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Chen inequalities for submanifolds of a Riemannian manifold
of nearly quasi-constant curvature

By CIHAN OZGUR (Balkesir) and AVIK DE (Calcutta)

Abstract. The object of the present paper is to study Chen first inequality and
k-Ricci curvatures for submanifolds of a Riemannian manifold of nearly quasi-constant
curvature.

1. Introduction

Let (M, g) be a Riemannian manifold. If its curvature tensor satisfies the
condition

R(X,Y,Z,W) = alg(Y,2)9(X, W) — g(X, Z)g(Y, W)
+ blg(X, W)A(Y)A(Z) — g(X, Z)A(Y)A(W)
+9(Y, Z)A(X)A(W) — g(Y, W) A(X)A(Z)], (1.1)
where a, b are scalar functions and A is a 1-form defined by
9(X, P) = A(X), (1.2)

P is a unit vector field, then we say that (M, g) is a Riemannian manifold of quasi-
constant curvature [10]. If b = 0 then the manifold reduces to a space of constant
curvature.

A non-flat Riemannian manifold (M",g) (n > 2) is defined to be a quasi-
Einstein manifold if its Ricci tensor satisfies the condition

S(X,Y) = ag(X,Y) + bA(X)A(Y),
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where a,b are scalar functions and A is a non-zero 1-form such that ¢(X,U) =
A(X) for every vector field X and U is a unit vector field. If b = 0 then the mani-
fold reduces to an Einstein manifold. It can be easily seen that every Riemannian
manifold of quasi-constant curvature is a quasi-Einstein manifold.

In 2009, A. K. Gazi and U. C. DE [12] introduced the notion of a Riemann-
ian manifold of nearly quasi-constant curvature as a Riemannian manifold with
the curvature tensor satisfying the condition

R(X,Y, Z, W) = plg(Y, Z)g(X, W) — g(X, Z)g(Y, W)]
+ q[g(X, W)B(Yv Z) - g(X, Z)B(Y, W)
+g(Y,Z)B(X,W) — g(Y,W)B(X, Z)] (1.3)

where p, ¢ are scalar functions and B is a non-zero symmetric tensor of type (0, 2).
A non-flat Riemannian manifold (M",g) (n > 2) is defined to be a nearly
quasi- Einstein manifold if its Ricci tensor satisfies the condition

S(X,Y)=ag(X,Y)+bE(X,Y),

where a and b are non zero scalar functions and F is a non-zero symmetric tensor
of type (0,2) [11]. It can be easily seen that every Riemannian manifold of nearly
quasi-constant curvature is a nearly quasi-Einstein manifold.

It is known that the outer product of two covariant vectors is a covariant
tensor of type (0,2) but the converse is not true, in general. Hence a Riemann-
ian manifold of quasi-constant curvature is a manifold of nearly quasi-constant
curvature, but there are existence of manifolds of nearly quasi-constant curvature
which are not of quasi-constant curvature. It can be easily seen that a conformally
flat manifold of dimension > 3 is a manifold of nearly quasi-constant curvature
since the Ricci tensor S is a symmetric (0,2) tensor. But the converse is not
necessarily true, in general. On the other hand, a manifold of quasi-constant
curvature is conformally flat. Also, we can construct examples of a manifold of
nearly quasi-constant curvature which is not a manifold of quasi-constant curvat-
ure. Hence, a Riemannian manifold of nearly quasi-constant curvature is a more
general idea than a Riemannian manifold of quasi-constant curvature.

Ezample 1.1. Let us consider a Riemannian metric g on R* by
ds® = gijdatda’ = (a*)5[(dat)? + (dz®)? + (dz®)?] + (da*).

Then the only non-vanishing components of the Christoffel symbols and the cur-
vature tensors are
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2
Ri441 = Rogsr = Raguz = _9(x4)§ ;
4, 42
Ri921 = Ri331 = Raszzz = §(5f )3

and the components obtained by the symmetry properties.
The non-vanishing components of the Ricci tensors are:

2 2

R11:R22:R33: y R44:—W~

The scalar curvature of the resulting manifold (R?, g) is

4

9" Ri1 + g% Ry + g% Raz + g™ Ras = 3(z4)2’

which is non-vanishing and non-constant.
Let us now consider the associated scalars as follows:
B 2 1
P70 Tt

We choose the associated nonzero symmetric (0,2) tensor B as follows:
Bjj(z) = (2")?, fori=j=1,2,3
= —(zYi, fori=j=4,

for any point x € R*.
In terms of local coordinates, the defining condition of a nearly quasi-constant
curvature can be written as

Rijrt = plgjrga — 9irgjt) + algixBagaBjx — 9ixBjt — 951 Bik), (1.5)

for i,j,k,l =1,2,3,4.

