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The residual nilpotency of the augmentation ideal

By B. KIRÁLY (Eger)

1. Introduction

Let R be a commutative ring with unity, G a group and RG its group
ring and let A(RG) denote the augmentation ideal of RG, that is the kernel
of the ring homomorphism RG → R which maps the group elements to 1.
It is easy to see that an R-module A(RG) is a free module with the elements
g − 1 (1 6= g ∈ G) as a basis.

The ideal A(RG) of the group ring RG is said to be residually nilpotent

if
∞⋂

n=1
An(RG) = 0. For convenience, we adopt the following notation:

Aω(RG) =
∞⋂

n=1
An(RG).

We are interested in the residual nilpotence of the augmentation ideals
of group rings.

In the case when R is a field, the question about the residual nilpotence
of the augmentation ideal is completely solved (see in particular [6], VI,
Theorem 2.26).

If R is the ring of integers and if the finitely generated group G has
torsion elements then the question about the residual nilpotency of the
augmentation ideal is solved in [1].

In [5] the author gives a complete characterization of the residual
nilpotence of the augmentation ideal for a group ring over the integers.

For a group ring RG Hartley (see [3], Theorem E) gives a sufficient
condition for the residual nilpotence of the augmentation ideal in the case

when
∞⋂

n=1
pnR = 0 and the group G has a finite N series.
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In this paper we give sufficient conditions for the residual nilpotence
of the augmentation ideal for all arbitrary group ring RG (Theorem 3.1).
These conditions are also necessary if the group G has a generalized torsion
element (Theorem 3.2). In the case when G is without a generalized torsion
element and the torsion group of the additive group of a ring R for some
prime p has no elements of infinite p-height, the question about the residual
nilpotence of the augmentation ideal is solved in Theorem 3.3.

2. Notations and some known facts

If H is a normal subgroup of G, then I(RH) (or I(H) for short when
it is obvious from the context what ring R we are working with) denotes
the ideal of RG generated by all elements of the form h − 1, h ∈ H.
It is well known that I(RH) is the kernel of the natural epimorphism
ψ∗ : RG → RG/H induced by the group homomorphism ψ of G onto
G/H.

If K, L are two subgroups of G, then [K,L] denotes the subgroup
generated by all commutators [g, h] = g−1h−1gh, g ∈ K, h ∈ L.

Let p be a prime and n a natural number. Then Gpn

is the subgroup
generated by all elements of the form gpn

, g ∈ G.

The subgroup Wp(G) defined by Wp(G) =
∞⋂

n=1
Gpn

γn(G), where γn(G)

is the n-th term of the lower central series of G, i.e. γ1(G) = G, γ2(G) = G′
is the commutator subgroup [G,G] of G, and γn(G) = [γn−1(G), G].

The ideal Jp(R) of a ring R is defined by Jp(R) =
∞⋂

n=1
pnR.

If C denotes a class of groups (by which we understand that C contains
all groups of order 1 and, with each H ∈ C, all isomorphic copies of H), we
define the class RC of residually-C groups by letting G ∈ RC if and only
if: whenever 1 6= g ∈ G, there exists a normal subgroup Hg of the group
G such that G/Hg ∈ C and g /∈ Hg.

We use the following notations for standard group classes: N0 –
torsion-free nilpotent groups, Np – nilpotent p-groups of finite exponent,
that is, nilpotent groups in which for some n = n(G) every element g
satisfies the equation gpn

= 1.
Let C be a class of groups. A group G is said to be discriminated by

C if for every finite subset g1, g2, . . . , gn of distinct elements of G, there
exists a group H ∈ C and a homomorphism φ of G into H, such that
φ(gi) 6= φ(gj) for gi 6= gj , (1 ≤ i, j ≤ n).

A series G = H1 ⊇ H2 ⊇ · · · ⊇ Hn ⊇ · · · of normal subgroups of a
group G is called an N -series if [Hi, Hj ] ⊆ Hi+j for all i, j ≥ 1 and also
each of the Abelian groups Hi/Hj is a direct product of (possibly infinitely
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many) cyclic group which are either infinite or of order pk, where p is a
fixed prime and k bounded by some integer depending only on G.

It is easy to see that the lower central series of a nilpotent p-group of
finite exponent is an N -series.

The n-th dimension subgroup Dn(RG) of G over R is the set of group
elements g ∈ G such that g− 1 lies in the n-th power of A(RG). It is well
known that for every natural number n the inclusion

γn(G) ⊆ Dn(RG)
holds.

