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Chen inequalities for submanifolds of a Riemannian manifold
of nearly quasi-constant curvature

By CİHAN ÖZGÜR (Balıkesir) and AVIK DE (Calcutta)

Abstract. The object of the present paper is to study Chen first inequality and

k-Ricci curvatures for submanifolds of a Riemannian manifold of nearly quasi-constant

curvature.

1. Introduction

Let (M, g) be a Riemannian manifold. If its curvature tensor satisfies the

condition

R(X,Y, Z,W ) = a[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]

+ b[g(X,W )A(Y )A(Z)− g(X,Z)A(Y )A(W )

+ g(Y, Z)A(X)A(W )− g(Y,W )A(X)A(Z)], (1.1)

where a, b are scalar functions and A is a 1-form defined by

g(X,P ) = A(X), (1.2)

P is a unit vector field, then we say that (M, g) is a Riemannian manifold of quasi-

constant curvature [10]. If b = 0 then the manifold reduces to a space of constant

curvature.

A non-flat Riemannian manifold (Mn, g) (n > 2) is defined to be a quasi-

Einstein manifold if its Ricci tensor satisfies the condition

S(X,Y ) = ag(X,Y ) + bA(X)A(Y ),
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where a, b are scalar functions and A is a non-zero 1-form such that g(X,U) =

A(X) for every vector field X and U is a unit vector field. If b = 0 then the mani-

fold reduces to an Einstein manifold. It can be easily seen that every Riemannian

manifold of quasi-constant curvature is a quasi-Einstein manifold.

In 2009, A. K. Gazi and U. C. De [12] introduced the notion of a Riemann-

ian manifold of nearly quasi-constant curvature as a Riemannian manifold with

the curvature tensor satisfying the condition

R(X,Y, Z,W ) = p[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]

+ q[g(X,W )B(Y, Z)− g(X,Z)B(Y,W )

+ g(Y, Z)B(X,W )− g(Y,W )B(X,Z)] (1.3)

where p, q are scalar functions and B is a non-zero symmetric tensor of type (0, 2).

A non-flat Riemannian manifold (Mn, g) (n > 2) is defined to be a nearly

quasi-Einstein manifold if its Ricci tensor satisfies the condition

S(X,Y ) = ag(X,Y ) + bE(X,Y ),

where a and b are non zero scalar functions and E is a non-zero symmetric tensor

of type (0, 2) [11]. It can be easily seen that every Riemannian manifold of nearly

quasi-constant curvature is a nearly quasi-Einstein manifold.

It is known that the outer product of two covariant vectors is a covariant

tensor of type (0, 2) but the converse is not true, in general. Hence a Riemann-

ian manifold of quasi-constant curvature is a manifold of nearly quasi-constant

curvature, but there are existence of manifolds of nearly quasi-constant curvature

which are not of quasi-constant curvature. It can be easily seen that a conformally

flat manifold of dimension > 3 is a manifold of nearly quasi-constant curvature

since the Ricci tensor S is a symmetric (0, 2) tensor. But the converse is not

necessarily true, in general. On the other hand, a manifold of quasi-constant

curvature is conformally flat. Also, we can construct examples of a manifold of

nearly quasi-constant curvature which is not a manifold of quasi-constant curvat-

ure. Hence, a Riemannian manifold of nearly quasi-constant curvature is a more

general idea than a Riemannian manifold of quasi-constant curvature.

Example 1.1. Let us consider a Riemannian metric g on R4 by

ds2 = gijdxidxj = (x4)
4
3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2.

Then the only non-vanishing components of the Christoffel symbols and the cur-

vature tensors are

Γ1
14 = Γ2

24 = Γ3
34 =

2

3x4
, Γ4

11 = Γ4
22 = Γ4

33 = −2

3
(x4)

1
3
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R1441 = R2442 = R3443 = − 2

9(x4)
2
3

,

R1221 = R1331 = R2332 =
4

9
(x4)

2
3

and the components obtained by the symmetry properties.

The non-vanishing components of the Ricci tensors are:

R11 = R22 = R33 =
2

3(x4)
2
3

, R44 = − 2

3(x4)2
.

