hence r ∈ M, and so r/s ∈ MM, which is a contradiction, since

1− (r/s) ∈ MM. According to [9, Proposition 5] every finitely generated locally

cyclic module is multiplication.

(ii) =⇒ (iii) Let M be a maximal ideal of R. According to [3, Propo-

sition 3.11], (
√
(B : M))M =

√
(B : M)M, and since M is finitely generated,

(B : M)M = (BM : MM).

So (φ3(B,M))M = (
√
(B : M)M)M =

√
(BM : MM)MM = φ3(BM,MM),

Thus φ3|A′ commutes with the localization, where

A′ = {(B,M) ∈ A | M is finitely generated}.
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Therefore by (2.1), we may assume that R is a local ring and so by (2.4), M

is cyclic.

Let M = R/I, where I is an ideal of R. Suppose B is a submodule of R/I.

Then B = J/I, where J is an ideal of R containing I. One can easily check that

rad(B) = (∩P )/I, where P runs over all prime ideals of R containing J . Hence

rad(J/I) =
√
J/I =

√
(J/I : R/I)R/I.

(iii) =⇒ (iv) The proof is clear.

(iv) =⇒ (i) Since M is a finitely generated weak multiplication R-module,

by [5, Theorem 2.7], M is multiplication. Now by (2.4), M is locally cyclic.

(ii) =⇒ (v) We have Ra = (Ra : M)M , for each a ∈ M . So θ(M)M =

(
∑

a∈M (Ra : M))M =
∑

a∈M ((Ra : M)M) =
∑

a∈M Ra = M . If PM = M , for

a maximal ideal P of R containing Ann(M), then by Nakayama’s Lemma, there

exists r ∈ Ann(M) with 1− r ∈ P , which is impossible.

(v) =⇒ (iii) We have θ(M) = R, otherwise there exists a prime ideal P of

R containing θ(M). So M = θ(M)M ⊆ PM , which is a contradiction. Now

1 ∈ θ(M) implies that there exist n ∈ N and a1, a2, a3, . . . , an ∈ M such that

1 = r1 + r2 + · · ·+ rn, where ri ∈ (Rai : M), ∀ 1 ≤ i ≤ n. So M ⊆ r1M + r2M +

· · ·+ rnM ⊆ Ra1 +Ra2 + · · ·+Ran. ¤

Note 1. There is no a ring R such that rad(N) = (N : M)M for every prime

submodule N of every (finitely generated) R-module M .

Proof. Consider M = R⊕R and suppose that P is a prime ideal of R. It is

easy to see that P⊕R is a P -prime submodule of M . Then P⊕R = rad(P⊕R) =√
(P ⊕R : M)M = PM = P ⊕ P , which is a contradiction. ¤

If A1, A2 are two subsets of M , then we consider A1 + A2 as the subset

{a1 + a2 | a1 ∈ A1 and a2 ∈ A2} of M .

Theorem 2.6. LetM =
∑n

i=1 Mi such thatMi is a Pi-secondary submodule

of M for each 1 ≤ i ≤ n. Then rad(B) =
∑n

i=1 PiMi + E(B), for each B ≤ M .

In particular rad(B) =
√
(B : M)M + E(B), if M is a secondary module.

Proof. By [18, Corollary 3.11], every secondary representable module

s.t.r.f., and since E(B) ⊆ ∑n
i=1 PiMi + E(B) ⊆ 〈E(B)〉, it is enough to show

that
∑n

i=1 PiMi + E(B) is a submodule of M .

It is easy to see that
∑n

i=1 PiMi + E(B) is closed under the multiplication.

Therefore it is sufficient to prove that α + β ∈ ∑n
i=1 PiMi + E(B), for each

α, β ∈ ∑n
i=1 PiMi + E(B).

Suppose α = x1+x, β = y1+ y, where x1, y1 ∈ ∑n
i=1 PiMi and x, y ∈ E(B).

