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Variation problems and E-valued horizontal harmonic forms
on Finsler manifolds

By HE QUN (Shanghai) and ZHAO WEI (Shanghai)

Abstract. This paper is mainly to find the variation backgrounds of strongly har-

monic maps and strongly minimal immersions between Finsler manifolds, and obtain an

equivalent statement of strongly harmonic map. First, an explicit example of non-trivial

strongly minimal immersions is given. By using the vertical Laplacian, we introduce the

notions of vertical mean value operator and vertical mean value section. We define

the generalized energy functionals and the volume functionals, and prove that they are

critical points for appropriate variations. Finally, we give the definition of horizontal

harmonic p-forms with values in a vector bundle E via the horizontal Laplacian and

derive the relation between an E-valued h-harmonic 1-form and a strongly harmonic

map.

1. Preliminaries

In recent decades, Finsler geometry has developed rapidly. Studies on har-

monic maps and minimal submanifolds have also made some progress ([1]–[8]).

By using the Holmes-Thompson volume form, harmonic maps and minimal im-

mersions between Finsler manifolds were introduced in [3], [5]and [6] respectively.

A harmonic map between Finsler manifolds is also defined as the critical point of

the energy functional. It is well known that a map between Riemannian mani-

folds is harmonic if and only if either its tension field vanishes or its differential

is a harmonic 1-form with value in the pull-back tangent bundle. Generally, this
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result does not hold for Finsler manifolds. Therefore, a map between Finsler ma-

nifolds is called strongly harmonic if its tension field vanishes in [8]. Analogously,

a minimal immersion in Finsler manifold is defined as the critical point of the

volume functional. An isometric immersion is called strongly minimal if its mean

curvature vector field vanishes.

There indeed exist some examples of non-trivial strongly minimal immersions

and many examples of minimal immersions that are not strongly minimal (see

Remark 2.4 and Example 2.6). So it is significant to study strongly harmonic

maps and strongly minimal immersions. A natural and interesting problem is

whether there are similar variation backgrounds for strongly harmonic maps and

strongly minimal immersions.

The main purpose of the present paper is to find the variation backgrounds

of strongly harmonic maps and strongly minimal immersions, and to derive the

relation between a harmonic E-valued 1-form and a strongly harmonic map. It

is well known that various kinds of Laplace operators play a very important role

in differential geometry and physics, especially in the theory of harmonic integral

and Böchner technique. The key point is to find a proper way to define the Laplace

operator. Therefore, we first generalize and define some suitable differential ope-

rators on Finsler projective sphere bundle SM . By using the vertical Laplacian for

functions on SM , notions of vertical mean value operator and vertical mean value

section of a pull-back vector bundle over SM are introduced. Next we define the

generalized energy functionals and the volume functionals such that strongly har-

monic maps and strongly minimal immersions, including totally geodesic maps,

are their critical points for appropriate variation vector fields respectively. The

first variation formulae are calculated in a more straightforward way than former

ones. Finally, we define a horizontal Laplacian for p-forms with values in the

vector bundle E over SM . Using the horizontal Laplacian, we give the definition

of an E-valued h-harmonic p-form, which is a horizontal harmonic p-form with

value in the vector bundle E, and prove that a smooth map φ from a Finsler

manifold (M,F ) to a Riemannian manifold (M̃, F̃ ) is harmonic if and only if dφ

is an h-harmonic 1-form with value in π∗(φ∗TM̃).

2. Harmonic maps and minimal immersions

Let (M,F ) be an n-dimensional smooth Finsler manifold. The natural pro-

jection π : TM → M gives rise to the pull-back bundle π∗TM and its dual

π∗T ∗M . Let (x, y) be a point of TM with x ∈ M , y ∈ TxM , and let (xi, yi) be
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the local coordinates on TM with y = yi∂/∂xi. We shall work on T̃M = TM \{0}
and rigidly use only objects that are invariant under positive rescaling in y, so

that one may view them as objects on the projective sphere bundle SM using

homogeneous coordinates. Denote by H the orthogonal complement of the verti-

cal bundle V = {X ∈ C(T ∗(T̃M)) | π(X) = 0} in T (T̃M), which is the horizontal

bundle, and denote by H∗ = π∗T ∗M the horizontal subbundle of T ∗(T̃M). We

shall use the following convention of index ranges unless otherwise stated:

1 ≤ i, j, · · · ≤ n; 1 ≤ a, b, · · · ≤ n− 1; ī = n+ i;

1 ≤ A,B, · · · ≤ 2n− 1; 1 ≤ α, β, · · · ≤ m.