The scalar curvature of the resulting manifold (R4, g) is

g11R11 + g22R22 + g33R33 + g44R44 =
4

3(x4)2
,

which is non-vanishing and non-constant.

Let us now consider the associated scalars as follows:

p = − 2

9(x4)2
, q

1

3(x4)
2
3

. (1.4)

We choose the associated nonzero symmetric (0, 2) tensor B as follows:

Bij(x) = (x4)2, for i = j = 1, 2, 3

= −(x4)
2
3 , for i = j = 4,

for any point x ∈ R4.

In terms of local coordinates, the defining condition of a nearly quasi-constant

curvature can be written as

Rijkl = p[gjkgil − gikgjl] + q[gjkBilgilBjk − gikBjl − gjlBik], (1.5)

for i, j, k, l = 1, 2, 3, 4.

By virtue of (1.4) and choice of the (0, 2) tensor B, it can be easily seen that

equation (1.5) holds for i, j, k, l = 1, 2, 3, 4. Therefore, (R4, g) is a manifold of

nearly quasi-constant curvature [11].

We shall now show that this manifold is not a manifold of quasi-constant

curvature.

If possible, suppose this manifold is of quasi-constant curvature. Then in

terms of local coordinates, the curvature tensor R of type (0, 4) can be written as

Rijkl = p[gjkgil − gikgjl] + q[gjkAiAl + gilAjAK − gikAjAl − gjlAiAk],
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for i, j, k, l = 1, 2, 3, 4, where p, q are scalars of which q 6= 0 and A is a non-zero

1-form.

Now, for i = l = 1, j 6= k and j, k 6= 1, we have

R1jk1 = p[gjkg11 − g1kg1j ] + q[gjkA1A1 + g11AjAK − g1kAjA1 − gj1A1Ak],

which implies,

0 = 0 + qAjAk,

which is a contradiction. Hence, the assumption is wrong. So, the manifold is

not a manifold of quasi-constant curvature.

Example 1.2. Let ∇̃ be a linear connection in an n-dimensional differentiable

manifold M . The torsion tensor T is given by

T (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ].

The connection ∇̃ is symmetric if its torsion tensor T vanishes, otherwise it is

non-symmetric. If there is a Riemannian metric g in M such that ∇̃g = 0, then

the connection ∇̃ is a metric connection, otherwise it is non-metric. It is well

known that a linear connection is symmetric and metric if and only if it is the

Levi–Civita connection.

A linear connection ∇̃ is said to be a semi-symmetric connection [16] if its

torsion tensor T is of the form

T (X,Y ) = ω(Y )X − ω(X)Y, (1.6)

where the 1-form ω is defined by

ω(X) = g(X,U),

and U is a vector field.

If ∇ is the Levi–Civita connection of a Riemannian manifold M , then we

have

∇̃XY = ∇XY + ω(Y )X − g(X,Y )U, (1.7)

where

ω(X) = g(X,U),

and X, Y , U are vector fields on M [16]. Let R and R̃ denote the Riemannian

curvature tensor of ∇ and ∇̃, respectively. Then from [16] we know that

R̃(X,Y, Z,W ) = R(X,Y, Z,W )− θ(Y,Z)g(X,W ) + θ(X,Z)g(Y,W )

− g(Y, Z)θ(X,W ) + g(X,Z)θ(Y,W ), (1.8)
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where

θ(X,Y ) = g(AX,Y ) = (∇Xω)Y − ω(X)ω(Y ) +
1

2
g(X,Y ). (1.9)

Assume that ω is a closed 1-form. Then (∇Xω)Y = (∇Y ω)X. Hence θ is a sym-

metric (0, 2)-tensor field. Now let M(c) be a Riemannian space of constant cur-

vature c. If M(c) has a semi-symmetric metric connection with closed associated

1-form ω, then the curvature tensor of M(c) with respect to the semi-symmetric

metric connection is

R̃(X,Y, Z,W ) = c(g(Y, Z)g(X,W )− g(X,Z)g(Y,W ))

− θ(Y,Z)g(X,W ) + θ(X,Z)g(Y,W )

− g(Y, Z)θ(X,W ) + g(X,Z)θ(Y,W ).