We prove that x+ y ∈ ∑n
i=1 PiMi + E(B).
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There exist r, s ∈ R, a, b ∈ M and a positive integer k such that x = ra,

y = sb, and rka, skb ∈ B. If for some 1 ≤ i ≤ n, r ∈ Pi or s ∈ Pi, then

obviously ra+ sb ∈ ∑n
i=1 PiMi +E(B). Now suppose r, s 6∈ Pi, for all 1 ≤ i ≤ n.

Since rs 6∈ Pi for all 1 ≤ i ≤ n, rsM = M . Thus there exists c ∈ M with

rsc = ra+ sb. Consequently (rs)kc = (rs)k−1(ra+ sb) = sk−1rka+ rk−1skb ∈ B.

So x+ y = (rs)c ∈ E(B).

Now let x + y = z1 + z, where z1 ∈ ∑n
i=1 PiMi and z ∈ E(B). Thus

α+ β = x1 + y1 + z1 + z ∈ ∑n
i=1 PiMi + E(B), which completes the proof.

IfM is a P -secondary module, then it is enough to show that
√
(B : M) = P .

First note that (B : M) ⊆ P . To see the proof, let r ∈ (B : M) \P . Since M

is P -secondary, M = rM ⊆ B, which is a contradiction.

Evidently Ann(M) ⊆ (B : M), then P =
√
Ann(M) ⊆

√
(B : M) ⊆ P . ¤

Lemma 2.7. Let M1 be a P1-secondary submodule of a module M , and Q

a P -primary submodule of M . Then P = P1, if M1 6⊆ Q.

Proof. Consider r ∈ P1 =
√
Ann(M1). Then rmM1 = 0 ⊆ Q, for some

m ∈ N and M1 6⊆ Q, hence r ∈ P .

Now suppose t ∈ P . Then tkM1 ⊆ Q, for some k ∈ N, and M1 6⊆ Q,

then tkM1 6= M1. Therefore tM1 6= M1, and as M1 is a secondary module,

t ∈
√
Ann(M1) = P1. Hence P1 = P . ¤

Let S and S′ be two P -secondary submodules of M . Then S + S′ is itself a
P -secondary submodule. To see the proof, note that evidently

√
Ann(S + S′) =√

Ann(S) ∩Ann(S′) =
√
P = P . Now assume r ∈ R \ P . Then rS = S and

rS′ = S′, and so r(S + S′) = S + S′.

Corollary 2.8. LetM =
∑

i∈I Mi such thatMi is a Pi-secondary submodule

of M for each i ∈ I.

(i) 〈E(B)〉 = ∑
i∈I PiMi + E(B), for each B ≤ M .

(ii) rad(B) =
∑

i∈I PiMi+E(B), for each finitely generated submodule B of M .

Particularly rad(B) = 〈E(B)〉.
Proof. (i) To see the assertion, follow the proof of (2.6).

(ii) Note that the sum of two Pi-secondary submodules is itself a Pi-secondary

submodule. Hence we may suppose Pi 6= Pj , for each i, j ∈ I, i 6= j.

Since B is finitely generated, it is contained in a finite number of Mi’s, let

B ≤ M ′ =
∑n

j=1 Mij . We show that:

radM (B) ⊆ radM ′(B). (∗)
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To prove this, it is enough to show that if N is a prime submodule of M ′

containing B, then N is a prime submodule of M .

Since N ⊂ M ′, then Mik 6⊆ N , for some 1 ≤ k ≤ n. Then (2.7) implies that

(N : M) = Pik . We prove that Mi ⊆ N , for each ik 6= i ∈ I.

If for some ik 6= i ∈ I, Mi 6⊆ N , then again by (2.7), Pi = (N : M) = Pik ,

which is a contradiction. Therefore for each ik 6= i ∈ I, Mi ⊆ N .

To prove that N is a prime submodule of M , let ra ∈ N , where a ∈ M and

r ∈ R. Suppose a = aik +
∑m

i=1,i 6=ik
ai, where aik ∈ Mik and ai ∈ Mi, for each

1 ≤ i ≤ m, i 6= ik. Then raik ∈ N and since N is a prime submodule of M ′, we
have aik ∈ N or rMik ⊆ N . This implies that a ∈ N or rM ⊆ N .