An element g of a group G is called a generalized torsion element if
for all natural numbers n the order of the element gγn(G) of the factor
group G/γn(G) is finite.

It is clear that the torsion elements of the group G are generalized
torsion elements of G.

If g ∈ G is a generalized torsion element then Ωg denotes the set of
prime divisors of the orders of the elements gγn(G) ∈ G/γn(G) for all
n = 2, 3, . . . .

Lemma 2.1. For every natural number n the inclusions

I(γn(G)) ⊆ I(Dn(RG)) ⊆ An(RG)
hold.

The statement is well known.

Lemma 2.2. Let G be discriminated by a class of groups C and let
x be a nonzero element of RG. Then there exists a group H ∈ C and a
homomorphism φ of RG into RH such that φ(x) 6= 0.

The proof is evident.

Lemma 2.3. If G is discriminated by a class of groups C and for each
H ∈ C the equality Aω(RH) = 0 holds, then Aω(RG) = 0.

The lemma follows immediately from Lemma 2.2.

Lemma 2.4. Let a class C of groups be closed for the taking of sub-
groups (that is all subgroups of any member of the class C are again in
the class C) and also for finite direct products and let G be a residually-C
group. Then G is discriminated by C.

The proof can be obtained immediately.

In this paper we shall use the following theorems:

Theorem 2.1 ([3], Theorem E). Let G be a group with a finite N -
series and R be a commutative ring with unity satisfying Jp(R) = 0. Then
Aω(RG) = 0.
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Theorem 2.2. ([6], VI, Theorem 2.15). If G is a residually torsion-
free nilpotent group and R is a commutative ring with unity such that its
additive group is torsion-free, then Aω(RG) = 0.

3. The residual nilpotency of the augmentation ideal

In this section R is a commutative ring with unity.

Lemma 3.1. Let g ∈ G and gpn ∈ Dt(RG) for a prime p and a natural
number n. Then there exists a natural number m such that

pm(g − 1) ∈ At(RG).

Proof. We prove this by induction on t. For t = 1 the statement is
obvious. Let ps(g − 1) ∈ At−1(RG) for some s. From the decomposition
gpn

as (g − 1 + 1)pn

we have that

gpm − 1 = pm(g − 1) +
t−1∑

i=2

(
pm

i

)
(g − 1)i +

pm∑

i=t

(
pm

i

)
(g − 1)i

for every m. If m ≥ n(s + t), then ps divides
(
pm

i

)
(
(
pm

i

)
is the binomial

coefficient pm over i) for i = 1, 2, . . . , t− 1 and gpm ∈ Dt(RG). Therefore
we have

gpm − 1 = pm(g − 1) + ps(g − 1)2
t−1∑

i=2

di(g − 1)i−2 +
pm∑

i=t

(
pm

i

)
(g − 1)i

where dip
s=

(
pm

i

)
for i=2, 3, . . . , t−1. By Lemma 2.1 gpm−1∈At(RG).

Then from the induction hypothesis and from the preceding identity
pm(g − 1) ∈ At(RG) follows.

Lemma 3.2. Let h ∈ Gpn

γn(G) for a natural number n. Then for all
natural numbers t and s for which n ≥ t + s

h− 1 ≡ psFt(h) (mod At(RG))

holds, where Ft(h) ∈ A(RG).

Proof. Writing the element h as h = hpn

1 hpn

2 . . . hpn

m yn (hi ∈ G,
yn ∈ γn(G)) and using the identity

(1) xy − 1 = (x− 1)(y − 1) + (x− 1) + (y − 1)
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we have

h− 1 =
(
hpn

1 hpn

2 · · ·hpn

m − 1
)

(yn − 1) +
(
hpn

1 hpn

2 · · ·hpn

m − 1
)

+ (yn − 1).

Since t ≤ n, by Lemma 2.1, (yn − 1) ∈ At(RG). It is clear that ps divides(
pn

j

)
for j = 1, 2, . . . , t− 1. Then from the preceding identity

h− 1 ≡
m∑

i=1

(
hpn

i − 1
)

bi ≡ ps
m∑

i=1

t−1∑

j=1

dj (hi − 1)j
bi ≡

≡ psFt(h) (mod At(RG))

follows, where Ft(h) =
m∑

i=1

t−1∑
j=1

dj (hi − 1)j
bi, bi ∈ RG and psdj =

(
pn

j

)
.

