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The computation of the inverse of block-wise
centrosymmetric matrices

By CHENGBO LU (Lishui) and CHUANQING GU (Shanghai)

Abstract. This paper presents a method to compute the inverse of block-wise
centrosymmetric matrices. The method is based on the block diagonalization of each
centrosymmetric matrix by a matrix reduced-order method and the application of a
recursive algorithm for the inverse of the block diagonal matrices. It is shown that the
method is more efficient than the LU decomposition method.

1. Introduction

Centrosymmetric matrices arise in the study of certain types of Markov pro-
cesses because they turn out to be the transition matrices for the processes (see
[1], [2] for related references). Such matrices play also an important role in a
number of areas such as pattern recognition, antenna theory, mechanical and
electrical systems, and quantum physics [3]. As noticed in [4], centrosymmet-
ric matrices appear frequently in the construction of orthonormal wavelet basis.
Centrosymmetric matrices arise also in spectral methods in boundary value prob-
lems (BVPs)

In recent years the properties and applications of centrosymmetric matri-
ces and their generalizations have been extensively investigated ([5]-[15]). In
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[16]-[18], the recursive algorithms have been applied for the inverse of circulant-
structured matrices. Motivated by their works, we focus on the development and
investigation of a method for the inverse of block-wise centrosymmetric matrices.

This paper is organized as follows. In Section 2, we review some basic nota-
tions and results for centrosymmetric matrices and their generalizations. In Sec-
tion 3, we develop a method and work out a representative numerical example.
In Section 4, we determine the cost of our algorithm and compare it with the
LU method. Finally, in Section 5, we present several numerical experiments,
exhibiting the accuracy efficiency of the proposed method in terms of CPU time.

2. Preliminaries

In this section we begin with some basic notation which frequently used in
the sequel.

A matrix (a;;)pxq is called a centrosymmetric matrix, if the elements of A
satisfy the relation a; ; = ap—i41,g—j4+1 forall 1 <i<pand1<j <gq.

Let J, = (én,€n—1,...,€1), where e; denotes the unit vector with ith entry 1.
According to the definition of the centrosymmetric matrix, a matrix A € R™*"
being centrosymmetric is equivalent to the fact that J,AJ, = A.

Using an appropriate partition, the centrosymmetric matrices can be expres-
sed as follows:

(1) For the case n = 2s, a centrosymmetric matrix can be written as the
following form
B J,CJs

A =
¢ JsBJs

(2.1)

where each of the block matrices B and C' is an s X s matrix.
(2) For the case n = 2s + 1, a centrosymmetric matrix can be partitioned
into the following form

B Jib J,CJs
A= |aT a adTJ; (2.2)
C b JBJs

with B,C € R**%.a,b € R**! and « a scalar.
If n is an even number, say n = 2s, then, by choosing the orthogonal matrix

\/i Is IS
0[5 1] -
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We can easily obtain the following relation

B - J,C
TAQ = s 2.4
@ AQ B+ J,C (24)
and
_ B - J,C)
A 1 — ( s T
@ (B+ J,C)~1 @
set H= (B —J,C)~', D= (B+ J;C)~!, then
., 1| D+H  (D-H)J,
A7l =2 2.5
2 |Js(D— H) JS(D+H)JS] 25)
If n is odd, i.e. n = 2s+ 1, selecting the orthogonal matrix
1 1
\/i S S
Q= DY \/5 (2.6)
—Js Js
then the following equality
B - J,C
QTAQ = oY V24T (2.7)
V2Jsb B+ J,C
and
(B—J,C)~!
-1
AT =Q a V2aT Q"
V2Jsb B+ J,C
—1
. _ -1 _ a V24T
set H=(B—J,O)"!, D= (msb BHSC)
then
D(2:641,2:5+1)+H  v/2D(2:s41,1)  (D(2:54+1,2:5+1)—H)Js
Al == { V2D(1,2:5+1) 2D(1,1) V2D(1,2:5+1)Js } (2.8)
Js(D(2:54+1,2:5+1)—H) v/2JsD(2:5+1,1) Js(D(2:8+1,2:5+1)+H))Js
holds.
A block matrix
A A . Ay
Ay Axp ... Aoy
A= = Al



382 Chengbo Lu and Chuanging Gu

with A;; centrosymmetric square matrices of order n, is called a block-wise cent-
rosymmetric matrix ([8]).