The following quantities

gij :=
1

2
[F 2]yiyj , Aijk =

F

2

[
1

2
F 2

]

yiyjyk

, ηi = gjkAijk, (2.1)

are called the fundamental tensor, the Cartan tensor and the Cartan form respec-

tively.

Set

∂i :=
∂

∂xi
, ∂̇i :=

∂

∂yi
, δi := ∂i −N j

i ∂̇j , δyi =
1

F
(dyi +N i

jdx
j), (2.2)

where N i
j = γi

jky
k − 1

F Ai
jkγ

k
pqy

pyq and γi
jk are the formal Christoffel symbols of

the secondkind for gij . {δi} and {F ∂̇i} are the local adapted bases of H and V

respectively, whose dual are {dxi} and {δyi}.
The Hilbert form ω = [F ]yidxi is a global section of the covector bundle

π∗T ∗M and its dual l = li∂i, with li = yi

F , can be viewed as a global section of

π∗TM .

Express X ∈ C(T (T̃M)), ψ ∈ C(T ∗(T̃M)) as X = Xiδi + X ī∂̇i, ψ =

ψidx
i+ψīδy

i. ThenX ∈C(TSM), ψ ∈C(T ∗SM) if and only ifX īFyi=0, ψīy
i = 0.

Denote by XH = Xiδi and ψH = ψidx
i the horizontal parts of X and ψ respec-

tively, and by X⊥ = X ī∂̇i and ψ⊥ = ψīδy
i the vertical parts.

Each fibre of π∗T ∗M has a positively oriented orthonormal coframe {ωi}
with ωn = ω. Expand ωi as vijdx

j , whereby the stipulated orientation implies

that det(vij) =
√
det(gij).

The pull-back of the Sasaki metric from TM \ {0} to SM is a Riemannian

metric

ĝ := gijdx
i ⊗ dxj + δabω

ā ⊗ ωb̄ = δABω
A ⊗ ωB ,
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where ωn+a = vaj δy
j . The collection {ωA} is an ordered orthonormal coframe on

SM . Thus, the volume element dVSM of SM can be defined as

dVSM = ω1 ∧ · · ·ωn ∧ ωn+1 ∧ · · · ∧ ω2n−1 = Ωdx ∧ dτ,

where

Ω := det
(gij
F

)
, dx = dx1 ∧ · · · ∧ dxn,

dτ :=

n∑

i=1

(−1)i−1yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn. (2.3)

The volume form of a Finsler n-manifold (M,F ) is defined by

dVM := σ(x)dx, σ(x) :=
1

cn−1

∫

SxM

Ωdτ, (2.4)

where cn−1 denotes the volume of the unit Euclidean (n− 1)-sphere Sn−1, SxM

is the fibre of SM at point x.

It is well known that there exists uniquely the Chern connection ∇ on π∗TM
with ∇ ∂

∂xj = ωi
j

∂
∂xi and ωi

j = Γi
jkdx

k. Another torsion-free Berwald connection
b∇ is defined by

b∇ = ∇+ Ȧ, Bi
jk = Γi

jk + Ȧi
jk,

bωi
j = Bi

jkdx
k, (2.5)

where “ · ” denotes the covariant derivative along the Hilbert form.

Lemma 2.1 ([3], [7]). For Ψ = Ψidx
i + Ψīδy

i ∈ C(T ∗SM), X = Xiδi +

X ī∂̇i ∈ C(TSM) and f ∈ C∞(SM), we have the following

divĝ Ψ = gij
[
Ψi|j −ΨkȦ

k
ij +Ψī;j

]
= gij

[
Ψi,j +Ψī;j

]
, (2.6)

divĝ X = Xi
|i −Xiη̇i +X ī

;i + 2X īηi, (2.7)

∆ĝf = divĝ(df) = gij
[
δiδjf − δkfB

k
ij + F 2∂̇i∂̇jf

]
, (2.8)

where “, ” and “|” denote the horizontal covariant differentials with respect to the

Berwald connection b∇ and the Chern connection ∇ respectively, and “; ” denotes

the vertical covariant differential, i.e. ( );i = F ∂̇i( ).