Now from (∗) and (2.6), we get:

radM (B) ⊆
n∑

j=1

PijMij + EM ′(B) ⊆
∑

i∈I

PiMi + EM (B) ⊆ 〈EM (B)〉 ⊆ radM (B).

¤

3. Radicals of primary submodules

In this section, we will try to find some formulas for primary submodules of

some particular modules. Also we establish the conditions under which the radical

of a primary submodule Q of a module M is a prime submodule, if rad(Q) 6= M .

This subject has been noticed in [6], [17], [20].

Definition 3. Let M be an R-module. If for any primary submodule Q of M ,

rad(Q) = M or rad(Q) is a prime submodule of M , then we say that for M

radical of primary submodules are prime submodules (for M r.p.a.p.).

If for every R-module r.p.a.p., then we say that for the ring R r.p.a.p.

According to [21] an R-module M is called special, if for each maximal ideal

M of R, each a ∈ M and each m ∈ M , there exist c ∈ R \ M and k ∈ N
such that cakm = 0. Semi-simple modules (direct sum of simple modules), locally

Artinian modules (modules in which every cyclic submodule is Artinian) and semi-

Artinian modules (modules of which every homomorphic image has a nonzero

simple submodule) are special (see [21, Section 3]).

The following lemma is the main result of [6].

Lemma 3.1.

(1) If one of the following conditions is satisfied for a ring R, then for the ring

R r.p.a.p.
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R is a ZPI-ring, dimR = 0, R is an almost multiplication ring, an arithmetical

ring with locally ACC on principal ideals, or a ring with DCC on principal

ideals.

(2) If M is a special module, a secondary representable module, a module with

DCC on cyclic submodules, or a module with DCC on the submodules of the

form {rkM | k ∈ N} for each r ∈ R, then for the module M r.p.a.p.

In this section, we will generalize the results of [6]. In (3.8) of this paper, we

study when for M = M1⊕M2 r.p.a.p., where for M1 r.p.a.p. Indeed the modules

introduced in (3.1)(2) are some particular cases of (3.8), where M1 = 0.

Compare the following result with (2.5)(iii) and Note 1.

Theorem 3.2. Let Q be a P -primary submodule of an R-module M . Then

rad(Q) = PM , if M is a distributive or a multiplication module.

Proof. Let M be a maximal ideal of R. First we prove that

PM =
√
(QM : MM).

If P ⊆ M, then by [3, Proposition 4.8(ii)], QM is a PM-primary submodule of

MM, and particularly PM =
√
(QM : MM). If P 6⊆ M, then [3, Proposition 4.8(i)]

implies that QM = MM, and so PM = RM =
√
(QM : MM).

Therefore (φ3(Q,M))M = (PM)M =
√
(QM : MM)MM = φ3(QM,MM).

Thus φ3|A′′ commutes with the localization, where

A′′ = {(Q,M) ∈ A | Q is primary }.
So by (2.1), we may suppose that R is a local ring.

Now assume that M is a distributive module. By [7, Theorem 2.16], every

distributive module over a local ring is a serial module, then we can suppose that

M is a serial module.

Consider m ∈ M \ Q. Then Q ⊆ Rm. Let q ∈ Q. Then q = tm for some

t ∈ R, and as Q is a P -primary submodule, t ∈ P . Thus q ∈ PM . So Q ⊆ PM ,

which implies that Q ⊆ PM ⊆ rad(Q), hence it is enough to show that PM is a

prime submodule of M .

Let s ∈ R and x ∈ M \ PM such that sx ∈ PM . Then sx =
∑n

i=1 aiyi,

where ai ∈ P, yi ∈ M for each 1 ≤ i ≤ n. Since every two submodules of M are

comparable, we may suppose that sx = ay, where a ∈ P and y ∈ M .

Let z be an arbitrary element of M and take M1 = Rx+Ry +Rz.