Having the above preparation, we can show the following important result
immediately.

Theorem 2.1. Let A = [A; ;] be an m x m block-wise centrosymmetric
matrix of order n. Then there holds

Q 0 0 A11 A12 e Alm QT O 0
0 @ ... Of |Asr Mgy ... Aoy 0 QT

=|. . . . . o . . (2.9)
0 0 ... Q| |Am1 Am2 ... Apm 0 0o ... QF

if n =2m, Q, A;; are of the form (2.3), (2.4), respectively, else if n = 2m + 1,
they are of the form (2.6), (2.7), respectively.
Let A = [A; ], if A is invertible then there holds

Q 0 0 L11 L12 le QT 0 0
|0 Q@ .. Of{Lat Ly ... Lom || O QY ... 0

A= . Nl . . S (2.10)
0 0 ... Q||Lmi Lm2 ... Lmm|| 0 0 ... QT

where A~1 = [LU]

PRrROOF. A direct application of (2.4) or (2.7) immediately implies the desired
result. g

According to (2.10) the inverse of A is actually reduced to matrices A =
[A;;]. The computation of A™! is obtained in Section 3 by applying a recursive
algorithm.

3. Recursive algorithm

The basic idea of the recursive algorithm lies in the fact that in each step
the involved matrices are split into four matrices of the same order. Thus, the
algorithm is applied to matrices with 2% x 2% block diagonal matrices. Since the
number m of blocks of A is arbitrary, we may consider the matrix A as a block
of an appropriate block matrix with 2¢ x 2* block diagonal matrices.

Let m be the order of blocks of A and k the minimum integer with m < 2.
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We introduce the (augmented) 2¥ x 2% block matrix

A= (3.1)

ccA 0
o I

(with A = A for m = 2¥) where 0 is the (mn) x ((2¥ —m)n) zero matrix and I is
the identity matrix of order (2 — m)n. The inverse A~ of A will be derived by
applying the recursive algorithm analyzed below in matrix A.

The following lemma summarize some simple basic invertibility properties of
2 x 2 block matrices.

Lemma 3.1 (see [16]). Let X = [& B] be a 2 x 2 block matrix with square

blocks of the same order and A invertible. Then the following assertions hold:

1. X is invertible if and only if the Schur complement Sx (A) = D — CA™'B of A
in X is invertible. (particular case of Schur complement Lemma)

2. If X is invertible (or equivalently Sx(A) is invertible), then the inverse X ' of
X is given by the identity

{A B} - [A‘l +A'B(D-CA'B)"'CA™' —A'B(D-CA'B)™" (3.2)

C D —(D—-CA™'B)"tCcA™! (D-CA™'B)™!

In the following, we develop a recursive algorithm, consisting of a forward
and backward recurrence procedure, for the inverse of A.

Recursive algorithm
Forward recurrence procedure
Step 1: We split A into four 25~1 x 25=1 block matrices

X v
A= % 11 J
Zl Wl
where
[ All .. Al(gk—l)
Xi=| : :
_A(Qk—l)l e A(Qk—l)(2k—1)
[ AI(ZIC_1+1) ce. Al(Qk’)
v = : ' : )
_A(Qk—l)(Qk—l_;’_l) “e. A(Qk—l)(gk)
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_A(Qk—1+1)1 e A(Qk—l+1)(2k—1)
7z = : : :
_A(Qk—1+1)(2k—1+1) ce. A(Qk—1+1)(2k)
Wi = : ' :
A(2k)(2k—1+1) e A(Qk)(zk)

Since A is invertible by hypothesis, if X7 is invertible, then by Lemma 3.1 Sa (X7)
is also invertible and hence by the identity (3.2) we conclude that the inverse of
the 2% x 2% block matrix A is reduced to that of the 2¥~! x 2¥~1 block matrices