By virtue of (1.4) and choice of the (0,2) tensor B, it can be easily seen that
equation (1.5) holds for i,j,k,1 = 1,2,3,4. Therefore, (R* g) is a manifold of
nearly quasi-constant curvature [11].

We shall now show that this manifold is not a manifold of quasi-constant
curvature.

If possible, suppose this manifold is of quasi-constant curvature. Then in
terms of local coordinates, the curvature tensor R of type (0,4) can be written as

Rijkl = plgjrgi — 9ikgji] + al9jnAiAi + gaAjAx — ginA; A1 — g1 Ai Agl,
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for i,7,k,1 = 1,2,3,4, where p, q are scalars of which ¢ # 0 and A is a non-zero
1-form.
Now, fori =1=1, j # k and j, k # 1, we have

Riji1 = plgjrgin — g1e915] + qlginAr1Ar + 9114 Ak — g1eAj AL — gj1 A1 A,

which implies,
0=0+ quAk,

which is a contradiction. Hence, the assumption is wrong. So, the manifold is
not a manifold of quasi-constant curvature.

Ezample 1.2. Let V be a linear connection in an n-dimensional differentiable
manifold M. The torsion tensor T is given by

T(X,Y)=VxY - VyX —[X,Y].

The connection V is symmetric if its torsion tensor T’ vanishes, otherwise it is
non-symmetric. If there is a Riemannian metric g in M such that @g = 0, then
the connection V is a metric connection, otherwise it is non-metric. It is well
known that a linear connection is symmetric and metric if and only if it is the
Levi—Civita connection.

A linear connection V is said to be a semi-symmetric connection [16] if its
torsion tensor 7 is of the form

T(X,)Y) =w()X —w(X)Y, (1.6)
where the 1-form w is defined by

w(X) =g(X,U),
and U is a vector field.
If V is the Levi—-Civita connection of a Riemannian manifold M, then we
have
VxY =VxY +w(Y)X — g(X,Y)U, (1.7)
where
w(X) =g(X,U),

and X, Y, U are vector fields on M [16]. Let R and R denote the Riemannian
curvature tensor of V and V, respectively. Then from [16] we know that

R(X,Y,Z,W)=R(X,Y,Z,W)—-0(Y,Z)g(X, W)+ 6(X, Z)g(Y, W)
7Q(Y,Z)9(X,W)+g(X,Z)9(KW), (18)
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where

O(X,Y) = g(AX,Y) = (Vxw)Y — w(X)w(Y) + %g(X, Y). (1.9)

Assume that w is a closed 1-form. Then (Vxw)Y = (Vyw)X. Hence 0 is a sym-
metric (0,2)-tensor field. Now let M (c) be a Riemannian space of constant cur-
vature c¢. If M(c) has a semi-symmetric metric connection with closed associated
1-form w, then the curvature tensor of M (c) with respect to the semi-symmetric
metric connection is

R(X,Y,Z,W) = c(g(Y, 2)g(X, W) — g(X, Z)g(Y,W))
—0(Y, Z)g(X, W) +0(X, Z)g(Y, W)
—g(Y, Z)0(X, W) + g(X, Z)0(Y,W).

Then M (c) is a space of nearly quasi-constant curvature with respect to the semi-
symmetric metric connection.

In [5]-[8], B. Y. CHEN established some sharp inequalities between intrinsic
invariants like Ricci curvatures and the squared mean curvatures, an extrinsic
invariant in a submanifold immersed in a Riemannian manifold. Afterwards,
various authors studied the inequality in different ambient spaces, for example,
see [1], [2], [13], [14] and references therein.

Recently, in [15], the first author studied Chen inequalities for submanifolds
of a Riemannian manifold of quasi-constant curvature. In the present paper, we
generalize the results of the paper [15] to submanifolds of a Riemannian manifold
of nearly quasi-constant curvature.

2. Preliminaries

Let M be an n-dimensional submanifold of an (n+m)-dimensional Riemann-
ian manifold N™**™, The Gauss and Weingarten formulas are given respectively
by

VxY =VxY +h(X,Y) and VxN=—-AyX + V%N
for all X,Y € TM and N € T+M, where 6, V and V* are the Riemannian,
induced Riemannian and normal connections in M , M and the normal bundle
T+M of M, respectively, and h is the second fundamental form related to the
shape operator A by g(h(X,Y),N) = g(AnyX,Y). The equation of Gauss is
given by

R(X,Y,Z,W) = R(X,Y,Z,W) — g (h(X,W),h(Y, Z))
+9(WMX, Z),h(Y,W)) (2.1)
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for all X,Y, Z, W € TM, where R is the curvature tensor of M. The mean
curvature vector H is given by H = L trace(h).