Note that Q ⊆ PM ⊆ Rx ⊆ M1. If radM1(Q) 6= M1, then radM1(Q)

is a prime submodule of M1, since radM1(Q) is an intersection of a chain of

prime submodules. Thus since sx = ay ∈ PM1 ⊆
√
(Q : M1)M1 ⊆ radM1(Q),

consequently x ∈ radM1(Q) or sM1 ⊆ radM1(Q).
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We show that: √
(Q : M1)M1 ⊆ PM. (∗)

For the proof, let α ∈
√
(Q : M1)M1. Then α =

∑k
i=1 tiwi, where ti ∈√

(Q : M1), wi ∈ M1 for each 1 ≤ i ≤ k. Since every two submodules of M1 are

comparable, one can assume that α = tw, where t ∈
√
(Q : M1) and w ∈ M1.

Suppose that t`M1 ⊆ Q, where ` ∈ N. Then as t`w ∈ Q, we have w ∈ Q ⊆ PM

or t ∈ P . Thus α = tw ∈ PM .

If x ∈ radM1
(Q). As every two submodules of M are comparable, M1 is cyc-

lic, and so by (2.5) and (∗), x ∈ radM1
(Q) =

√
(Q : M1)M1 ⊆ PM , which

is a contradiction. Consequently sM1 ⊆ radM1
(Q), then sz ∈ radM1

(Q) =√
(Q : M1)M1 ⊆ PM . Thus sM ⊆ PM . This completes the assertion, when

M is a distributive module.

Now assume that M is a multiplication module. By (2.4), M is cyclic, and

the proof is given by (2.5)(iii). ¤

Finitely generated distributive modules are characterized in the following

corollary.

Corollary 3.3. Let M be a finitely generated R-module. Then the following

are equivalent:

(i) M is a distributive module;

(ii) M is a multiplication module and R/Ann(M) is an arithmetical ring.

Proof. According to [7, Theorem 2.16], M is a distributive R-module if and

only if MM is a serial module for every maximal ideal M of R. (∗)
If M is a multiplication module, then by (2.4), M is locally cyclic. Put

R′ = R/Ann(M). Then as M is a faithful multiplication R′-module, it follows

that MM
∼= R′

M, for each maximal ideal M of R′ (∗∗)
(i) =⇒ (ii) By (3.2) and (2.5)(iv), M is a multiplication R-module, and

evidently a multiplication and distributive R′-module. Thus by (∗), MM is a

serial module for every maximal ideal M of R′ and by (∗∗), MM
∼= R′

M. Hence

R′ is an arithmetical ring, by (∗).
(ii) =⇒ (i) By (∗∗), MM

∼= R′
M, for each maximal ideal M of R. According

to (∗), R′
M, is a valuation ring. Hence MM is a serial module, which implies that

M is a distributive module, by (∗). ¤

Lemma 3.4. Let M be an R-module and Q a P -primary submodule of M .

If P is a maximal ideal, then rad(Q) is a prime submodule, if rad(Q) 6= M .

Proof. Note that P ⊆ (rad(Q) : M). Now apply (2.2). ¤
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The following is a generalization of some parts of (3.1)(2).

Proposition 3.5. Let M be an R-module and Q a P -primary submodule

of M . If one of the following holds, then P is a maximal ideal.

(i) M has DCC on the cyclic submodules of the form {Rrkm | k ∈ N}, for each
r ∈ R and m ∈ M .

(ii) R has DCC on the ideals of the form {Rrk | k ∈ N}, for each r ∈ R.

(iii) M is finitely generated and it has DCC on the submodules of the form {rkM |
k ∈ N}, for each r ∈ R.

Proof. Let r ∈ R \ P and m ∈ M \Q. We prove that rn(1− rs)m = 0, for

some s ∈ R and n ∈ N. Hence rn(1− rs)m ∈ Q, which implies that 1− rs ∈ P .

Thus P +Rr = R.

(i) Since the chain · · · ⊆ Rr3m ⊆ Rr2m ⊆ Rrm stops, there exists n ∈ N
with Rrnm = Rrn+1m. Then rn(1− rs)m = 0, for some s ∈ R.

(ii) Note that the chain · · · ⊆ Rr3 ⊆ Rr2 ⊆ Rr stops, then there exists a

positive integer n with Rrn = Rrn+1. So rn(1− rs) = 0, for some s ∈ R.