Then M(c) is a space of nearly quasi-constant curvature with respect to the semi-

symmetric metric connection.

In [5]–[8], B. Y. Chen established some sharp inequalities between intrinsic

invariants like Ricci curvatures and the squared mean curvatures, an extrinsic

invariant in a submanifold immersed in a Riemannian manifold. Afterwards,

various authors studied the inequality in different ambient spaces, for example,

see [1], [2], [13], [14] and references therein.

Recently, in [15], the first author studied Chen inequalities for submanifolds

of a Riemannian manifold of quasi-constant curvature. In the present paper, we

generalize the results of the paper [15] to submanifolds of a Riemannian manifold

of nearly quasi-constant curvature.

2. Preliminaries

Let M be an n-dimensional submanifold of an (n+m)-dimensional Riemann-

ian manifold Nn+m. The Gauss and Weingarten formulas are given respectively

by

∇̃XY = ∇XY + h (X,Y ) and ∇̃XN = −ANX +∇⊥
XN

for all X,Y ∈ TM and N ∈ T⊥M , where ∇̃, ∇ and ∇⊥ are the Riemannian,

induced Riemannian and normal connections in M̃ , M and the normal bundle

T⊥M of M, respectively, and h is the second fundamental form related to the

shape operator A by g (h (X,Y ) , N) = g (ANX,Y ). The equation of Gauss is

given by

R̃(X,Y, Z,W ) = R(X,Y, Z,W )− g (h(X,W ), h(Y, Z))

+ g (h(X,Z), h(Y,W )) (2.1)
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for all X,Y, Z,W ∈ TM , where R is the curvature tensor of M . The mean

curvature vector H is given by H = 1
n trace(h).

Using (1.3), the Gauss equation for the submanifold Mn of a Riemannian

manifold of nearly quasi-constant curvature is

R(X,Y, Z,W ) = p [g(Y,Z)g(X,W )− g(X,Z)g(Y,W )] + q[g(X,W )B(Y,Z)

− g(X,Z)B(Y,W ) + g(Y, Z)B(X,W )− g(Y,W )B(X,Z)]

+ g (h(X,W ), h(Y, Z))− g (h(X,Z), h(Y,W )) . (2.2)

Let π ⊂ TxM
n, x ∈ Mn, be a 2-plane section. Denote by K(π) the sectional

curvature of Mn. For any orthonormal basis {e1, . . . , en} of the tangent space

TxM
n, the scalar curvature τ at x is defined by

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej).

We recall the following algebraic lemma:

Lemma 2.1 ([4]). Let a1, a2, . . . , an, b be (n+1) (n ≥ 2) real numbers such

that (
n∑

i=1

ai

)2

= (n− 1)

(
n∑

i=1

a2i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3 = · · · = an.

Let Mn be an n-dimensional Riemannian manifold, L a k-plane section of

TxM
n, x ∈ Mn, and X a unit vector in L.

We choose an orthonormal basis {e1, . . . , ek} of L such that e1 = X.

Ones define [6] the Ricci curvature (or k-Ricci curvature) of L at X by

RicL(X) = K12 +K13 + · · ·+K1k,

whereKij denotes, as usual, the sectional curvature of the 2-plane section spanned

by ei, ej . For each integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on Mn is

defined by:

Θk(x) =
1

k − 1
inf
L,X

RicL(X), x ∈ Mn,

where L runs over all k-plane sections in TxM
n and X runs over all unit vectors

in L.
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3. Chen first inequality

In this section, we study submanifolds of a Riemannian manifold of nearly

quasi-constant curvature and find Chen first inequality.

Theorem 3.1. LetMn, n≥ 3, be an n-dimensional submanifold of an (n+m)

-dimensional Riemannian manifold of nearly quasi-constant curvature n+m. Then

we have:

τ −K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

p

2

]

+ q [(n− 2)λ+ traceB|π⊥ ] , (3.1)

where π is a 2-plane section of TxM
n, x ∈ Mn and λ = traceB. The equality case

of inequality (3.1) holds at a point x ∈ Mn if and only if there exists an orthonor-

mal basis {e1, e2, . . . , en} of TxM
n and an orthonormal basis {en+1, . . . , en+m}

of T⊥
x Mn such that the shape operators of Mn in Nn+m at x have the following

forms:

Aen+1 =




a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ




, a+ b = µ,

Aen+i =




hr
11 hr

12 0 · · · 0

hr
12 −hr

11 0 · · · 0

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0




, 2 ≤ i ≤ m,

where we denote by hr
ij = g(h(ei, ej), er), 1 ≤ i, j ≤ n and n+ 1 ≤ r ≤ n+m.