Lemma 2.2 ([7], [9]). Let (M,F ) be a Finsler manifold. Then
∫

SxM

gij ∂̇i∂̇j [F
2f ]hΩdτ =

∫

SxM

fgij ∂̇i∂̇j [F
2h]Ωdτ, (2.9)

for all smooth functions f, h on SM . In particular,∫

SxM

gij ∂̇i∂̇j [F
2f ]Ωdτ = 2n

∫

SxM

fΩdτ. (2.10)
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Lemma 2.3 ([7]). Let (M,F ) be a Finsler manifold. Then

∫

SM

lH(f)dVSM = 0, (2.11)

for any compactly supported function f ∈ C∞
0 (SM).

Let φ : (M,F ) → (M̃, F̃ ) be a non-degenerate smooth map, i.e. ker dφ = 0,

and let φt : (M,F ) → (M̃, F̃ ), t ∈ (−ε, ε), be a smooth variation of φ with φ0 = φ

and φt|∂M = φ|∂M . Then V := ∂φt

∂t |t=0 ∈ C(φ−1TM̃) is the variation vector field

of φ. The energy functional for φ can be written as

E(φ) =
1

cn−1

∫

SM

1

2
gij g̃αβφ

α
i φ

β
j dVSM

=
n

2cn−1

∫

SM

F̃ 2(φ(x), dφy)

F 2
dVSM =

n

2cn−1

∫

SM

‖dφl‖2g̃dVSM . (2.12)

The first variation of the energy functional for φ is given by [5], [7]

d

dt
E(φt)|t=0 = −

∫

M

µφ(V )dVM , (2.13)

where

µφ(V ) =
1

cn−1σ

∫

SxM

〈τ(φ), V 〉g̃Ωdτ =
n

cn−1σ

∫

SxM

〈τ̃(φ), V 〉g̃Ωdτ, (2.14)

τ̃(φ) := (∇̃ldφ)(l) =
1

F 2
τ̃α∂̃α, τ̃α = φα

ijy
iyj − φα

kG
k + G̃α,

τ(φ) := τα∂̃α, τα =
1

2
gij ∂̇i∂̇j [τ̃β ]g̃

αβ , (2.15)

here we have set ∂̃α = ∂
∂x̃α for convenience, Gk and G̃α are the geodesic coefficients

for (M,F ) and (M̃, F̃ ) respectively. τ(φ) is called the tension field and µφ is called

the tension form of φ. A harmonic map is naturally defined as the critical point of

the energy functional. By (2.13), φ is harmonic if and only if µφ = 0. In particular,

φ is called strongly harmonic if τ(φ) = 0.

Let φ : (M,F ) → (M̃, F̃ ) be an isometric immersion, that is, F (x, y) =

F̃ (φ(x), dφ(y)) for all (x, y) ∈ TM \ {0}. Then gij(x, y) = g̃αβ(x̃, ỹ)φ
α
i φ

β
j . Denote

by (π∗TM)⊥ the orthogonal complement of π∗TM in π∗(φ∗TM̃) with respect

to g̃ and denote

V∗ = {ξ ∈ C(π∗(φ∗TM̃)) | ξ(dφX) = 0, ∀X ∈ C(TM)},
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which is called the normalbundle of φ [1]. Setting

h = τ̃(φ), H =
1

n
τ(φ), µ = µφ, (2.16)

we see that h,H ∈ (π∗TM)⊥ and µ ∈ V∗. An isometric immersion φ : (M,F ) →
(M̃, F̃ ) is called minimal if on any compact domain of M , φ is the critical point

of its volume functional with respect to any variation vector field in π∗(φ∗TM̃).

It has been shown in [6] that φ is minimal if and only if µ = 0. h, H and µ

are called the normal curvature, the mean curvature normal vector field and the

mean curvature form of φ respectively [1], [6]. Analogously, φ is called strongly

minimal if H = 0.

Remark 2.4. By (2.14), one can easily see that a strongly harmonic map (resp.

strongly minimal immersion) must be harmonic (resp. minimal). In general, a

harmonic map (resp. minimal immersion) is not necessarily strongly harmonic

(resp. strongly minimal). It has been shown that in Randers space (M̃, α̃+ β̃), a

submanifold (M,α+β) is minimal if and only if (M,α) is minimal in Riemannian

manifold (M̃, α̃), [10] but it is not necessarily strongly minimal.