We recall that if g is a generalized torsion element of a group G then
Ωg is the set of the prime divisors of the orders of the elements gγkG ∈
G/γk(G) for all k = 2, 3, . . . and also that Jp(R) =

∞⋂
n=1

pnR.

Lemma 3.3. Let g be a generalized torsion element of a group G, Λ an

arbitrary subset of Ωg, r ∈ ⋂
p∈Λ

Jp(R) and let x ∈ ⋂
p∈Ωg\Λ

∞⋂
n=1

I
(
Gpn

γn(G)
)
.

Then one of the following statement holds:

1) if Λ is the proper subset of Ωg, then r(g − 1)x ∈ Aω(RG);
2) if Λ = Ωg, then r(g − 1) ∈ Aω(RG);
3) if Λ = ∅, then (g − 1)x ∈ Aω(RG).

Proof. Clearly, it is enough to show that for an arbitrary natural
number t the elements r(g − 1), (g − 1)x, r(g − 1)x all lie in the ideal
At(RG).

If g ∈ γt (G) then, by Lemma 2.1, (g−1) ∈ At(RG) and the statements
follow.

Now let g /∈ γt(G) and let nt = pα1
1 pα2

2 · · · pαs
s be the order of the ele-

ment gγt(G) of G/γt(G). We can renumber the primes so that p1, p2, . . . ,
pk ∈ Λ and pi /∈ Λ for all i > k.

Let gγt(G) = g1g2 · · · gsγt(G) be a decomposition of the element
gγt(G) of the nilpotent group G/γt(G) into a product of pi-elements giγt(G)
such that gqi

i ∈ γt(G), where qi=pαi
i , i = 1, 2, . . . , s. Then g = g1g2 · · · gsyt

for suitable yt ∈ γt(G). From (1) we conclude that

g − 1 = v + w + (yt − 1)
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where v =
k∑

i=1

(gi − 1)ai, w =
s∑

i=k+1

(gi − 1)ai and ai ∈ RG.

(If Λ ∩ {p1, p2, . . . , ps} = ∅ we assume that v = 0, k = 0, and in
the case Λ ∩ {p1, p2, . . . , ps} = {p1, p2, . . . , ps} we assume that w = 0 and
k = s.) Since yt − 1 ∈ At(RG),

(2) g − 1 ≡ v + w (mod At(RG)).

We know that gqi

i ∈ γt(G) holds for all i = 1, 2, . . . , s. Therefore gqi

i ∈
Dt(RG) and, by Lemma 3.1, there exist natural numbers mi for i =
1, 2, . . . , s such that

(3) pmi
i (gi − 1) ∈ At(RG).

We notice that if i ≤ k then pi ∈ Λ. So, for all i = 1, 2, . . . , k, we can
decompose the element r from the ideal

⋂
p∈Λ

Jp(R) as r = pmi
i ri (ri ∈ R).

Therefore r(g − 1) ≡
k∑

i=1

rip
mi
i (gi − 1)ai + rw (mod At(RG)). Then from

(2) and (3) we obtain that

(4) r(g − 1) ≡ rw (mod At(RG)).

Now we prove that every component (gi − 1)aix of the sum wx =
s∑

i=k+1

(gi − 1)aix lies in the ideal At(RG). Let pj be a fixed prime, where

k + 1 ≤ j ≤ s. Then pj ∈ Ωg \ Λ and from the conditions

x ∈ ⋂
p∈Ωg\Λ

∞⋂
n=1

I
(
Gpn

γn(G)
)

of our lemma it follows that

x ∈
∞⋂

n=1
I

(
Gqn

γn(G)
)
, where q = pj . For every natural number n we

can decompose the element x as x =
∑̀

m=1
βmzm(fm − 1), where βm ∈ R,

fm ∈ Gqn

γn(G), and zm are the elements from a left transversal of the
cosets of Gqn

γn(G) in G. If n ≥ mj + t then, by Lemma 3.2, we have that

fm − 1 ≡ p
mj

j Ft(fm) (mod At(RG))

where Ft(fm) ∈ A(RG), and so

(5) x ≡ p
mj

j

∑̀
m=1

βmzmFt(fm) (mod At(RG))
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holds. Then by (3) we obtain that

(gj − 1)ajx ≡ p
mj

j (gj − 1)aj

∑̀
m=1

βmzmFt(fm) ≡ 0 (mod At(RG))

i.e. (gj − 1)ajx ∈ At(RG) for all j = k + 1, k + 2, . . . , s. Thus we have

(6) wx = 0 (mod At(RG))

and

(7) rwx = 0 (mod At(RG)).