Using (1.3), the Gauss equation for the submanifold M™ of a Riemannian
manifold of nearly quasi-constant curvature is

R(X,Y,Z,W) =plg(Y,2)9(X, W) — g(X, Z)g(Y,W)] + qlg(X,W)B(Y, Z)
—9(X,Z)B(Y,W) +g(Y,Z)B(X, W) — g(Y,W)B(X, Z)]
Let m C T,M™, x € M™, be a 2-plane section. Denote by K (7) the sectional

curvature of M™. For any orthonormal basis {e1,...,e,} of the tangent space
T, M™, the scalar curvature 7 at = is defined by

@)= Y K(eine)).

1<i<j<n

We recall the following algebraic lemmas:

Lemma 2.1 ([4]). Let aj,as,...,a,,b be (n+1) (n > 2) real numbers such
that
n 2 n
(ZQZ) =(n-1) (Za? +b> .
i=1 i=1
Then 2a1ao > b, with equality holding if and only if a1 + a2 = a3 = -+ = ay,.-

Let M™ be an n-dimensional Riemannian manifold, L a k-plane section of
T,M"™ € M", and X a unit vector in L.

We choose an orthonormal basis {ej, ..., e} of L such that e; = X.

Ones define [6] the Ricci curvature (or k-Ricci curvature) of L at X by

Ricp(X) = K12 + Ky3+ - + Kup,
where K;; denotes, as usual, the sectional curvature of the 2-plane section spanned

by e;, e;. For each integer k, 2 < k < n, the Riemannian invariant ©; on M" is
defined by:

Or(x) inf Ricp(X), xe€ M",

:k—lL,X

where L runs over all k-plane sections in T, M"™ and X runs over all unit vectors
in L.
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3. Chen first inequality

In this section, we study submanifolds of a Riemannian manifold of nearly
quasi-constant curvature and find Chen first inequality.

Theorem 3.1. Let M™ n >3, be an n-dimensional submanifold of an (n+ m)
-dimensional Riemannian manifold of nearly quasi-constant curvature "+™. Then
we have:

2 b
|HI? + (n+ 1)

+q[(n—2)\+ trace B|,1], (3.1)

T—K(m) <(n-2) =1

where 7 is a 2-plane section of T, M™, x € M™ and \ = trace B. The equality case
of inequality (3.1) holds at a point © € M™ if and only if there exists an orthonor-
mal basis {e1,ea,...,e,} of T,M™ and an orthonormal basis {€p11,...,€ntm}
of T;-M™ such that the shape operators of M™ in N"*™ at x have the following
forms:

a 0 0
0 b 0 0

Ae"+1: 0 12 0 , a+b_u7
00 0 [
hiy Rhiy 0 --- 0

Ae =10 0 0 - 0] 2<i<m,
0 0 0 --- 0

where we denote by hi; = g(h(e;,e;),er), 1 <i,j<mandn+1<7r<n+m.

PROOF. Let x € M™ and {e1,ez,...,e,} and {€n41,...,€ntm} be an ortho-
normal basis of T, M™ and T;-M™", respectively. For X = W =¢;,Y = Z = e;,
from the Gauss equation (2.2) it follows that

Rlei,ej,e5,€:) =plg(ej, ej)g(ei ei) — glei, e5)g(e;, €i)]
+qlg(ei,e)Blej, e5) — glei, e5)B(ej, €i)
+ (ej7ej) (eirei) — glej, ei)Blei, €5)]
g (h(es,ei), hiej,e5)) — g (h(es, e), hiej, e:)) . (3.2)
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By summation after 1 <4,j < n, from the previous relation we get

27 + [|h])* — n® | H|* = 2g(n — A + (n* — n)p, (3.3)
where .
I8l1” = > g(hleie5), hleise;)-
i,j=1
One takes )
€=271 — % |H||* = (n? — n)p — 2q(n — 1A (3.4)

Then, from (3.3) and (3.4) we get
n? | H|* = (n = 1) (Ih])* +¢). (3.5)

Let v € M™, # C T,M™, dimm = 2, 7 = sp{e1,ea}. We define e,11 = ﬁ

and using (3.5) we obtain:
n 2 n n+m
(Sr) ~won (3 S0
i=1 i,j=1r=n+1
or equivalently,
n n+m
<Z hn+1> _ ){ Z hn+1 Z thrl + Z Z r } (36)
i=1 i#£] =1 r=n+2