From (2.15), (2.16) and [15], a straightforward calculation gives the following

Lemma 2.5. Let f : (M,α + β) → (M̃, α̃ + β̃) be an isometric immersion

into a Randers (n+ p)-space. If β̃ is a closed 1-form, then

h =
α2

F 2
[h̄− β̃(h̄)l̃ ], H =

α

F
(H̄ − β̃(H̄)˜̀)− (n+ 1)αβ

2nF 2
(h̄− β̃(h̄)˜̀), (2.17)

where h̄ and H̄ are the normal curvature and the mean curvature normal vector

field with respect to the Riemannian metric α̃, respectively.

Example 2.6. Let (V 3, F̃ ) be a Randers space with F̃ = α̃+ β̃, where

α̃ =

√∑
α

(ỹα)2, β̃ =
x̃2dx̃1 − x̃1dx̃2

(x̃1)2 + (x̃2)2
+ dx̃3. (2.18)

Then dβ̃ = 0.

Let M be a helicoid defined by

f(u, v) = {u cos v, u sin v, av}, (2.19)

where a 6= 0 is a constant, and let F = f∗F̃ = α+β be the Randers metric on M .

Then

H̄ = 0, h̄ =
−2ay1y2

α2(u2 + a2)
(a sin v,−a cos v, u).
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From (2.17), we have

H =
(n+ 1)α(1− a)y2

2nF 2
(h̄− β̃(h̄)˜̀).

It is obvious that H = 0 if and only if a = 1. That is, M is a strongly

minimal surface of (V 3, F̃ ) if and only if a = 1. So M is minimal but not strongly

minimal when a 6= 1.

3. The vertical mean value operator and the vertical

mean value section

In Lemma 2.1, we set

∆Hf = divĝ(df)
H = gijf|i,j , ∆⊥f = divĝ(df)

⊥ = F 2gij ∂̇i∂̇jf, (3.1)

which are called the horizontal Laplacian and the vertical Laplacian for functions

on SM respectively [11]. Obviously, we have ∆ĝ = ∆H +∆⊥ and

∫

SM

∆HfdVSM =

∫

SM

∆⊥fdVSM = 0, (3.2)

for any compactly supported function f ∈ C∞
0 (SM). In fact, we assert from

Lemma 2.2 that the condition that f for ∆⊥ is compactly supported is unneces-

sary, i.e.,

Lemma 3.1. Let (M,F ) be a Finsler manifold, f ∈ C∞(SM). Then

∫

SM

∆⊥fdVSM = 0. (3.3)

Definition 3.2. The map µ⊥ : C∞(SM) → C∞(SM) defined by µ⊥f =
1
2ng

ij [F 2f ]yiyj for any f ∈ C∞(SM) is called the vertical mean value operator.

A straightforward calculation gives that

gij ∂̇i∂̇j [F
2f ] = 2nf + F 2gij ∂̇i∂̇jf.

Lemma 3.3.

µ⊥ =
1

2n
∆⊥ + idC∞(SM). (3.4)
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Set

M = µ⊥[C∞(SM)], M0 = {f ∈ C∞(SM) | µ⊥f = f} = ker∆⊥. (3.5)

It follows from Lemma 3.1 that ∆⊥f = 0 if and only if f is a vertical constant,

i.e.,

M0 = π∗C∞(M) ⊂ M. (3.6)

Assume that M is compact. Then from Lemma 2.2, one obtains

(µ⊥f, h) =
∫

SM

µ⊥(f)hdVSM =

∫

SM

fµ⊥(h)dVSM = (f, µ⊥h). (3.7)

Lemma 3.4. The operator µ⊥ is selfadjoint on C∞(SM).

From the above lemma, we see that (f, µ⊥h) = (µ⊥f, h) = 0 always holds

for any f ∈ kerµ⊥ and h ∈ C(SM). Thus, we have the following proposition by

(3.4): kerµ⊥ is just the eigenspace of ∆⊥ for eigenvalue −2n, and orthogonal to

M with respect to the global inner product. Thus M 6= C∞(SM) if kerµ⊥ 6= {0}.
Remark 3.5. Generally, kerµ⊥ 6= {0}. For example, set f = aij l

ilj , where

aij are independent of y, satisfying gijaij = 0. Then f ∈ C∞(SM) and µ⊥f = 0.