If Λ is a proper subset of Ωg (case 1) then by (4) and (7) we get
r(g − 1)x ∈ At(RG).

If Λ = Ωg (case 2) then w = 0 in (2) and by (4) we obtain that
r(g − 1) ∈ At(RG).

If Λ = ∅ (case 3) then v = 0 in (2) and by (6) (g − 1)x ∈ At(RG)
follows. Because t is arbitrary, from the above facts it follows that the
elements r(g− 1)x, r(g− 1) and (g− 1)x lie in Aω(RG), which proves the
lemma.

Let G be a nilpotent p-group of finite exponent. It is clear that its
lower central series is an N -series.

We now prove the following

Lemma 3.4. For a nilpotent p-group G of finite exponent

Aω(RG) ⊆ Jp(R) ·A(RG).

Proof. Let x =
n∑

i=1

αigi be an element of RG and let Rp = R/Jp(R).

Then Jp(Rp) = 0 and, by Theorem 2.1, Aω(RpG) = 0. Let φ̄(x) =
n∑

i=1

φ(αi)gi where φ is the natural homomorphism of R onto Rp. Then

φ̄ is a homomorphism of RG onto RpG. If x ∈ Aω(RG) then φ̄(x) lies in
Aω(RpG). Concequently, φ̄(x) = 0 and αi ∈ Jp(R) for i = 1, 2, . . . , n.

Let Ω be a nonempty subset of the set of primes and let Np be the
class of nilpotent p-groups of finite exponent. Define NΩ by NΩ =

⋃
p∈Ω

Np.

We have the following
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Theorem 3.1. Let Ω be a nonempty subset of the set of primes such
that

⋂
p∈Ω

Jp(R) = 0 and a group G is discriminated by the class of groups

NΩ. If for every proper subset Λ of the set Ω at least one of the conditions

1)
⋂

p∈Λ

Jp(R) = 0;

2) G is discriminated by the class of groups NΩ\Λ;

holds, then Aω(RG) = 0.

Proof. Let x =
n∑

i=1

αigi ∈ Aω(RG) and let Λ be the set of those

primes of Ω for which there exists a homomorphism φp of G into the
nilpotent p-group Hp of finite exponent with the property φp(gi) 6= φp(gj)
for all i 6= j. Since the group G is discriminated by the class of groups
NΩ, Λ is nonempty.

Let p be an arbitrary element of Λ. If φ∗p : RG → RHp is the
ring homomorphism, induced by the homomorphism φp, then φ∗p(x) =
n∑

i=1

αiφp(gi) lies in Aω(RHp). Because p is an arbitrary element of the set

Λ, by Lemma 3.4 we obtain that

αi ∈
⋂

p∈Λ

Jp(R)

for all i = 1, 2, , . . . , n. If
⋂

p∈Λ

Jp(R) 6= 0 then from the conditions of this

theorem it follows that G is discriminated by the class of groups NΩ\Λ.
Then there exists an element q ∈ Ω \ Λ and a homomorphism φq of the
group G into the nilpotent q-group of finite exponent Hq for which φq(gi) 6=
φq(gj) for all i 6= j, i, j = 1, 2, . . . , n. Then by construction of the set Λ
it follows that q ∈ Λ. This a contradiction. Consequently,

⋂
p∈Λ

Jp(R) = 0

and αi = 0 for i = 1, 2, . . . , n. Therefore x = 0 and Aω(RG) = 0.

Lemma 3.5. Let G be a class of groups and {Gα} (α ∈ J) a family
of the normal subgroups of G such that the conditions

1) G/Gα ∈ G for each α ∈ J ;
2) Gα is torsion-free for all α ∈ J ;

hold. If G is not discriminated by a class of groups G then there exists a
finite subset of distinct elements g1, g2, . . . , gs from G such that the nonzero
element y = (g1 − 1)(g2 − 1) · · · (gs − 1) lies in the ideal

⋂
α∈J

I(Gα).

Proof. If the group G is not discriminated by the class of groups G
then there exists a finite subset of distinct elements h1, h2, . . . , hm from G
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such that for every α ∈ J , hiGα = hjGα for some i 6= j. Then hih
−1
j ∈ Gα

and the element hih
−1
j has infinite order.

