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Conditional oscillation and principal solution of generalized
half-linear differential equation

By GABRIELLA BOGNÁR (Miskolc) and ONDŘEJ DOŠLÝ (Brno)

Abstract. We establish an explicit formula for conditionally oscillatory potential

in the generalized half-linear second order differential equation. We also present an

alternative construction of the principal solution of this equation.

1. Introduction

We deal with the second order differential equation of the form

x′′ + c(t)f(x, x′) = 0 (1)

where c is a continuous function and the function f satisfies the following as-

sumptions which were introduced in [5]:

(i) The function f is continuous on Ω = R× [R \ {0}];
(ii) It holds xf(x, y) > 0 if xy 6= 0;

(iii) The function f is homogeneous, i.e., f(λx, λy) = λf(x, y) for λ ∈ R and

(x, y) ∈ Ω;

(iv) The function f is sufficiently smooth in order to ensure the continuous depen-

dence and the uniqueness of solutions of the initial value problem x(t1) = x0,

x′(t1) = x1 at some (x0, x1) ∈ Ω;
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(v) Let F (t) := tf(t, 1), then
∫ ∞

−∞

dt

1 + F (t)
< ∞ and lim

|t|→∞
F (t) = ∞.

Under these assumptions, the solution space of (1) is homogeneous. This is

the reason why this equation was called half-linear, its solution space has just one

half of the properties which characterize linearity. The word “generalized” reflects

the fact that (1) covers as a special case the “classical” half-linear differential

equation (
Φp(x

′)
)′
+ c(t)Φp(x) = 0, Φp(x) := |x|p−2x, p > 1, (2)

which was a subject of investigation of many recent papers, see, e.g., [3], [8], [10]

and the reference therein. Note also that the generalized half-linear differential

equation was introduced in Bihari’s papers [1], [2] in the form

(
r(t)x′)′ + c(t)f(x, r(t)x′) = 0 (3)

with a positive continuous function r. However, the change of independent va-

riable s =
∫ t

r−1(τ) dτ transforms (3) into (1), so we suppose without loss of

generality that r(t) ≡ 1 in (3).

Let g be the differentiable function given by the formula

g(u) =





∫∞
1/u

ds

F (s)
if u > 0,

− ∫ 1/u

−∞
ds

F (s)
if u < 0,

and g(0) = 0. Then g is increasing and limv→±∞ g(v) = ±∞. If x is a solution

of (1) such that x(t) 6= 0, then the function v = g(x′/x) solves the Riccati type

differential equation

v′ + c(t) +H(v) = 0, (4)

where the function H is given by the formula

H(v) = [g−1(v)]2g′(g−1(v)) (5)

with H(0) = 0 (g−1 being the inverse function of g). Moreover, the function H

satisfies ∫ −ε

−∞

dv

H(v)
< ∞,

∫ ∞

ε

dv

H(v)
< ∞.

Following [5], to study oscillatory properties of (1) in more details, we also

need the additional assumption:



Half-linear differential equation 453

(vi) The function H given by (5) is strictly convex.

This assumption is satisfied e.g. when the function logF (t) is strictly concave,

see [5]. Under this assumption, the function H is decreasing for u ≤ 0 and

increasing for u ≥ 0. Moreover, it is locally Lipschitzian, hence solutions of (4)

are uniquely determined by the initial condition and hence graphs of solutions of

this equation cannot intersect.

The aim of our paper is to prove two conjectures posed in [4]. These con-

jectures concern the conditional oscillation and the construction of the principal

solution of (1). We recall these concepts in the next sections.

2. Preliminaries

It is known that many of the properties of the linear Sturm-Liouville diffe-

rential equation (
r(t)x′)′ + c(t)x = 0

can be extended to (1). In particular, we have the full analogy of the Sturm

separation and comparison theory. This means that equation (1) can be classified

as oscillatory or nonoscillatory similarly as in the linear case. This is due to the

relationship between (1) and the Riccati type equation (4) via the substitution

v = g(x′/x). The existence of a solution x of (1) with consecutive zeros t1 < t2
means that v(t1+) = ∞, v(t2−) = −∞ for the associated solution v of (4). This

implies that any other solution x̃ of (1) has to have a zero in (t1, t2), otherwise

the graph of ṽ = g(x̃′/x̃) intersects the graph of v, which contradicts the unique

solvability of (4).

The following statement, which is presented in [5], summarizes the essentials

of the application of Riccati technique in oscillation theory of (1). Recall that a

proper solution of (4) is a solution which exists on some interval [T,∞), i.e., it is

extensible up to ∞.

Proposition 1. The following statements are equivalent:

(1) Equation (1) is nonoscillatory.

(2) There exists a proper solution of the generalized Riccati equation (4).