(iii) First suppose that Q + rM = M . Then as rM
Q = M

Q , Nakayama’s

lemma implies that there exists t ∈ (Q : M) such that t − 1 ∈ Rr. Therefore

(Q : M) +Rr = R, and so P +Rr = R.

Now assume m ∈ M \ Q + rM . The chain · · · ⊆ r3M ⊆ r2M ⊆ rM stops,

so there exists a positive integer n with rnM = rn+1M , that is rnm = rn+1m′,
for some m′ ∈ M . Now since rn(m − rm′) ∈ Q and r /∈ P , m − rm′ ∈ Q, which

is impossible. ¤

Corollary 3.6. LetM be an R-module and Q a P -primary submodule ofM .

Then rad(Q) = Q+ PM , if one of the following holds:

(i) M has DCC on the cyclic submodules of the form {Rrkm | k ∈ N}, for each
r ∈ R and m ∈ M .

(ii) R has DCC on the ideals of the form {Rrk | k ∈ N}, for each r ∈ R.

(iii) M is finitely generated and it has DCC on the submodules of the form {rkM |
k ∈ N}, for each r ∈ R.

Proof. Evidently Q + PM ⊆ rad(Q) and hence if Q + PM = M , then

rad(Q) = M , which completes the assertion.

Now suppose that Q+PM 6= M . Clearly P ⊆ (Q+PM : M), and by (3.5),

P is a maximal ideal, then (Q + PM : M) is a maximal ideal, which implies

that Q + PM is a prime submodule of M containing Q, by (2.2). Therefore

rad(Q) = Q+ PM . ¤
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Proposition 3.7. Let M = M1 ⊕M2, where M1,M2 are submodules of M

such that for M1 r.p.a.p. If Q is a primary submodule of M containing M2, then

radM (Q) = M or radM (Q) is a prime submodule of M .

Proof. Let Q′ be a proper submodule of M containing M2. One can easily

see that:

(i) Q′ is a primary submodule ofM if and only ifM1∩Q′ is a primary submodule

of M1.

(ii) Q′ is a prime submodule of M if and only if M1 ∩Q′ is a prime submodule

of M1. Now we prove that:

(iii) radM1(M1 ∩Q′) = M1 ∩ (radM (Q′)).

By (ii) in above, radM1(M1 ∩ Q′) ⊆ M1 ∩ (radM (Q′)). Conversely assume

that T1 is an arbitrary prime submodule of M1 containing (M1 ∩ Q′). Since

T1 ⊆ M1, from the modular law we get M1 ∩ (T1 +Q′) = T1 +M1 ∩Q′ = T1. As

T1 = M1∩ (T1+Q′) is a prime submodule of M1, by part (ii), (T1+Q′) is a prime

submodule ofM containing Q′, and henceM1∩(radM (Q′)) ⊆ M1∩(T1+Q′) = T1.

Consequently radM1(M1 ∩Q′) = M1 ∩ (radM (Q′)).
Now for the proof of this proposition, let r(m1 + m2) ∈ radM (Q), where

r ∈ R, m1 ∈ M1 and m2 ∈ M2. Note that rm2 ∈ M2 ⊆ Q ⊆ radM (Q). Then by

(iii), rm1 ∈ radM1(M1∩Q). According to (i), (M1∩Q) is a primary submodule of

M1 and forM1 r.p.a.p, thenm1 ∈ radM1(M1∩Q), or rM1 ⊆ radM1(M1∩Q). Thus

m1 ∈ radM (Q) or rM1 ⊆ radM (Q), according to (iii). Now from M2 ⊆ radM (Q),

we get m1 +m2 ∈ radM (Q) or rM ⊆ radM (Q). ¤

In [21] a module M was called generalized torsion divisible, when M =∑
i∈I Mi for submodules Mi, such that for each i ∈ I, there exists a prime ideal

Pi of R such that PiMi = 0 and Mi is a torsion divisible R
Pi

-module.

Theorem 3.8. Let M = M1 ⊕M2, where M1,M2 are two R-modules such

that for M1 r.p.a.p. Then for M r.p.a.p., if one of the following holds:

(i) R is an integral domain and M2 is a divisible R-module.

