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Convex solutions of the polynomial-like iterative
equation in Banach spaces

By XIAOBING GONG (Chengdu) and WEINIAN ZHANG (Chengdu)

Abstract. Although convex (concave) solutions were investigated for the poly-

nomial-like iterative equation on a compact interval of R, there are much more difficul-

ties in discussion on convexity of solutions in Banach spaces. In this paper we consider

a partial order in Banach spaces, which is defined by an order cone, and discuss mono-

tonicity and convexity of operators under iteration in Banach spaces. Then we give the

existence of monotone solutions in the ordered real Banach spaces and further obtain

conditions under which the solutions are convex or concave in the order. Moreover, the

uniqueness and continuous dependence of those solutions are also discussed.

1. Introduction

As indicated in the books [9], [26] and the surveys [2], [34], the polynomial-

like iterative equation

λ1f(x) + λ2f
2(x) + · · ·+ λnf

n(x) = F (x), x ∈ S, (1.1)

where S is a subset of a linear space over R, F : S → S is a given function, λis

(i = 1, . . . , n) are real constants, f : S → S is the unknown function and f i is the

ith iterate of f , i.e., f i(x) = f(f i−1(x)) and f0(x) = x for all x ∈ S, is one of im-

portant forms of functional equation since the problem of iterative roots and the

problem of invariant curves can be reduced to the kind of equations. For S ⊂ R,
in addition to those works for linear F (see e.g. [6], [7], [16], [17], [18], [24], [30]),
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many results were given to the case of nonlinear F in, for example, [15], [39] for

n = 2, [35] for general n, [14], [36] for smoothness, and [22] for analyticity. Efforts

were also made to the case that S ⊂ RN (N ≥ 2). Radially monotonic solutions

were discussed in RN in [37] by properties of orthogonal groups. The existence of

Lipschitzian solutions were proved in [11] for n = ∞ on a compact convex subset

of RN by applying the Schauder’s fixed point theorem. In 2004, results of [11]

were generalized partly to an arbitrary closed (not necessarily convex) subset of

a Banach space in [25]. In addition, in [23] J. Tabor investigated the difference

equation
∑+∞

k=0 Akxk+n = 0 in a Banach space, where (Ak)k∈N is a sequence of

bounded linear operators, and applied the results to iterative equations. In [19]

equation (1.1) was discussed for linear operator f on an (infinite dimensional)

linear space S and the results were applied to answering the question on annihi-

lating polynomials of linear operators. Along with the deep research of functional

equations, generalization to infinite dimensional cases attracts attentions as in

[3], [20].

Convexity is an important properties of functions and often used in opti-

mization, mathematical programming and game theory. The study of convexity

for iterative equations can be traced to 1968, when Kuczma and Smajdor [10]

investigated the convexity of iterative roots. Some recent results can be found

from [27], [28], [38]. In [38], convex solutions and concave ones of equation (1.1)

were discussed under the normalization condition:
∑n

j=1 λj = 1 on a compact

interval. More concretely, the existence and uniqueness of convex (resp. concave)

solutions with uniform non-positiveness of λ2, . . . , λn and increasing convex (resp.

concave) with uniform non-negativeness of λ2, . . . , λn are proved. Later,as a con-

tinuation of [38], increasing convex (or concave) solutions and decreasing convex

(or concave) solutions of equation (1.1) are investigated in [28], relaxing the nor-

malization condition and the requirement of uniform sign of coefficients. In [27],

nondecreasing convex solutions for equation (1.1) on open intervals are discussed.

Up to now, there are no further results on convexity of solutions for iterative

equations in high dimensional spaces. Actually, in high dimensional spaces there

are much more difficulties on convexity as well as monotonicity.

In this paper we study convexity of solutions for equation (1.1) in Banach

spaces. Unlike the 1-dimensional case (in which there is a natural order), both mo-

notonicity and convexity depend on an appropriate order in infinite-dimensional

cases. We consider a partial order in Banach spaces, which is defined by an order

cone, and give existence of increasing solutions and decreasing solutions in the

ordered real Banach spaces. Then we further give conditions under which those
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solutions are convex or concave. The uniqueness and continuous dependence of

those solutions are also discussed.

2. Convexity in ordered Banach spaces

As indicated in the Introduction, we need a partial order when we discuss

convexity of solutions in Banach spaces. As in [33], a nonempty subset K of

a real vector space X is called a cone if x ∈ K implies that ax ∈ K for all

a > 0. A nonempty and nontrivial (6= {θ}, where θ denotes the zero element of

X) subset K ⊂ X is called an order cone in X if K is a convex cone and satisfies

K ∩ (−K) = {θ}. Having chosen such an order cone K in X, we can define a

partial order x ≤K y in X, simply called the K-order, if

y − x ∈ K.