(3) There exists a continuously differentiable function v defined on some interval

[T,∞) for which

v′(t) + c(t) +H(v(t)) ≤ 0, t ∈ [T,∞).



454 Gabriella Bognár and Ondřej Došlý

We will also need the next statement which concerns nonnegativity of proper

solutions of (4).

Lemma 1. If c(t) ≥ 0, then all possible proper solutions of (4) are nonne-

gative and tend to zero as t → ∞.

Proof. Under assumptions on the function H, the function v(t) ≡ 0 is the

minimal solution of the equation

v′ +H(v) = 0, (6)

see [4], and by another result of the same paper all possible proper solutions of (4)

are greater than this minimal solution of (6). As for the limit of a proper solution

of (4), this limit v(∞) is a positive number or zero. Since v is decreasing, we have

v(t) > v(∞) and integrating (4) from T to ∞

v(∞) +

∫ ∞

T

c(t) dt+

∫ ∞

T

H(v(t)) dt = v(T )

Note that the existence of a proper solution of (4) implies that
∫∞
T

c(t) dt < ∞,

see [5]. Hence ∫ ∞

T

H(v(∞)) dt <

∫ ∞

T

H(v(t)) dt < ∞.

This shows that v(∞) = 0. ¤

3. Conditional oscillation

We say that equation (1) with a nonnegative function c is conditionally os-

cillatory if there exists a constant λ0 > 0, called the constant of conditional

oscillation, such that (1) with λc(t) instead of c(t) is oscillatory for λ > λ0 and

nonoscillatory for λ < λ0. A typical example of a conditionally oscillatory half-

linear equation is the Euler differential equation

(
Φp(x

′)
)′
+

λ

tp
Φp(x) = 0

with the oscillation constant

λ0 = γp :=

(
p− 1

p

)p

.



Half-linear differential equation 455

This means that the potential c(t) = γp/t
p is a kind of borderline between oscilla-

tion and nonoscillation of equation (2). More precisely, this equation is oscillatory

provided

lim inf
t→∞

tpc(t) > γp

and nonoscillatory if

lim sup
t→∞

tpc(t) < γp.

The next theorem answers Conjecture 2 of [4] and shows that conditional

oscillation of (1) is determined by the behavior of the function H in a right

neighbourhood of v = 0.

Theorem 1. Suppose that

lim
v→0+

H(v)

vβ
= L ∈ (0,∞)

for some β > 1. Then equation (1) with c(t) = λt−α, where α = β
β−1 is the con-

jugate exponent of β, is conditionally oscillatory with the constant of conditional

oscillation

λ0 =

(
L

α− 1

)1−α

γα, γα :=

(
α− 1

α

)α

.

Proof. First consider the case λ > λ0. There exists ε > 0 such that

λ > γα

(
L− ε

α− 1

)1−α

. (7)

Suppose, by contradiction, that (1) with c(t) = λt−α is nonoscillatory, i.e., by

Proposition 1, there exists a proper solution of the equation

v′ +
λ

tα
+H(v) = 0.

Then v(t) → 0+ as t → ∞ by Lemma 1, i.e., there exists T such that

H(v(t)) > (L− ε)(v(t))β

for t > T , hence

v′(t) +
λ

tα
+ (L− ε)(v(t))β < 0. (8)
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The left-hand side of the last inequality is the Riccati operator corresponding to

the half-linear equation (related to v by the formula v =
(

L−ε
α−1

)1−α

Φα

(
x′/x

)
)

[(
L− ε

α− 1

)1−α

Φα(x
′)

]′

+
λ

tα
Φα(x) = 0,

which is the same as the equation

(
Φα(x

′)
)′
+ λ

(
L− ε

α− 1

)α−1

t−αΦα(x) = 0.

We suppose (7), which means that the coefficient by t−αΦα(x) in the last equation

is greater than γα and this implies that this equation is oscillatory. But this is a

contradiction in view of Proposition 1 since we have found a function satisfying

inequality (8) on [T,∞).

Now we deal with the case λ < λ0. Let ε > 0 be so small that

λ < γα

(
L+ ε

α− 1

)1−α

and consider the function

v(t) =

(
L+ ε

α− 1

)1−α

Γαt
1−α, Γα :=

(
α− 1

α

)α−1

. (9)

Then v(t) → 0+ as t → ∞, i.e., there exists T such that H(v(t)) < (L+ ε)(v(t))β

for t > T . We have

v′(t) +
λ

tα
+H(v(t)) < v′(t) + γα

(
L+ ε

α− 1

)1−α

t−α + (L+ ε)(v(t))β . (10)

Substituting for v from (9) into the right-hand side of the last inequality we have

v′+ γα

(
L+ ε

α− 1

)1−α

+ (L+ ε)vβ

= t−α

[(
L+ ε

α− 1

)1−α

(1− α)Γα + γα

(
L+ ε

α− 1

)1−α

+ (L+ ε)

(
L+ ε

α− 1

)(1−α)β
]

=

(
L+ ε

α− 1

)−α

t−α

[
L+ ε

α− 1
(1− α)Γα +

L+ ε

α− 1
γα + (L+ ε)γα

]

=

(
L+ ε

α− 1

)1−α

t−α(L+ ε)

[
−Γα + γα

(
1

α− 1
+ 1

)]
= 0.