(ii) M2 is a generalized torsion divisible R-module.

(iii) M2 is a special R-module.

(iv) M2 =
∑

i∈I Si, where for each i ∈ I, Si is a Pi-secondary submodule of M

and
√
Ann(M1) 6⊆ Pi for each i ∈ I.

(v) M2 has DCC on the cyclic submodules of the form {Rrnm | n ∈ N}, for each
r ∈ R and m ∈ M2.
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(vi) M2 is finitely generated and it has DCC on the submodules of the form

{rnM2 | n ∈ N}, for each r ∈ R.

(vii) M2 =
∑

i∈I Si, where for each i ∈ I, Si is a submodule of M2 such that√
Ann(Si) is a maximal ideal of R, in particular when M2 is semi-simple.

(viii)
√
Ann(M2) is a finite intersection of maximal ideals.

Proof. Let Q be a P -primary submodule of M such that rad(Q) 6= M . If

0⊕M2 ⊆ Q, then according to (3.7), rad(Q) is a primary submodule of M . Also

note that if P is a maximal ideal, then by (3.4), rad(Q) is a prime submodule.

(i) If (Q : M) = 0, then Q is a prime submodule of M , and obviously

rad(Q) = Q is a prime submodule of M .

Now suppose that 0 6= r ∈ (Q : M). Then 0⊕M2 = 0⊕ rM2 ⊆ rM ⊆ Q.

(ii) Assume that M2 =
∑

i∈I Mi is a sum of submodules Mi such that for

each i ∈ I, there exists a prime ideal Pi ⊆ Ann(Mi) of R and Mi is a torsion

divisible R
Pi
-module.

We show that 0⊕M2 ⊆ Q. Let i ∈ I and xi ∈ Mi. Since Mi is a torsion R
Pi
-

module, there exists r ∈ R \Pi such that r(0, xi) = (0, 0) ∈ Q. Hence (0, xi) ∈ Q,

or there exists n ∈ N with rnM ⊆ Q. Therefore (0, xi) ∈ Q, or (0, xi) ∈ 0⊕Mi =

0⊕ rnMi ⊆ rnM ⊆ Q.

(iii) Let M be a maximal ideal of R containing P . If P = M, then by (3.4),

rad(Q) is a prime submodule of M .

Now suppose that a ∈ M \ P and consider m2 ∈ M2. Then there exist

a positive integer n, and an element c ∈ R \ M such that canm2 = 0. So

can(0,m2) ∈ Q, and so (0,m2) ∈ Q, hence 0⊕M2 ⊆ Q.

(iv) Since the sum of two Pi-secondary submodules is Pi-secondary, we may

assume Pi 6= Pj , for each i 6= j ∈ I. Evidently one of the following two cases is

satisfied:

Case 1. For each i ∈ I, 0⊕ Si ⊆ Q.

Case 2. For some i ∈ I, 0⊕ Si 6⊆ Q.

If Case 1 holds, then since 0⊕M2 ⊆ Q, the result is given by (3.7).

Now suppose that Case 2 is satisfied. Assume that 0⊕ S1 6⊆ Q. In this case

we show that for each prime submodule N of M containing Q, (N : M) = P1,

and consequently rad(Q) is a prime submodule of M .

According to (2.7), P1 = P . If for some 1 6= j ∈ I, 0 ⊕ Sj 6⊆ Q, then again

by (2.7), Pj = P = P1, which is a contradiction.

Therefore for each 1 6= j ∈ I, 0⊕ Sj ⊆ Q. (∗)
Now if 0 ⊕ S1 6⊆ N for all prime submodules N of M containing Q, then
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(2.7) implies that P1 = P = (N : M). Thus rad(Q) is a prime submodule of M .

Otherwise let 0⊕ S1 ⊆ N0 for some prime submodule N0 of M containing Q.

Now from (∗) we get 0⊕M2 ⊆ N0. (∗∗)
According to our hypothesis,

√
Ann(M1) 6⊆ P1, then let a ∈

√
Ann(M1)\P1.