M =Xy, M{=Sa(Xj) =W -2 (X))~

Step 2: We split each one of the latter block matrices Mf (j = 1,2) into four
2k=2 % 2k=2 block matrices

Xy vy
Z; Wy

X3 Y7
z; Wi

M} = , M} =

Since, by Step 1, the matrices Mi and M? are invertible, supposing X1 and X2
are invertible, by Lemma 3.1 Syn (X31) and Shrz (X2) are also invertible. Hence,
the computation of the inverses of the matrices M: f by (3.2) requires the inverses
of the following 22 matrices:

M3 =X], MJ"=5,,(X3) =W -Z(X))7Y] (=12
of order 2°=2n, i.e. that of the original matrix A divided by four.

Step i: We split each one of the 28 =#+1 x 2k=i+1 block matrices Mij_1 (=1,
..., 271y of step i — 1 into four 2¥=% x 2= block matrices

X7yl

My = Zi Wi

By Step ¢ —1 the matrices ]\/[Z-j_1 are invertible. Thus, if X f are invertible, then by

Lemma 3.1 S,,; (X]) are also invertible and hence for the computation of the
i—1

inverses of the matrices M7 ; by means of (3.2) we have to invert the following

2% matrices of order 28~ n;

M =x! M =8, (XT) =W/ — Z/(XT) Y.

i—1
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In the notation Mf the subscript 7 indicates the number of the step and the
superscript j the serial number of the matrices, that have to be inverted in step i.

Step k: We split each one of the M ,g_l into four matrices

xp v

M= g W

Since, by Step k — 1, M,z_l are invertible, and X,Z, ij, Z,z,W,f are of the form
Ajjin (2.9). If X ,Z, are invertible, then the inverse of the matrices M ,171 by the
means of (3.2) require the inverses of the following 2¥ matrices of order n:

2k—1

M=x], M =8, (xX])=W]-Z(X])"Y.

which are diagonal block matrices of the form A;; in (2.9).

Backward recurrence procedure

Step k: We first consider the inverses of the diagonal block matrices M. ,g (j =
1,2,---,2%) by applying LU method to each block of M}, then compute (M7 _,)~!
by the means of

(i)™
; . . . ok—1 . . . . L ok—1
_l<M,z>1+<M;)13/,;<M;+? )T —() Y (] >11.
—( )z () (M)

Step i: Since the inverse matrices (Mf )~! have been determined in the preceding
Step i + 1, the matrices (M;_,)~! are computed by applying
(M)~
M1 MA-1Yd M.jJr?i_l “173(M-1  —(MI)-1yd Mj+2i_1 -1
_ou) s ey 0uE T i) — )y e
_(MJ+2 )—lzg(M.?)—l (MJ+2 )_1
-1

The matrices (M7 )" are used in step i — 1 for the determination of (M7 )

Step 1: The inverse matrices (M7) (j = 1,2) have already been determined in
the preceding Step 2. Thus, the inverse A~! of A is computed by

P (A RO A Ry A R TR el
(M) 7z (M) (a2)~
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Summarizing, we notice that the basic idea of the recursive algorithm lies in the
fact that following the forward recurrence procedure the matrix inverses involved
in Step ¢ are transferred to step i+ 1. Then, in the last Step &k the involved matrix
inverses are obtained by computing the inverses of two § X § matrices. Hence,
following the backward recurrence procedure the matrix inverses of Step i are
obtained by using the already determined inverses of Step i + 1 and performing
the multiplications provided by the respective identity of (3.2).

Now, since the inverse of A is

AL 0

Al =
or 1

(3.3)

we have A=' = A~ for m = 2F, the inverse A~! for m < 2F is derived as the
block A=! (1 :mn,1:mn) of A=L.

The recursive algorithm has been applied to matrix A instead of A, because
this has smaller computational cost (for details see Section 4).

Numerical example

The following representative numerical example indicates and clarifies the
application of the developed recursive method for the inverse of a block-wise
centrosymmetric matrix.

Ezample 1. The inverse of the 3 x 3 block-wise centrosymmetric matrix of
order 4.