Let ξ : E → M be a smooth vector bundle over M , π∗E be the pull-back

bundle over SM and {Eα} be a local frame field of E. We still denote by {Eα}
the lifts of {Eα} to SM . Moreover, we can also define the vertical mean value

operator µ⊥ : C(π∗E) → C(π∗E) by

µ⊥X̃ = µ⊥(X̃α)Eα, for X̃ = X̃αEα ∈ C(π∗E). (3.8)

It is easily to check that the definition above is independent of our choice of {Eα}.
From Lemma 2.2, we have the following proposition: Let (M,F ) be a Finsler

manifold and X̃ ∈ C(π∗E), ψ̃ ∈ C(π∗E∗). Then∫

SD
(µ⊥ψ̃)(X̃)dVSD =

∫

SD
ψ̃(µ⊥X̃)dVSD, (3.9)

for any compact domain D on M .

Similarly, we denote the image set and the set of fixed points of µ⊥ on

C(π∗E) by

M(E) = µ⊥[C(π∗E)], M0(E) = {X̃ ∈ C(π∗E) | µ⊥X̃ = X̃} = π∗C(E), (3.10)

respectively. The vector fields in M(E) are called the vertical mean value sections

of π∗E. Clearly,

M0(E) ⊂ M(E) ⊂ C(π∗E). (3.11)

Denote by τ̃∗(φ) and τ∗(φ) the dual forms of τ̃(φ) and τ(φ) respectively. Then

(2.15) and (2.16) show that µ⊥τ̃∗(φ) = 1
nτ

∗(φ), µ⊥h∗ = H∗, i.e. τ̃∗(φ) and H∗

are vertical mean value sections of π∗(φ∗T ∗M̃).
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4. Variation backgrounds of strongly harmonic maps

and totally geodesic maps

Let (M,F ) be a compact Finsler manifold and φ : (M,F ) → (M̃, F̃ ) be a

non-degenerate smooth map. Denote ψ = π∗φ : SM → M̃, (x, y) 7→ φ(x) and

consider the variation ψt of ψ, defined by

ψ0(x, y) = φ(x), ψt(x, y)|x∈∂M = φ|∂M , (4.1)

where ψt(x, y) are homogeneous of degree zero with respect to y. Then ψt(x, y)

induces a variation vector field V (x, y) as follows

V (x, y) :=
∂ψt

∂t
|t=0 = V α∂̃α, V (x, y)|x∈∂M = 0. (4.2)

which is well defined. For example, ψt(x, y) can be defined as

ψα
t (x, y) = x̃α(x, y, t) = φα(x) + tV α(x, y)

under the local coordinates (xi, yi), (x̃α, ỹα). Defining φ̃t : SM → S̃M by

φ̃t(x, y) = (ψt(x, y), dψt(y
H)), (4.3)

and setting F̃t = φ̃∗
t F̃ , we have

F̃t(x, y) = F̃ (ψt(x, y), dψt(y
H)) = ‖dψt(y

H)‖g̃.

The generalized energy functional for ψt is defined by

E(ψt) =
n

2cn−1

∫

SM

F̃ 2
t

F 2
dVSM =

n

2cn−1

∫

SM

‖dψtl
H‖2g̃dVSM . (4.4)

Using (2.12), one obtains E(ψt)|t=0 = E(φ) and

d

dt
E(ψt)|t=0 =

n

2cn−1

∫

SM

∂

∂t

F̃ 2
t

F 2
|t=0dVSM . (4.5)

Denoting F̃0 = φ∗F̃ by F̃ , one obtains from (4.2) that

d

dt

F̃ 2
t

F 2
|t=0 =

2F̃

F 2
[F̃x̃αV α + F̃ỹαyH(V α)] =

2F̃

F 2
[Ñα

β F̃ỹαV β + F̃ỹαyH(V α)]

= 2g̃(dφl, ∇̃lHV ) = 2lH(g̃(dφl, V ))− 2(∇̃lH g̃)(dφl, V )− 2g̃(∇̃lHdφl, V )

= 2lH(g̃(dφl, V ))− 2g̃(τ̃(φ), V )). (4.6)

Combining the last two statements with Lemma 2.3, we have the following
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Theorem 4.1. Let φ : (M,F ) → (M̃, F̃ ) be a non-degenerate smooth map

and ψt be a smooth variation satisfying (4.1) and (4.2). Then the first variation

formula of the generalized energy functional is given by

d

dt
E(ψt)|t=0 = − n

cn−1

∫

SM

g̃(τ̃(φ), V ))dVSM . (4.7)

