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On the Diophantine equation cy! =

By MOHAMMAD SADEK (Cairo)

Abstract. Let p, ¢ be distinct odd primes, and [ > 2 an integer. We find sufficient
conditions for the Diophantine equation

¥ -1

=P 2P 41

Cyl = ®p(z) = z—1

not to have integer solutions.

1. Introduction

z"—1
r—1
are integers, have been the source for many conjectures. One of these is the

The solutions of the Nagell-Ljunggren equation y¢ = , where ¢,n > 2

following:

z"—1

Conjecture 1.1. The only solutions to the Diophantine equation y? = £ =

in integers x,y > 1, n > 2, ¢ > 2 are given by

183 —1
18 -1

-1
7-1

3P -1
3—-1

=112, =202, and =73,

The above conjecture has been solved completely for ¢ = 2. Furthermore, it
has been proved if one of the following assumptions holds:

3|n,ord|n, org=3andn#5 mod 6.
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We moreover know that the Nagell-Ljunggren equation has no solutions with z
square. The main tools used to attack this Diophantine equation are effective
Diophantine approximation, linear forms in p-adic logarithms, and Cyclotomic
fields theory. For these results and more see [1], [5] and [6].

In [3] the Diophantine equation y' = c“::ll has been treated. A complete
list of such Diophantine equations with integer solutions has been given, under

z"—1
z—1
ac > 1 has been considered in [7]. Our interest in the latter equation is when

the condition that 1 < ¢ <z < 100. A more general equation a = cy' where

a=1.

zP—1
rx—1"
where ¢, p are distinct odd primes and [ > 2. We exhibit the existence of an

In this note we will be concerned with the Diophantine equation cy! =

infinite set of triples (p,c,l) for which the mentioned Diophantine equation has
no integer solutions. For example, this infinite set contains the set of triples

(p, ¢, 1) where the Legendre symbol (]%) = —1 and [ is even.
The key idea is exploiting the following identity satisfied by the cyclotomic
zP—1

polynomial ®,(x) =

z—1

APy () = A;D(QU)2 - (_1)(1)_1)/217317(33)27

where Ap(z), By(x) € Z[z]. This identity goes back to Gauss, nevertheless the
formulae describing A, (x) and B, (z) were given recently in [2]. Using this identity
we show that the existence of an integer solution to the equation in question

implies the existence of a proper integer solution to some auxiliary Diophantine
equation.

2. Factorization of cyclotomic polynomials

For an odd square-free integer n > 1, and |z| < 1 define
mo=3(3)5

i=1 J
where (%) is the Jacobi symbol of j mod n. We state Theorem 1 of [2].

Theorem 2.1. Let n > 3 be an odd square-free integer. Consider the
Gauss’s identity 4®,,(z) = A, (1)? — (=1)"~V/2nB, ()2, where A, (z), B,(z) €
Z[z]. If n =1 mod 4, then

Ap(z) = 2/®,,() cosh (?f,ﬁ@) ., Bn(z)=2 @253;) sinh (\ffn(x)) .
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If n = 3 mod 4, then

An(w) =2 %@mﬁ@fh@» B.(x) 2 %f“mff

hia).

3. An auxiliary Diophantine equation

The results of this section are motivated by Proposition 8.1 of [4].

By a proper solution (zg, yo, z0) to the Diophantine equation az? 4+by? = cz",
we mean three integers xg, yo, 2o such that azh+byd = 2§ and ged(xo, yo, 20) = 1.

We state the following result on local solutions to cy! = x? + pz? where ¢, p
are distinct odd primes and [ > 2.

Proposition 3.1. There are proper local solutions to
eyt =2t +p2?, ae{l,2},

at every prime if and only if the Legendre symbol (?) = 1; and, when [ is even
we have (%) =1.

PROOF. The given conditions are clearly necessary. Now we need to prove
they are sufficient. We use the fact that if g ¥ 2¢p, then there are g-adic integer

%¢, so take (z,1,z). For the prime c, since (££) =1,

solutions to 22 + pz? = «
there are c-adic integer solutions to z? = Fp, so take (x,0,1). For the prime p,
if [ is odd, take (ac1)/2 ¢ 0); if I is even, hence (%) =1, then there is a p-adic
integer satisfying 22 = a?c, and we take (z,1,0). For the prime 2, the equation
2 = a?y!, so we can lift the solution (1,0,1) mod 2 to a 2-adic
integer solution. O

becomes z2 — z

Proposition 3.2. Let p, ¢ be distinct odd primes, and | > 2 be an integer.
Set § = (—1)®P=1V/2_ If the Diophantine equation

eyt =% — op2?, o€ {1,2},

has a proper solution with y being odd and ged(z,y) = 1, then there exist coprime
ideals I, J in Q(\/dp) with I.J = (a®c), whose ideal classes are I-th powers inside
the class group of Q(1/dp).

PROOF. Suppose (z,, z) is a proper solution to a?cy! = 22 — 6pz? where y
is odd and ged(x, z) = 1. Now considering the latter as ideal equation, we have

(@20) ) = (¢ — V3 2) (2 + V57 2).
Now the ideal a = (z — /dp z,x + /dp 2) | (2z,2V/dp, a’cy') = (2, ).
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1) If @« =1, then

(z —/0p 2) = IL, (x++/op z) = JLb,
where I.J = (¢) and Ly Lo = (y). This implies that the ideal classes of I and
J are both I-th powers inside the class group of Q(v/dp).