By the use of Lemma 2.1 in view of (3.6):

n+m
2R R > Y (hT? +Z > (h (3.7)
i#j i,j=1r=n+2

Gauss equation for X =W =e1, Y = Z = e gives us
K(m) = R(e1,ez,ea,e1) = p+q[B(er,e1) + Blez, e2)]

+ Z (W71 5y — (h12)?] > p+ q[Bler,e1) + Blez, e2)]
r=n-+1
1 n n+m
n+1
+3 STETP Y S (w

i#£] i,j=1r=n+2
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n+m n+m
+ 30 Wk = Y () =p+alBlerer) + Bles,e)
r=n-4+2 r=n-+1
n n+m n+m n+m
F B S DS P ge Y M - Y ()
zyég i,j=1r=n+2 r=n-+2 r=n-+1
n+m
1
=p+q[Bleer) + Blez, e2)] + 5 5 Z hi)? + 5 Z Z
i#£] r=n+21i,j>2
1 1
7 n+1 n+1
+3 > (h 243 Iy (h )% + 3¢
r=n+2 j>2
£
>p+q[B(eier) + Blea, e2)] + 2
which implies
£
K(r) 2 p+q[Bles,er) + Blez, e2)] + 5. (3.8)

By the use of (3.4), from (3.8), we find

n2

K(rm>7—(n-2) m

IHIP + (n 4+ )2 | = gl = 2)A + trace B...]

hence we obtain (3.1).
The equality case holds at a point x € M"™ if and only if it achieves the
equality in all the previous inequalities and we have the equality in the Lemma.

h%—i_l :07 VZ¢]725‘7>27
hi; =0, Yi#ji,j>2, r=n+1,...,n+m,
hii +hy =0, Vr=n+2,...,n+m,

Wit =hytt =0, Vji>2,

h’n+1 + hn+1 — h’n+1 - hn+1.
We may chose {ej,e2} such that A5 = 0 and we denote by a = h7,b =
Mg = = - = hE.
It follovvb that the shape operators take the desired forms. ([l

4. k-Ricci curvature

In this section, we consider the k-Ricci curvature which is an intrinsic inva-
. . . 2
riant and find a relation with the squared mean curvature ||H|".
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Theorem 4.1. Let M™ n >3, be an n-dimensional submanifold of an (n+m)
-dimensional space of nearly quasi-constant curvature N**™. Then we have

2T

= nin—1)

PROOF. Let x € M™ and {ej,eq,...,e,} be orthonormal basis of T, M™.
From (3.3) we can write

2q
| H1” —p= A (4.1)

n? |H|? = 27 + ||h|]> = 2¢(n — D)X — (n® — n)p. (4.2)

We choose an orthonormal basis {e1,...,en,€nt1,-..,€ntm} at & such that
en+1 is parallel to the mean curvature vector H(z) and ey, ..., e, diagonalize the

shape operator A Then the shape operators take the forms

€n+41°

ai 0 0
0 as ... 0
Ae,n = : Do S (4.3)
0 0 an,
Ae, = (hij), i,j=1,...,n; T =n+2,...,n+m,trace A, = 0. (4.4)

From (4.2), we get
n+m n
n?||H|? —27'—|—Za + Z Z 2q(n — 1)\ — (n? — n)p. (4.5)

r=n+21i,j=1

On the other hand, since

0<Z —a] (n—1) Za —QZaza],

1<j i<J
we obtain

n2||H2<iai> Za +22ala]§n2az, (4.6)
=1 i<j

which implies

n

2
> ai=n|H|".
i=1
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From (4.5) we get

n® |H|* > 27 + n||H|* = 2g(n — 1)A — (n* = n)p (4.7)
or, equivalently,
2T 2q
IH|* > ———= —p— =),
nin—1) n
this proves the theorem. ([

Theorem 4.2. Let M™ n > 3, be an n-dimensional submanifold of an (n+m)
-dimensional Riemannian manifold of nearly quasi-constant curvature N™T™.
Then for any integer k, 2 < k < n, and any point x € M™, we have

2
|HI® = Ou(2) —p— =N (4.8)
PROOF. Let {ey,...e,} be an orthonormal basis of T,,M. Denote by L;, ;.
the k-plane section spanned by e;,,...,e;, . By the definitions, one has
1 .
T(Llllk) = 9 Z Rchil...ik (61'),
ie{ih...,ik}
1
7(z) = oh—2 Z T(Liy..ip)-

n—2 1<i; < <ixr<n

From (4.1) and the above relations, one derives

which implies (4.8). O
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