Thus a`(M1 ⊕ 0) ∈ Q, for some ` ∈ N, and since a` 6∈ P1 = P , M1 ⊕ 0 ⊆ Q ⊆ N0.

Now from (∗∗) we have M ⊆ N0, which is a contradiction.

(v) Let (0,m2) ∈ 0⊕M2 \Q and suppose r ∈ R \P . Then there exists k ∈ N
with Rrkm2 = Rrk+1m2. So there exists s ∈ R with rk(1 − st)m2 = 0. Then

rk(1 − st)(0,m2) ∈ Q, which implies that P + Rr = R, that is P is a maximal

ideal of R.

(vi) Let r ∈ R\P . There exists k ∈ N with rkM2 = rn+1M2. By Nakayama’s

lemma there exists s ∈ Rr such that (s−1)rkM2 = 0. Then (s−1)rk(0⊕M2) ∈ Q,

which implies that s − 1 ∈ P . Therefore P + Rr = R, that is P is a maximal

ideal.

(vii) If 0 ⊕M2 6⊆ Q, then there exists j ∈ I such that 0 ⊕ Sj 6⊆ Q. Now let

r ∈ √
Ann(Sj). Then evidently for some n ∈ N, rn(0⊕Sj) ⊆ Q, and this implies

that r ∈ P . Hence
√
Ann(Sj) ⊆ P , and so P is a maximal ideal.

(viii) Let ∩n
i=1Mi =

√
Ann(M2), where Mi is a maximal ideal for each

1 ≤ i ≤ n. If for some 1 ≤ j ≤ n, Mj ⊆ P , then P is a maximal ideal.

Now assume ri ∈ Mi \ P , for each 1 ≤ i ≤ n. Then r = r1r2r3 . . . rn ∈√
Ann(M2) \ P , and so for some m ∈ N, rm(0 ⊕ M2) ⊆ Q. This implies that

0⊕M2 ⊆ Q. ¤

Corollary 3.9. Let n ∈ N and M = ⊕n
i=1Mi, where for each 1 ≤ i ≤ n, Mi

is an R-module. Then for M r.p.a.p., if for each i, Mi is a quotient of a module

introduced in one of (i) to (viii) of the previous theorem.

Proof. Observe that, if for a module r.p.a.p., then for any quotient of that

module r.p.a.p. ¤

Note 2. Let M = ⊕i∈IMi, where for each i, Mi is an R-module. If for M

r.p.a.p., then for each Mi r.p.a.p., because each Mi is a quotient of M . However

the converse is not true. For example let M = R ⊕ R, where R = Z[x]. Then

by [6, p. 3, Note(d)] for the R-module M , the radical of primary submodules are

not necessarily prime.

Proposition 3.10. Let R = ⊕n
i=1Ri, where each Ri is a ring. Then for the

ring R r.p.a.p., if and only for each ring Ri, r.p.a.p.

Proof. (⇐=) Let M be an R-module. For each i ∈ I, consider Mi = eiM ,

where ei = {δij}j∈I . The proof follows from the following simple observations:
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(1) Mi is an Ri-module, for each 1 ≤ i ≤ n.

(2) For each submodule B of M , B = ⊕n
i=1Bi, where Bi = eiB, and Bi is a

submodule of Mi. Also, B is a prime [resp. primary] submodule of the R-

module M if and only if each Bi is a prime [resp. primary] submodule of the

Ri-module Mi. Furthermore, rad(B) = ⊕n
i=1 rad(Bi).

(=⇒) Consider i ∈ I. Then Ri
∼= R/K, for some ideal K of R. Now let M be

an R/K-module. Then obviously M is an R-module by considering the natural

epimorphism R −→ R/K. The proof is completed by the following evident facts:

(1) Prime [resp. primary] submodules of M as an R/K-module are exactly the

prime [resp. primary] submodules of M as an R-module.

(2) radR/K(B) = radR(B), for each submodule B of M . ¤

Corollary 3.11. Let R = ⊕n
i=1Ri, where for each i, Ri is a ring. Then for

the ring R r.p.a.p., if for each i, Ri is a quotient of a ring introduced in (3.1)(1).
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