2) If & = 2, then both z, z are odd. This will yield a contradiction when p = +1
mod 8. This follows from the fact that 4cy! = 22 — 6pz2 = 0 mod 8 when
p==+1 mod 8.

When p = 45 mod 8, the ideal (2) is prime inside Q(1/p ) because ép = 5
mod 8. If a = (2), then 2 | (z — /dpz) which implies that 2 | z,z2, a
contradiction. Thus a = 1, and we argue like in the first case. (I

zP—1
xz—1

4. The equation cy' =

We start by stating the following elementary lemma.

Lemma 4.1. Let a € Z and p be an odd prime.
i) ®p(a) is odd.
ii) Set d = ged(Ay(a), By(a)). Then d € {1,2}. If p==+1 mod 8, then d = 2.

PROOF. 1) Since ®,(a) =1 mod qa, hence if a is even, ®,(a) is odd. If a is
odd, then ®,(a) = ®(1) =p mod 2.

ii) Assume that ¢ | d, where ¢ > 1 is an odd prime. We will write a for the
reduction of a mod q.

If ¢ # p, then (x —a) | Ap(z), Bp(x) mod g because ¢ | A,(a) and By(a).
Hence (z — a)? | ®,(z) mod q. The latter statement contradicts the fact that
2P — 1 has no multiple factors mod ¢ when ged(q, p) = 1.

If ¢ = p, then p? | ®,(a). In particular > = 1 mod p. Fermat’s Little
Theorem yields that there is a A € Z such that a =1 + Ap. So

p—1 p—1 p—1
Q,(a) = Zal = Z(lJr)\p)Z Eer)\pZi =p mod p?,
i=0 i=0 i=0

which contradicts that p? | ®,(a). We conclude that d | 2.

Now we assume p = +1 mod 8. Assume on the contrary that 2 { d. This
implies that both Ay (a) and By (a) are odd as 4 | A%(a) — (—=1)P=1/2pB2(a). A
direct calculation shows that if A,(a), By(a) are both odd, then

49, (a) = A2(a) — (-1)P"D2pB2(a) =1 - (-1)®"D/%p =0 mod 8,

which contradicts (i). O



On the Diophantine equation cy' = @ 377

z—1

Corollary 4.2. Let p, ¢ be distinct odd primes. Let [ > 2 be an integer.
Assume that (a,b) is an integer solution to the Diophantine equation cy' = ®,(z).
Then there exists an integer solution (x,y, z), where ged(z, z) = 1 and y is odd,
to a Diophantine equation of the form

eyt =22 — (—1)PV2p22 0 e {1,2}).

In the case p = +1 mod 8, one has oo = 1.

PROOF. One has 4cb! = 4®,(a) = A,(a)? — (—=1)?~V/2pB (a)?, where
Ap(z), Bp(x) € Z[z] and d = ged(A,(a), Bp(a)) | 2, Lemma 4.1. If d = 1, then
(A,(a),b, By(a)) is a proper solution to 4ey! = 22 — (—1)P~1/2,2 1f d = 2, then
(Ap(a)/2,b, By(a)/2) is a proper solution to cy' = 22 — (—1)P~1/222 Observe
that if p = 4+1 mod 8, then d = 2, Lemma 4.1 (ii). O

Now we state our main result which says that there is an infinite number of
triples (c,p,!) such that cy! = ®,(x) has no integer solution.

Theorem 4.3. Let p, ¢ be distinct odd primes, and I > 2 an integer. Set
§ = (=1)®»=1/2_ If the triple (p,c,1) satisfies one of the following conditions:
. )
) (F)=-1
ii) (%) = —1, and [ is even;
ili) There exist no ideals I, J whose ideal classes are I-th powers in the class

group of Q(v/dp) and satisfy (a*c) = I.J, where

c {1} if p=4+1 mod 8
et
{1,2} if p=+4+3 mod 8

then the Diophantine equation

ot — @ _P =l e p2 1
y =) = —— =P T+ et

has no integer solutions.

PROOF. Assume on the contrary that there exists a proper integer solution
to cy! = @, (z). This implies the existence of a proper integer solution to a?cy! =
2?2 — 6pz?, see Corollary 4.2. Hence we have a contradiction in (i) and (ii), see
Proposition 3.1. Furthermore one has a contradiction in case (iii) obtained using
Proposition 3.2. (|
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x—1

Parts (i) and (ii) of the above theorem provide an infinite family of Diophan-
tine equations with no integer solutions. For example

13y = ®ygr(x) =20+ x4 1

has no integer solutions because (%) =—1.
In the following example we show that (iii) of Theorem 4.3 can be used to
find explicit triples (c,l,p) such that the Diophantine equation cy' = ®,(z) has

no integer solutions.

Ezxample 4.4. The Diophantine equation
3 = Pyr(x) =2 + 2P 4+ 1, k>1,

has no integer solutions. We have 47 = —1 mod 8 and (3) = pp’ in the ring of
integers of Q(/—47). The class number of Q(y/—47) is 5. The ideal class [p]
of p can not be a fifth power inside the ideal class group of Q(v/—47) because [p]
generates the ideal class group.
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