Sometimes, we write y ≥K x for convenience when x ≤K y. As intuitive examples,

the set {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} is an order cone in R2; in contrast, the set

{(x, y) ∈ R2 : y ≥ 0} is a cone but not an order cone. As indicated in [1, p. 626],

the above defined K-order is linear, i.e., it satisfies

(C1) x ≤K y in X implies x+ z ≤K y + z for all z ∈ X, and

(C2) x ≤K y in X implies αx ≤K αy for all α ∈ [0,+∞).

A real vector space X equipped with a K-order is called an ordered vector space,

abbreviated by OVS and denoted by (X,K). A real Banach space (X, ‖ · ‖)
associated with a K-order is called an ordered real Banach space, abbreviated by

OBS and denoted by (X,K, ‖ · ‖), if K is closed.

Lemma 2.1. Let (X, ‖ · ‖) be an ordered real Banach space with the order

≤K . Then (i) x ≤K y implies −y ≤K −x, and (ii) xn ≤K yn, xn → x and yn → y

imply x ≤K y, where x, xn, y, yn ∈ X.

The results (ii) in Lemma 2.1 can be found from [33, p. 277, Proposition 7.5].

If x ≤K y then y − x ∈ K, implying −x− (−y) ∈ K, i.e., −y ≤K −x. Hence (i)

is proved.

In an ordered real vector space (X,K) one can define increasing (decreasing)

operators and convex (concave) operators as in [1]. An operator f : D ⊂ X → X

is said to be increasing (resp. decreasing) in the sense of the K-order if x ≤K y

implies f(x) ≤K f(y) (resp. f(x) ≥K f(y)). An operator f : D → X, where

D ⊂ X is a convex subset, is said to be convex (resp. concave) in the sense

of the K-order if f(λx + (1 − λ)y) ≤K λf(x) + (1 − λ)f(y) (resp. f(λx + (1 −
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λ)y) ≥K λf(x) + (1 − λ)f(y)) for all λ ∈ [0, 1] and for every pair of distinct

comparable points x, y ∈ D (i.e., either x ≤K y or x ≥k y). When X = R and

K := [0,+∞), an increasing (resp. decreasing) operator in the sense of K-order is

a usual increasing (resp. decreasing) function of single real variable, and a convex

(resp. concave) operator in the sense of K-order is a usual convex (resp. concave)

function of single real variable.

Let Ω be a compact convex subset of an ordered real Banach space (X,K,

‖ · ‖) with nonempty interior and C(Ω, X) consist of all continuous functions

f : Ω → X. C(Ω, X) is a Banach space equipped with the norm ‖f‖C(Ω,X) :=

supx∈Ω ‖f(x)‖. For 0 ≤ m ≤ M < +∞, define

C+(Ω,m,M) := {f ∈ C(Ω, X) : f(Ω) ⊂ Ω,

m(y − x) ≤K f(y)− f(x) ≤K M(y − x) if x ≤K y, and

‖f(y)− f(x)‖ ≤ M‖y − x‖ if x and y are not comparable},
C−(Ω,m,M) := {f ∈ C(Ω, X) : f(Ω) ⊂ Ω,

m(y − x) ≤K f(x)− f(y) ≤K M(y − x) if x ≤K y, and

‖f(y)− f(x)‖ ≤ M‖y − x‖ if x and y are not comparable},
C+

cv(Ω,m,M) := {f ∈ C+(Ω,m,M) : f is convex on Ω in K-order},
C+

cc(Ω,m,M) := {f ∈ C+(Ω,m,M) : f is concave on Ω in K-order},
C−

cv(Ω,m,M) := {f ∈ C−(Ω,m,M) : f is convex on Ω in K-order},
C−

cc(Ω,m,M) := {f ∈ C−(Ω,m,M) : f is concave on Ω in K-order}.

In contrast to the classes of functions considered in, e.g., [28], [38], we need an

additional condition called Lipschitzian without K-order, i.e.,

‖f(y)− f(x)‖ ≤ M‖y − x‖ if x and y are not comparable,

in classes C+(Ω,m,M) and C−(Ω,m,M) because the space X is not ordered

totally by ≤K .