Proof. Let x ∈ Mn and {e1, e2, . . . , en} and {en+1, . . . , en+m} be an ortho-

normal basis of TxM
n and T⊥

x Mn, respectively. For X = W = ei, Y = Z = ej ,

from the Gauss equation (2.2) it follows that

R(ei, ej , ej , ei) = p [g(ej , ej)g(ei, ei)− g(ei, ej)g(ej , ei)]

+ q [g(ei, ei)B(ej , ej)− g(ei, ej)B(ej , ei)

+g(ej , ej)B(ei, ei)− g(ej , ei)B(ei, ej)]

+ g (h(ei, ei), h(ej , ej))− g (h(ei, ej), h(ej , ei)) . (3.2)
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By summation after 1 ≤ i, j ≤ n, from the previous relation we get

2τ + ‖h‖2 − n2 ‖H‖2 = 2q(n− 1)λ+ (n2 − n)p, (3.3)

where

‖h‖2 =

n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

One takes

ε = 2τ − n2(n− 2)

n− 1
‖H‖2 − (n2 − n)p− 2q(n− 1)λ. (3.4)

Then, from (3.3) and (3.4) we get

n2 ‖H‖2 = (n− 1)
(‖h‖2 + ε

)
. (3.5)

Let x ∈ Mn, π ⊂ TxM
n, dimπ = 2, π = sp {e1, e2}. We define en+1 = H

‖H‖
and using (3.5) we obtain:

(
n∑

i=1

hn+1
ii

)2

= (n− 1)




n∑

i,j=1

n+m∑
r=n+1

(hr
ij)

2 + ε


 ,

or equivalently,

(
n∑

i=1

hn+1
ii

)2

=(n−1)

{
n∑

i=1

(hn+1
ii )2+

∑

i6=j

(hn+1
ij )2+

n∑

i,j=1

n+m∑
r=n+2

(hr
ij)

2+ε

}
. (3.6)

By the use of Lemma 2.1 in view of (3.6):

2hn+1
11 hn+1

22 ≥
∑

i 6=j

(hn+1
ij )2 +

n∑

i,j=1

n+m∑
r=n+2

(hr
ij)

2 + ε. (3.7)

Gauss equation for X = W = e1, Y = Z = e2 gives us

K(π) = R(e1, e2, e2, e1) = p+ q [B(e1,e1) +B(e2, e2)]

+

m∑
r=n+1

[hr
11h

r
22 − (hr

12)
2] ≥ p+ q [B(e1,e1) +B(e2, e2)]

+
1

2

[∑

i 6=j

(hn+1
ij )2 +

n∑

i,j=1

n+m∑
r=n+2

(hr
ij)

2 + ε

]
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+

n+m∑
r=n+2

hr
11h

r
22 −

n+m∑
r=n+1

(hr
12)

2 = p+ q [B(e1,e1) +B(e2, e2)]

+
1

2

∑

i 6=j

(hn+1
ij )2 +

1

2

n∑

i,j=1

n+m∑
r=n+2

(hr
ij)

2 +
1

2
ε+

n+m∑
r=n+2

hr
11h

r
22 −

n+m∑
r=n+1

(hr
12)

2

= p+ q [B(e1,e1) +B(e2, e2)] +
1

2

∑

i 6=j

(hn+1
ij )2 +

1

2

n+m∑
r=n+2

∑

i,j>2

(hr
ij)

2

+
1

2

n+m∑
r=n+2

(hr
11 + hr

22)
2 +

∑

j>2

[(hn+1
1j )2 + (hn+1

2j )2] +
1

2
ε

≥ p+ q [B(e1,e1) +B(e2, e2)] +
ε

2
,

which implies

K(π) ≥ p+ q [B(e1,e1) +B(e2, e2)] +
ε

2
. (3.8)

By the use of (3.4), from (3.8), we find

K(π) ≥ τ − (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

p

2

]
− q[(n− 2)λ+ traceB|π⊥ ]

hence we obtain (3.1).