- n 3 3 1 _s _19 1 2
2 10 10 1 2 10 10 2 10 0 1 10
31 29 1 7 1 1
2 #4 _2 3 2 1 1 Lo 11
29 31 1 1 7 1
0 —-% 2 2 12 =3 5 2 3 %
9 11 5 1 3 3 21 19
I % 1w 2 ~2 1 16 2 o 1 0 -
703 1 _3 5 8 _1 _3 3 L9 g
5 4 4 5 2 5 5 2 10 10
14 59 61 16 3 6 4 7
Ai 5 20 20 5 0 4 1 2 10 5 5 10
T 21 61 59 14 9 1 4 0 _7 4 _6 _3
5 20 20 5 10 5 5 10
3 1 3 1 3 _7 8 s 9 o 1 3
5 4 4 5 2 5 5 2 10 10
1 3 3 3 7 5 1 3
0 3z 1 -3 3 T2 T3 3 2 % —10 1
1 3 7 3 5 4 6 7
-3 Ty 2 =2 -3 3z ! 2 5 T3 2
3 1 3 7 7 6 4 5
-2 -3 -3 L6 —a25 —2 2 "5 5 T2
3 1 5 7 3 3 3 1
L\-3 1 1 2 T2 T2 32 -1 =% % 2
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1. The block matrix A = [A;;] in (2.9) is

1 £ 0 0 4 £ 0 0 £ 1 0 0
2 30 0 -4 1 0 0 -2.3 0 0
0 0 3 2 0 0 -1 2 0 0 —4 -1
00 2 0 0 -2 3 0 0 0 4
2 1 0 0 43 0 0 5 + 0 0
AZG—%OO 2 5 0] 2 -1 0 0
0 0 3 1 00 1 % 0 12
0 0 -2 6 00 -2 3 0 -1 -2
3 -3 0 -1 2 0 0 320 0
4 1 0 -3 -1 0 0 -6 2 0 0
0 -3 1 0 0 4 -5 0 0 1 -1
| \0 0 -2 0o 0 -1 -1 0 0 1 =2/

2. The recursive algorithm for the determination of the matrix A~! is applied

as follows:
Forward recurrence procedure

Step 1: We split A into four 2! x 2! block matrices

1 1
A X% Yll 7
Zy Wi
where
A Ago 1 Ay3 0] 1 Az Asgo 1 Azz 0
Xlz Y = Z = W == .
! Aoy Ago|’ ! Ay O ! 0 01|’ 1 0 I

where 0 is the 4 x 4 zero matrix and I is the identity matrix of order 4. To
compute the inverse of the matrix A by means of (3.2) requires the inverse of the
2% x 2! block matrices with diagonal blocks of order 4

M{=X{,  M{=Sa(Xi)=Wi-Z{(X])"'V}
Step 2: We split Mf into four matrices of order 4

X3 v

M = . ,
i owm
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For the inverse of the matrices Mf by means of (3.2) we have to invert the
following 4 diagonal blocks matrices with order 4:

M} =X3,  MJT=8,,(X]) =W - Z(X3)"'YS.

Backward recurrence procedure

Step 2: We compute the diagonal block matrix

M} =X, =

S O N
o o waule
N WO O
Sk o o

by applying LU method to each block of M}, we get

15 1
- 1 0 0
10 5
= |TEom 0
1 20
0 0 -3 &
20 30
0 0 5 %
Then
46 67
-3 5% 0 0
—28 46 0 0
3 _ 7l 1/y1y\—1y1 _ 10
M2 - W2 - ZQ(XQ) Y2 - O 0 141 1043
185 925
1648 2321
0 0 - 185 137

By applying LU method to each block of M3, we get

533 154
7494 3445 0 0
1820 _ 230 0 0
(M3)—1 _ 3747 3747
2 0 0 1673 89
2267 1812
279 141
0 0 o 1247