Firstly, if d
dtE(ψt)|t=0 = 0 for any variation vector field

V (x, y) ∈ C(π∗(φ∗TM̃)), then τ̃(φ) = 0, i.e. φ is totally geodesic. Secondly, if
d
dtE(ψt)|t=0 = 0 for any variation vector field V (x, y) ∈ M(φ∗TM̃), i.e. for any

W (x, y) ∈ C(π∗(φ∗TM̃)) and V (x, y) = µ⊥W (x, y), then from (4.7) and (2.15),

we have

0 =
d

dt
E(ψt)|t=0 = − n

cn−1

∫

SM

τ̃∗(φ)(µ⊥W )dVSM

= − n

cn−1

∫

SM

µ⊥τ̃∗(φ)(W )dVSM = − 1

cn−1

∫

SM

τ∗(φ)(W )dVSM .

Hence τ(φ) = 0, which implies that φ is strongly harmonic. Moreover,

if d
dtE(ψt)|t=0 = 0 for any variation vector field V (x, y) ∈ M0(φ

∗TM̃), i.e. for

any V (x, y) = V (x) ∈ C(φ∗TM̃), then from (2.14) we have µφ = 0, which implies

that φ is harmonic.

Theorem 4.2. Let φ : (M,F ) → (M̃, F̃ ) be a non-degenerate smooth map

and ψt be a smooth variation satisfying (4.1) and (4.2). Then φ is strongly

harmonic if and only if it is the critical point of the generalized energy functional

with respect to any variation vector field V (x, y) ∈ M(φ∗TM̃). Furthermore, φ

is totally geodesic if and only if it is the critical point of the generalized energy

functional with respect to any variation vector field V (x, y) ∈ C(π∗(φ∗TM̃)).

5. Variation backgrounds of strongly minimal immersions

Let (M,F ) be a compact Finsler manifold and φ : (M,F ) → (M̃, F̃ ) be

an isometric immersion. Then φ induces a map φ̃ : (SM, ĝ) → (SM̃, ˆ̃g) with

(x, y) 7→ (φ(x), dφy).

Lemma 5.1. The immersion φ̃ is isometric if and only if φ is totally geodesic.

Proof. Set h̃α
ij =

1
2 [h

α]yiyj . Since φ∗δỹα = h̃α
ikl

kdxi + φα
i δy

i, we have

φ̃∗ ˆ̃g = g̃αβ(φ
α
i dx

i)⊗ (φα
j dx

j)

+ (g̃αβ − F̃αF̃β)(h
α
ikl

kdxi + φα
i δy

i)⊗ (hβ
jsl

sdxj + φβ
j δy

j)
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= gijdx
i ⊗ dxj + (g̃αβ − F̃αF̃β)[h

α
ikl

khβ
jsl

sdxi ⊗ dxj

+ hα
ikl

kφβ
j dx

i ⊗ δyj + hβ
jkl

kφα
i δy

i ⊗ dxi + φα
i φ

β
j δy

i ⊗ δyj ].

It is easy to verify that ĝ = φ̃∗ ˆ̃g if and only if hα
ikl

k = 0. Thus h = hα
ikl

ilk = 0,

i.e. φ is totally geodesic.

Now assume that only φ is isometric, while φ̃ is not necessarily so. We also

consider the variation ψt of ψ = π∗φ, which satisfies (4.1) and (4.2). Set

Ft(x, y) = F̃ (ψt, dψt(y
H)), gt|ij =

[
1

2
F 2
t

]

yiyj

. (5.1)

Note that gt are positive definite for all t ∈ (−ε, ε), since g0 = g is positive

definite. That is, {Ft} are all Finsler metrics. By (2.4), our volume functional for

(M,Ft) takes the form

Ṽ (t) = Vol(M,Ft) =
1

cn−1

∫

SM

Ωtdτ ∧ dx, (5.2)

where Ωt = det
(

1
Ft
gt|ij

)
, Ω0 = Ω. Hence

Ṽ ′(0) =
1

cn−1

∫

SM

(
∂

∂t
Ωt

)
|t=0dτ ∧ dx. (5.3)

(5.1) together with (2.3) and (2.4) yields
(

∂

∂t
Ωt

)
|t=0 = Ω0

(
gijt

∂gt|ij
∂t

− n

Ft

∂Ft

∂t

)
|t=0

= Ω

{
gij

[
1

2

∂

∂t
(F 2

t )