Let M = {g1, g2, . . . , gs} be the set of all those elements of the form
hih

−1
j which have infinite order (1 ≤ i, j ≤ m). It is well known that if g is

an element of infinite order then from the equation (g− 1)x = 0 it follows
that x = 0 (see for example [7], III. Proposition 4.18). Since gi

(i=1, 2, . . . , s) have infinite order, the product y=(g1−1)(g2−1) · · · (gs−1)
is nonzero. From the construction of the set M it follows that for every
α ∈ J there exists at least one element gi of M such that gi ∈ Gα.
Concequently, y ∈ ⋂

α∈J

I(Gα).

Theorem 3.2. Let a group G contain a generalized torsion element.
Then A(RG) is residually nilpotent if and only if there exists a nonempty
subset Ω of the set of primes such that

⋂
p∈Ω

Jp(R) = 0, the group G is

discriminated by the class of groups NΩ, and for every proper subset Λ of
the set Ω at least one of the conditions

1)
⋂

p∈Λ

Jp(R) = 0;

2) G is discriminated by the calss of groups NΩ\Λ;

holds.

Proof. Let Aω(RG) = 0 and let the group G contain a torsion el-
ement. Then in G there exists a p-element g. Let pn be the order of g.
We show that in this case the set Ω = {p} satisfies the conditions of this
theorem.

Then element gpn

belongs to γt(G) and γt(G) ⊆ Dt(RG) for every t.
Therefore, by Lemma 3.1,

(8) pm(g − 1) ∈ At(RG)

for some m depending only on t. If r ∈ Jp(R) then for every m the
element r can be decomposed as r = pmrm, (rm ∈ R). Therefore from (8)
we obtain that r(g − 1) ∈ At(RG) for every t. Hence r(g − 1) ∈ Aω(RG)
and r(g − 1) = 0. This equation is possible only if r = 0. Consequently,
Jp(R) = 0.

Now we how that the group G is discriminated by the class of groups

Np. Let 1 6= h ∈
∞⋂

n=1
Gpn

γn(G). Hence for every t and m there exists i

such that h ∈ Gpi

γi(G) and i ≥ t + m. Then, by Lemma 3.2,

(9) h− 1 ≡ pmFt(h) (mod At(RG))
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folows, where Ft(h)∈A(RG). Therefore from (8) we have that (g−1) · (h−
1) ∈ At(RG) for all t. Then (g−1)(h−1) ∈ Aω(RG) and (g−1)(h−1) = 0.
This is possible only if g = h, g2 = 1, p = 2 (because g is a p-element
of G) and the characteristic of the ring R equals 2. Then (9) implies that
h − 1 ∈ At(RG) for all t. Therefore h − 1 ∈ Aω(RG) and h = 1 which

is a contradiction. Consequently,
∞⋂

n=1
Gpn

γn(G) = 1. From this equation

it follows that G is a residually-Np group. Since the class of the groups
Np is closed for taking subgroups and forming finite direct products, by
Lemma 2.4 we have that G is discriminated by the class of groups Np.
Concequently, we can choose the set Ω such that Ω = {p}.

Now let G be a torsion-free group with the generalized torsion element

g of infinite order. Because Aω(RG) = 0, from Lemma 2.1 g /∈
∞⋂

n=1
γn(G)

follows. Therefore Ω is nonempty.
Now we show that the set Ω can be chosen as Ω = Ωg. By Lemma 3.3

(case 2) for every r ∈ ⋂
p∈Ω

Jp(R) the element r(g−1) lies in Aω(GR). Then

r(g − 1) = 0. Therefore r = 0 and
⋂

p∈Ω

Jp(R) = 0.

Let Λ be a subset of Ω. If G is not discriminated by NΩ\Λ then,
according to Lemma 3.5 (here we suppose that the family {Gα} of the
normal subgroups of G coincides with {Gpn

γn(G), p ∈ Ω\Λ, n = 2, 3, . . . },
the class G is NΩ\Λ) there exists a nonzero element x in the ideal

⋂
p∈Ωg\Λ

∞⋂
n=1

I(Gpn

γn(G)) of the form x = (g1 − 1)(g2 − 1) · · · (gs − 1).

If Λ is empty then, by case 3 of Lemma 3.3, we have that (g − 1)x ∈
Aω(RG). Therefore (g − 1)x = 0. In the group ring of torsion-free groups
such an equation is impossible. Hence G is discriminated by the class of
groups NΩ.

Now let Λ be a proper subset of the set Ω and r be an arbitrary element
from

⋂
p∈Λ

Jp(R). If G is not discriminated by NΩ\Λ then, by Lemma 3.3

(case 1), r(g − 1)x ∈ Aω(RG). Therefore r(g − 1)x = 0. This equation
is possible only if r = 0. Hence if G is not discriminated by the class of
groups NΩ\Λ then

⋂
p∈Λ

Jp(R) = 0.