By applying (3.2), we get

All A12

Ml -1 —
( 1) A21 A22

(M) T 4 (M) T A (ME) T A (M) Tt —(M3) T A (M)
B —(M3) " Aoy (My) (M3~
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r 455 203 755 437
1249 3747 0 0 1777 1904 0 0
200 350 270 240
1249 1249 0 0 1249 1249 0 0
414 270 353 447
0 0 1753 4247 0 0 2310 4247
408 610 264 538
o 0 0 4247 T 4247 0 0 4247 4247
- 220 94 533 154
1249 T 3747 0 0 7494 = 3445 0 0
630 185 1820 230
T 1249 3747 0 0 3747 3747 0 0
303 126 1673 89
0 0 T 1358 4247 0 0 2267 1812
685 1340 279 141
0 0 72214 4247 0 0 719 4247

Using the same method, we get

892 810 0 0
1777 749 0 0 0 O
w6 a0 0 00 0 0
o oo
450 480
(M2)~ = 0 0 51 a7
0 0 0 O 1 0 0 O
0 0 0O 01 00
0 0 0O 0 010
| 0 0 0 O 0001_

Step 1: According to Step 1 of the forward recurrence procedure the matrix A~!
is given by

(M)~ 4+ (M)~ (M) Tz (M) = (M) =Y (M)

AT = (M) ZE (M) (M2)!
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12,1:12) of A7 1,

Then, by (3.1), we get A~! is derived as the block A=1(1
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3. By substituting the determined inverse A=! in (2.10) we obtain the inverse
of A.

4. Computational complexity of the inverse

The computational complexity, which we consider, expresses the total num-
ber of required scalar multiplications. For the determination of the computational
complexity of the method, we need the complexity of the block diagonalization
of A, the recursive algorithm for the inverse of A and the block diagonalization
of A71.

First, we consider the complexity of the block diagonalization of A coincides
with that of the determination of A;;. From (2.4) and (2.7), we can see that
A;; are determined only requiring 2 scalar—matrix multiplications, they need
O(n?) multiplications. Thus, the complexity of the block diagonalization of A is
m20(n?).

Similarly, the complexity of the block diagonalization of A~! is m20(n?).

Furthermore,we consider the computational complexity of the recursive al-
gorithm, analyzed in Section 3, is determined by a k-steps process, based on the
backward recurrence procedure. For the description of this process first we need
the following basic facts.

For simplicity, we restrict the case of even n = 2s in the following. There are
similar results for odd n.

Let X = [X, ], Y = [Yi;] be two p x p block matrices, and X; ;, Y; ; are of
the form (2.4) of order n. Then we get the following facts.

(1) The computational cost of the product XY is ip3n3 scalar multiplica-
tions.

(2) The basic identity (3.2) requires 6 matrix multiplications of type X 'Y
or YX ! where X! is of form (2.4). Hence, the computational cost of (3.2) is
3 p3n® multiplications.

Lemma 4.1. Let A = [A;;] be an invertible m x m block-wise centrosym-
metric matrices of order mn and A = [A;;] be the block matrix of the block
diagonalization of A. We consider the minimum integer k with m < 2¥. Then,
the complexity of the recursive algorithm for the inverse of the 2% x 2% block
matrix is

Crlkn) = O (i@% +3. 2’%3) .

PROOF. According to the basic idea of the recursive algorithm, following
the forward recurrence procedure, at Step i (i = 1,2,..., k) we have to invert 2¢
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matrices by means of (3.2). At the last Step k, we have to invert 2* diagonal block
matrices M,g (7 =1,2,...,2%). In the sequel after the analytical inverses of the
latter 2¥ block diagonal matrices, we follow the backward recurrence procedure.
Thus, the matrix inverses of Step ¢ are obtained by using the already determined
inverses of the preceding Step i + 1 and performing (according to (2)) 6 - 20~}
matrix multiplications of type X 'Y or YX ! with X and Y matrices of order
2k=ipn. The results of the above discussion are summarized in Table 1.

The determination of the algorithm’s computational complexity starts from
the last Step k following the backward recurrence procedure. At Step k the 2*
diagonal block matrices M ,g require O(i x 2Fn3) scalar multiplications for their
inverses by applying LU method to each block of M, ,ﬁ Furthermore, the 2* matrix
products of the form X 'Y or Y X!, derived by multiplying the matrices of
(3.2), require O(6- 1 - 2"n?) scalar multiplications by block matrix multiplication.
Now, by taking into account the property (1) and the results of Table 1 for the
backward recurrence procedure we see that at Step i (i = 1,k —
O(6 - £(277")320=1n?) scalar multiplications.