]

yiyj

− n

Ft

∂Ft

∂t

}
|t=0

= nΩ

{
2µ⊥

(
1

F

∂Ft

∂t
|t=0

)
− 1

F

∂Ft

∂t
|t=0

}
. (5.4)

and

1

F

∂Ft

∂t
|t=0 =

1

F
[F̃x̃αV α + F̃ỹαyH(V α)] =

1

F
[Ñα

β F̃ỹαV β + F̃ỹαyH(V α)]

= g̃(dφl, ∇̃lHV ) = lH(g̃(dφl, V ))− g̃(h, V ). (5.5)

By (3.7) and the above formulas, one obtains

Ṽ ′(0) =
2n

cn−1

∫

SM

µ⊥(
1

F

∂Ft

∂t
|t=0)dVSM − n

cn−1

∫

SM

1

F

∂Ft

∂t
|t=0dVSM

=
n

cn−1

∫

SM

{lH(g̃(dφl, V ))− g̃(h, V )}dVSM . ¤
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Therefore, by Lemma 2.3, we have the following

Theorem 5.2. Let φ : (M,F ) → (M̃, F̃ ) be an isometric immersion and ψt

be a smooth variation satisfying (4.1) and (4.2). Then the first variation formula

of the volume functional is given by

Ṽ ′(0) = − n

cn−1

∫

SM

g̃(h, V )dVSM . (5.6)

Firstly, if Ṽ ′(0) = 0 for any variation vector field V (x, y) ∈ C(π∗(φ∗TM̃)),

then the normal curvature h = 0, i.e. (M,F ) is totally geodesic. Secondly,

if Ṽ ′(0) = 0 for any variation vector field V (x, y) ∈ M(φ∗TM̃), i.e. for any

W (x, y) ∈ C(π∗(φ∗TM̃)) and V (x, y) = µ⊥W (x, y), then from (3.9) and (2.16),

we have

0 = Ṽ ′(0) = − n

cn−1

∫

SM

h∗(µ⊥W )dVSM

= − n

cn−1

∫

SM

µ⊥h∗(W )dVSM = − n

cn−1

∫

SM

H∗(W )dVSM .

Hence H = 0, which implies that φ is strongly minimal. Moreover, if Ṽ ′(0) = 0

for any variation vector field V (x, y) ∈ M0(φ
∗TM̃), i.e. for any V (x, y) = V (x) ∈

C(φ∗TM̃), then we have µφ = 0 from (2.14), which implies that φ is strongly

minimal.

Theorem 5.3. Let φ : (M,F ) → (M̃, F̃ ) be an isometric immersion and ψt

be a smooth variation satisfying (4.1) and (4.2). Then φ is strongly minimal if

and only if it is the critical point of the volume functional with respect to any

variation vector field V (x, y) ∈ M(φ∗TM̃). Furthermore, φ is totally geodesic if

and only if it is the critical point of the volume functional with respect to any

variation vector field V (x, y) ∈ C(π∗(φ∗TM̃)).

6. Horizontal Laplacian for E-valued p-forms on SM

In this section, we consider the differential operators acting on smooth p-

forms with values in a vector bundle [12]. Let (M,F ) be a compact Finsler

manifold without boundary and ξ : E → SM be a smooth vector bundle over

SM . Set

Ap(E) = C
( p∧

T ∗SM
⊗

E
)
, Hp(E) = C

( p∧
H∗ ⊗E

)
,

which are the space of p-forms and the space of horizontal p-forms on SM with

values in E respectively. Let {Eα} be a local frame field of E and assume there



Variation problems and E-valued horizontal harmonic. . . 337

exists a Riemannian metric g̃ and a linear connection ∇̃ with ∇̃Eα = ω̃β
αEβ on E.

For any φ, ψ ∈ Hp(E), set

φ =
1

p!
φα
i1i2···ipdx

i1 ∧ dxi2 ∧ · · · ∧ dxip ⊗ Eα, φj1j2···jpα = φα
i1i2···ipg

i1j1 · · · gipjp ,

and define the global inner product in Hp(E) as follows

(φ, ψ) =

∫

SM

〈φ, ψ〉Hp(E)dVSM =
1

p!