Hence v is a proper solution of the Riccati inequality associated with the equation

x′′ +
λ

tα
f(x, x′) = 0

which means that this equation is nonoscillatory by Proposition 1. ¤
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4. Principal solution and Prüfer transformation

In this concluding section we briefly describe the construction of the so-

called principal solution of (1) based on the generalized Prüfer transformation.

We follow essentially the idea of the paper [7], where the principal solution of the

“classical” nonoscillatory half-linear equation

(r(t)Φp(x
′))′ + c(t)Φp(x) = 0

was introduced via the Prüfer type transformation.

Following [6], consider the equation (1) with c(t) ≡ 1, i.e., the equation

x′′ + f(x, x′) = 0

and denote by S = S(t) its solution given by the initial condition S(0) = 0,

S′(0) = 1. This solution defines the generalized sine functions and its deriva-

tive the generalized cosine function. Then any nontrivial solution of (1) and its

derivative can be expressed in the form

x(t) = ρ(t)S(ϕ(t)), x′(t) = ρ(t)S′(ϕ(t)), (11)

where ρ is the positive radius function. Of course, in the linear case f(x, x′) = x,

this is nothing else than the classical Prüfer transformation. The angle variable

ϕ is a solution the differential equation

ϕ′ = 1 + (c(t)− 1)G(ϕ). (12)

The function G is given by the formula

G(ϕ) =





F (T (ϕ))

1 + F (T (ϕ))
, if S′(ϕ) 6= 0,

1, if S′(ϕ) = 0,

(13)

where T (ϕ) = S(ϕ)/S′(ϕ) is the generalized tangent function and the function F

is given in the assumption (v) of Section 1. The function G is periodic with the

period 2p, where

p =

∫ ∞

−∞

dt

1 + F (t)

is the first positive zero of S, and equation (12) is uniquely solvable. Moreover,

we have ϕ′(t) = 1 at points where ϕ(t) = 0, and S(ϕ) = 0 if and only if ϕ = kp,

k ∈ Z.
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Suppose that (1) is nonoscillatory and let T be so large that there is a solution

x̂ for which x̂(t) 6= 0 for t ≥ T . This solution can be expressed in the form (11)

and let ϕ̂ be its Prüfer angle. Then ϕ̂(t) ∈ (kp, (k + 1)p) for some integer k and

without loss of generality we can suppose that k = −1. Now, let τ ∈ (T,∞) and

denote by ϕτ the solution of (12) given by the initial condition ϕτ (τ) = 0. The

unique solvability of (12) implies that ϕ̂(t) < ϕτ2(t) < ϕτ1(t) for t ≥ T whenever

T < τ1 < τ2. This means that there exists a finite limit ϕ∗ := limτ→∞ ϕτ (T ).

The solution x̃ of (1) given by the initial condition

x̃(T ) = S(ϕ∗), x̃′(T ) = S′(ϕ∗)

we call the principal solution of (1).

The concept of the principal solution of a nonoscillatory generalized half-

linear equation (1) was introduced in [4] via Mirzov’s method (see [9]) of the

minimal solution of the associated Riccati equation (4). Next we show that the

principal solution defined above using the generalized Prüfer transformation “pro-

duces” via the substitution v = g(x′/x) the minimal solution of (4), i.e., both defi-

nitions are equivalent. Indeed, let xτ be a nontrivial solution satisfying xτ (τ) = 0.

According to homogeneity of the solution space of (1), this solution is determined

uniquely up to a nonzero multiplicative factor. The solution xτ can be expressed

in the form

xτ (t) = ρ(t)S(ϕτ (t)), x′
τ (t) = ρ(t)S′(ϕτ (t)),

where ϕτ is the solution of (12) satisfying ϕτ (τ) = 0. The solution vτ (t) =

g(x′
τ (t)/xτ (t)) of (4) satisfies, in view of the properties of the function g, the

relation vτ (−τ) = −∞. The minimal solution of (4) is defined by

vmin(t) = lim
τ→∞

vτ (t),

i.e., it is just the solution satisfying vmin(T ) = g
(
S′(ϕ∗)/S(ϕ∗)

)
. Hence ṽ(t) =

vmin(t).
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