Table 1

Numerical aspects on the recursive algorithm

1) we need

Steps | Forward recurrence | Backward recurrence
Number of matrices Order of the Multiplications of the
to be inverted involved matrices | form X 'Y or Y X!
1 2! 2k=1p 620
2 22 2k=2p 62!
i 2 2k=in 6201
k 2k 20n 6-2k1

Thus, the computational complexity Cr(k,n) of the recursive algorithm is
given by

k—1
_ 1 k.3 1 k—i\309i—1,3 _ 1 3k k\,,3
C’R(k,n)—0<7 2 +;6 ;@2 | = 0(; (2% +3-250%). O

Then, we conclude that

Theorem 4.2. Let A = [A;;] be an invertible m x m block-wise centrosym-
metric matrices of order mn. Then, the computational complexity C(k,m,n) of
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the inverse of A, is given by
1 3k ky,,3
C(k,m,n) =0 1(2 +3-2%)m° ).

Remark 4.1. The complexity Cry(m, n) of the direct LU decomposition met-
hod for the inverse of matrix A is of order

Cru(m,n) = O(m?®n®). (4.1)

Referring to the computational complexity, we see from (4.1) that the recur-
sive inverse works best for m = 2*. For these choices the matrix A does not need
to be enlarged to the matrix A. Hence, the proposed recursive inverse is about 4
times cheaper than the standard method.

5. Numerical experiments

We present numerical experiments for the comparison of the recursive inverse
and the direct LU decomposition method with respect to accuracy and execution
time.

All our computations have been done using MATLAB 7.6.0(R2008a) with
unit roundoff v = 2793 &~ 1.1 x 107'® and executed in an Intel Pentium M
Processor 740, 1.73 GHz with 1 GB of RAM.

Accuracy

In Table 2 we compute the relative residual inverse error

|AA™" — I||r
|AA= [F

where [ is the identity matrix of order mn and A is an mn x mn block-wise
centrosymmetric matrix composed of random complex elements. The inverse A~}
is computed by the recursive inverse and the direct LU method. The two inverse
methods show a comparable accuracy. Thus, the accuracy does not actually
depend on the application of a structured (recursive inverse) or a non-structured
(direct LU decomposition) inverse.
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Table 2

Relative residual inverse errors of recursive and LU inverses

n m Relative residual error

Recursive inverse LU
20 2 5.3231e-13 8.0538e-14
4 5.9582e-12 1.7830e-11
6 1.1033e-09 1.8875e-10
8 5.4842e-11 1.9473e-11
40 2 6.0798e-12 8.5858e-12
4 1.1203e-10 1.6688e-10
6 4.8868e-10 2.0529e-10
8 1.5980e-10 3.7244e-10
60 2 7.2340e-11 4.9961e-11
4 1.5718e-09 3.9678e-10
6 2.9169e-10 7.1291e-09
8 6.5298e-09 5.3043e-09
80 2 1.1795e-10 2.0195e-09
4 1.1437e-09 1.1071e-09
6 3.7290e-09 1.4797e-09
8 1.2843e-08 9.0205e-09

Execution time

395

The execution (CPU) time for the inverses with respect to n for (fixed) m = 4

for the two methods is shown in Figure 1.

10°

-6~ Recursive inversion
—B- LU inversion

=
S.

CPU time (seconds)

=
=3

100

50 100

Figure 1. CPU time for the inverses with respect to n for m = 4 in

logarithmic scale.

150
n

200 250
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The execution (CPU) time for the inverses with respect to m for (fixed)

n = 20 for the two methods is shown in Figure 2.

10 — -
—6- Recursive inversion
—&- LU inversion

CPU time (seconds)
=
S)

10 15 20 25 30 35 40 45 50 55

Figure 2. CPU time for the inverses with respect to m for n = 20 in
logarithmic scale.

It is evident by the statements of Figs. 1 and 2, the recursive inverse is

clearly faster than the direct LU inverse.
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