∫

SM

φα
i1i2···ipψ

i1i2···ipβ g̃αβdVSM . (6.1)

Since the Chern connection ∇ is torsion-free, we can define the horizontal

differential operator dH : Hp(E) → Hp+1(E) by

dHφ =
1

p!
δi(φ

α
i1i2···ip)dx

i ∧ dxi1 ∧ · · · ∧ dxip ⊗ Eα

+
1

p!
φα
i1i2···ip ω̃

β
α(δi)dx

i ∧ dxi1 ∧ · · · ∧ dxip ⊗ Eβ

=
1

p!
φα
i1i2···ip|idx

i ∧ dxi1 ∧ · · · ∧ dxip ⊗ Eα, (6.2)

for any φ = 1
p!φ

α
i1i2···ipdx

i1 ∧ dxi2 ∧ · · · ∧ dxip ⊗ Eα ∈ Hp(E).

Accordingly, the horizontal codifferential operator δH : Hp+1(E) → Hp(E)

can be defined such that (dHφ, ψ) = (φ, δHψ) holds for any φ ∈ Hp(E), ψ ∈
Hp+1(E). Taking into account that g is parallel along the horizontal directions,

one obtains from Lemma 2.1 that

〈dHφ, ψ〉Hp(E) =
1

(p+ 1)!
{(p+ 1)φα

i1i2···ip|iψ
ii1i2···ipβ g̃αβ}

= Xi
|i −

1

p!
gijφi1i2···ipα(ψβ

ii1i2···ip|j g̃αβ − ψβ
ii1i2···ip g̃αβ|j)

= divĝ X +Xiη̇i − 1

p!
gijφi1i2···ipα(ψβ

ii1i2···ip|j g̃αβ − ψβ
ii1i2···ip g̃αβ|j)

where Xi = 1
p!φ

α
i1i2···ipψ

ii1i2···ipβ g̃αβ . Hence

(φ, δHψ) = (dHφ, ψ) =

∫

SM

〈dHφ, ψ〉Hp(E)dVSM

=
1

p!

∫

SM

φi1i2···ipαgij(ψβ
ii1i2···ip g̃αβ η̇j − ψβ

ii1i2···ip|j g̃αβ − ψβ
ii1i2···ip g̃αβ|j)dVSM .
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Theorem 6.1. The horizontal codifferential of the horizontal E-value (p+1)-

form ψ can be expressed as

δHψ=− 1

p!
gij(ψα

ii1i2···ip|j − ψα
ii1i2···ip η̇j + ψβ

ii1i2···ip g̃βγ|j g̃
γα)dxi1 ∧ · · · ∧ dxip⊗Eα.

(6.3)

Definition 6.2. The horizontal Laplacian ∆̃H : Hp(E) → Hp(E) is defined

by

∆̃H = dH ◦ δH + δH ◦ dH . (6.4)

In particular, an E-value p-form φ is called h-harmonic if ∆̃Hφ = 0.

It is obvious that

(∆̃Hφ, ψ) =

∫

SM

〈(dH ◦ δH + δH ◦ dH)φ, ψ〉Hp(E)dVSM

=

∫

SM

(〈dHφ, dHφ〉Hp(E) + 〈δHφ, δHφ〉Hp(E))dVSM = (φ, ∆̃Hψ), (6.5)

for any φ, ψ ∈ Hp(E).

Lemma 6.3. The operator ∆̃H is selfadjoint and positive with respect to

the global inner product. An E-valued p-form ψ is h-harmonic if and only if

dHψ = 0, δHψ = 0.

Let φ : (M,F ) → (M̃, F̃ ) be a non-degenerate smooth map and E =

π∗(φ∗TM̃), then dφ ∈ H1(E). It follows from (6.2) that

dH(dφ)(X,Y ) = (∇̃XHdφ)Y − (∇̃Y Hdφ)X = 0,

δH(dφ) = gij(φα
i|j − φα

i η̇j + φβ
i g̃βγ|j g̃

γα)∂̃α,

for any X,Y ∈ C(π∗TM). In particular, when (M̃, F̃ ) is Riemannian,

δH(dφ) = gijφα
i,j ∂̃α = τ(φ).

Theorem 6.4. Let φ be a smooth map from a Finsler manifold (M,F )

to a Riemannian manifold (M̃, F̃ ). Then φ is harmonic if and only if dφ is an

h-harmonic 1-form with value in π∗(φ∗TM̃).

In particular, when E = R, the expression of ∆̃H accords with that in [13].

For a 0-form, i.e. a function f ∈ C∞(SM), we have

∆̃Hf = −gijf|i,j . (6.6)

Therefore, the relation between the h-Laplacian ∆H for scalar fields and the h-

Laplacian ∆̃H for 0-forms is given by ∆H = −∆̃H .
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