Sufficiency is proved in Theorem 3.1.

If the additive group of a ring R is torsion-free and if a group G has
no generalized torsion elements then the question about the residual nilpo-
tency of the augmentation ideal is solved (see in particular [2] Theorem
15.5).
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The torsion subgroup T (R+) of the additive group R+ of a ring R is
the direct sum of its primary components Sp(R+) which are the ideals of
the ring R.

Let Π be the set of those primes for which the p-primary components
Sp(R+) of T (R+) are nonzero.

Lemma 3.6. Let Aω(RG) = 0 and T (R+) 6= 0. Then G is a residually-
Np group for all p ∈ Π.

Proof. Let p ∈ Π and 0 6= r ∈ Sp(R+). Then psr = 0 for some s. If

g ∈
∞⋂

n=1
Gpn

γn(G) then, by Lemma 3.2, we obtain that for all t

g − 1 ≡ psFt(g) (mod At(RG)) (Ft(g) ∈ A(RG), n ≥ t + s, s ≥ 1). Hence
r(g − 1) ≡ psrFt(g) ≡ 0 (mod At(RG)) for all t and r(g − 1) ∈ Aω(RG)).

Consequently, g = 1 and
∞⋂

n=1
Gpn

γn(G) = 1 i.e. G is a residually-Np group.

The element g of the additive Abelian group G is called an element of
infinite p-height if the equation pnx = g has a solution in G for all natural
numbers n.

Theorem 3.3. Let the torsion group T (R+) of the additive group R+

of a ring R be nonzero, and suppose that for some p ∈ Π the group T (R+)
has no elements of infinite p-height. Further let G be a group with no
generalized torsion elements. Then Aω(RG) = 0 if and only if G is a
residually-Np group for all p ∈ Π.

Proof. Let G be a residually-Np group for all p ∈ Π and let Rp =
R/Jp(R). Then Jp(Rp) = 0 and, by Theorem 2.1, we obtain that
Aω(RpH) = 0 for all H ∈ Np and every prime p ∈ Π. Therefore, by
Lemmas 2.3 and 2.4, we have that Aω(RpG) = 0. If the element x =∑n

i=1 αigi lies in the ideal Aω(RG) then from the last equation we conclude
that

(10) αi ∈ Jp(R)

for all p ∈ Π and every i = 1, 2, . . . , n.
Let

√
γn(G) = {g ∈ G | gm ∈ γn(G) for some integer m ≥ 1} be

the isolator of the subgroup γn(G) in G. Obviously, the G/
√

γn(G) are

torsion-free nilpotent groups and
∞⋂

n=1

√
γn(G) = 1 because the group G

has no generalized torsion elements. Consequently, G ∈ RN0 i.e. G is a
residually torsion-free nilpotent group. Since the additive group of the
ring R/T (R+) is without torsion, by Theorem 2.2. Aω(R/T (R+)G) = 0
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follows. From this we infer that αi ∈ T (R+) and by (10) we obtain that
αi ∈

⋂
p∈Π

(Jp(R) ∩ T (R+)) for i = 1, 2, . . . , n. It is known that T (R+) is

the serving subgroup of R+. Therefore

Jp(R) ∩ T (R+) =

( ∞⋂
n=1

pnR

)
∩ T (R+) =

∞⋂
n=1

(
(pnR) ∩ T (R+)

)
=

=
∞⋂

n=1

pnT (R+) = Jp(T (R+)).

Hence αi ∈
⋂

p∈Π

Jp(T (R+)) for i = 1, 2, . . . , n. Because for some p =

p0 ∈ Π, the torsion group T (R+) has no element of infinite p0-height,
Jp0 (T (R+)) = 0. Therefore

⋂
p∈Π

Jp(T (R+)) = 0 and αi = 0 for all i =

1, 2, . . . , n. Consequently, x = 0 and Aω(RG) = 0.
The necessity is proved in Lemma 3.5.

Remark 1. It is obvious that T (R+) ⊆ pT (R+) for all p /∈ Π and
consequently the question about the residual nilpotency of the augmenta-
tion ideals remains open in the case when the group G has no generalized
torsion elements and the torsion group of the additive group of the ring R
has an element of infinite p-height for all primes p.

Remark 2. Theorems 3.1, 3.2 and 3.3 were announced in [4].
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