The equality case holds at a point x ∈ Mn if and only if it achieves the

equality in all the previous inequalities and we have the equality in the Lemma.

hn+1
ij = 0, ∀i 6= j, i, j > 2,

hr
ij = 0, ∀i 6= j, i, j > 2, r = n+ 1, . . . , n+m,

hr
11 + hr

22 = 0, ∀r = n+ 2, . . . , n+m,

hn+1
1j = hn+1

2j = 0, ∀j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = · · · = hn+1

nn .

We may chose {e1,e2} such that hn+1
12 = 0 and we denote by a = hr

11, b =

hr
22, µ = hn+1

33 = · · · = hn+1
nn .

It follows that the shape operators take the desired forms. ¤

4. k-Ricci curvature

In this section, we consider the k-Ricci curvature which is an intrinsic inva-

riant and find a relation with the squared mean curvature ‖H‖2.
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Theorem 4.1. LetMn, n≥ 3, be an n-dimensional submanifold of an (n+m)

-dimensional space of nearly quasi-constant curvature Nn+m. Then we have

‖H‖2 ≥ 2τ

n(n− 1)
− p− 2q

n
λ. (4.1)

Proof. Let x ∈ Mn and {e1, e2, . . . , en} be orthonormal basis of TxM
n.

From (3.3) we can write

n2 ‖H‖2 = 2τ + ‖h‖2 − 2q(n− 1)λ− (n2 − n)p. (4.2)

We choose an orthonormal basis {e1, . . . , en, en+1, . . . , en+m} at x such that

en+1 is parallel to the mean curvature vector H(x) and e1, . . . , en diagonalize the

shape operator Aen+1 . Then the shape operators take the forms

Aen+1 =




a1 0 . . . 0

0 a2 . . . 0
...

...
. . .

...

0 0 . . . an




, (4.3)

Aer = (hr
ij), i, j = 1, . . . , n; r = n+ 2, . . . , n+m, traceAr = 0. (4.4)

From (4.2), we get

n2‖H‖2 = 2τ +

n∑

i=1

a2i +

n+m∑
r=n+2

n∑

i,j=1

(hr
ij)

2 − 2q(n− 1)λ− (n2 − n)p. (4.5)

On the other hand, since

0 ≤
∑

i<j

(ai − aj)
2 = (n− 1)

∑

i

a2i − 2
∑

i<j

aiaj ,

we obtain

n2 ‖H‖2 =

(
n∑

i=1

ai

)2

=

n∑

i=1

a2i + 2
∑

i<j

aiaj ≤ n

n∑

i=1

a2i , (4.6)

which implies
n∑

i=1

a2i ≥ n ‖H‖2 .
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From (4.5) we get

n2 ‖H‖2 ≥ 2τ + n ‖H‖2 − 2q(n− 1)λ− (n2 − n)p (4.7)

or, equivalently,

‖H‖2 ≥ 2τ

n(n− 1)
− p− 2q

n
λ,

this proves the theorem. ¤

Theorem 4.2. LetMn, n≥ 3, be an n-dimensional submanifold of an (n+m)

-dimensional Riemannian manifold of nearly quasi-constant curvature Nn+m.

Then for any integer k, 2 ≤ k ≤ n, and any point x ∈ Mn, we have

‖H‖2 ≥ Θk(x)− p− 2q

n
λ. (4.8)

Proof. Let {e1, . . . en} be an orthonormal basis of TxM . Denote by Li1...ik

the k-plane section spanned by ei1 , . . . , eik . By the definitions, one has

τ(Li1...ik) =
1

2

∑

i∈{i1,...,ik}
RicLi1...ik

(ei),

τ(x) =
1

Ck−2
n−2

∑

1≤i1<···<ik≤n

τ(Li1...ik).

From (4.1) and the above relations, one derives

τ(x) ≥ n(n− 1)

2
Θk(x),

which implies (4.8). ¤
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