As shown in [1], [33], an order coneK in an ordered real Banach space (X, ‖·‖)
is said to be normal if there exists a constant N > 0 such that ‖x‖ ≤ N‖y‖ if

θ ≤K x ≤K y in X. The smallest constant N , denoted by N(K), is called the

normal constant of K. Actually, every real Banach space X has a normal order

cone K := {αe | α ∈ [ 0,+∞)}, where e 6= θ is chosen arbitrarily in X. One

can verify that K is both an order cone and a closed subset and satisfies that

‖x‖ ≤ ‖y‖ if θ ≤K x ≤K y.
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Lemma 2.2. Let (X,K, ‖ · ‖) be an ordered real Banach space such that K

is normal. Then the above defined C±(Ω,m,M), C+
cv(Ω,m,M) and C+

cc(Ω,m,M)

are compact convex subsets of C(Ω, X).

Proof. We only prove that C+(Ω,m,M) and C+
cv(Ω,m,M) are compact

convex subsets of C(Ω, X). It will be similar for C−(Ω,m,M) and C+
cc(Ω,m,M).

We first consider C+(Ω,m,M). For every f ∈ C+(Ω,m,M) we have

‖f(y)− f(x)‖ ≤ MN(K)‖y − x‖, ∀x, y ∈ Ω, (2.1)

if either x ≤K y or y ≤K x. In fact,

m(y − x) ≤K f(y)− f(x) ≤K M(y − x)

if x ≤K y and a similar inequality holds if y ≤K x. Then (2.1) follows because K

is normal. On the other hand, if x and y are not comparable, i.e., x− y /∈ K and

y − x /∈ K, then by the definition of C+(Ω,m,M)

‖f(y)− f(x)‖ ≤ M‖y − x‖. (2.2)

Summarizing (2.1) and (2.2), we get

‖f(y)− f(x)‖ ≤ M0‖y − x‖, ∀x, y ∈ Ω, (2.3)

where M0 := max{M,MN(K)}. It implies that C+(Ω,m,M) is equicontinuous.

In addition, for each x ∈ Ω the set Ξ := {f(x) : f ∈ C+(Ω,m,M)} is relatively

compact, i.e., its closure is compact, because the fact f(Ω) ⊂ Ω implies that

the set Ξ is a subset of the compact set Ω and therefore sequentially compact. It

concludes by Ascoli’s Theorem (see the Appendix) that C+(Ω,m,M) is relatively

compact.

Furthermore, we prove that C+(Ω,m,M) is a closed subset of C(Ω, X). Let

{fn} ⊂ C+(Ω,m,M) be such a sequence that limn→∞ fn = f in C(Ω, X), i.e.,

lim
n→∞

‖fn(x)− f(x)‖ = 0, ∀x ∈ Ω. (2.4)

By the condition (C1) of the compatibility with the addition, given just before

Lemma 2.1, we have

f(y)− f(x) ≤K f(y)− fn(y) +M(y − x) + fn(x)− f(x),

f(y)− f(x) ≥K f(y)− fn(y) +m(y − x) + fn(x)− f(x)
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for all x ≤K y in Ω. Hence, by (2.4) and (ii) in Lemma 2.1, we see that

m(y − x) ≤K f(y)− f(x) ≤K M(y − x), ∀x ≤K y in Ω.

On the other hand, if x and y are not comparable, i.e., x− y /∈ K and y−x /∈ K,

then

‖f(x)− f(y)‖ ≤ ‖f(x)− fn(x)‖+M‖x− y‖+ ‖fn(y)− f(y)‖.
It follows from (2.4) that ‖f(x)− f(y)‖ ≤ M‖x− y‖. At last, we can prove that

f(Ω) ⊂ Ω because fn(Ω) ⊂ Ω and Ω is a compact set. Thus, we have proved that

C+(Ω,m,M) is a closed set and therefore a compact subset of C(Ω, X).

Finally, we claim the convexity of C+(Ω,m,M). Consider f, g ∈ C+(Ω,m,M)

and λ ∈ [0, 1]. Obviously, the combination h := λf + (1 − λ)g is a continuous

function. The convexity of Ω implies that h(x) = λf(x) + (1 − λ)g(x) ∈ Ω for

each x ∈ Ω. Thus, by the definition of C+(Ω,m,M), if x ≤K y in Ω then

h(y)− h(x) = λ(f(y)− f(x)) + (1− λ)(g(y)− g(x)) ≤K M(y − x),

h(y)− h(x) = λ(f(y)− f(x)) + (1− λ)(g(y)− g(x)) ≥K m(y − x),

where the condition (C2) of the compatibility with the scalar product is emp-

loyed. On the other hand, if x and y are not comparable, i.e., x − y /∈ K and

y − x /∈ K, then

‖h(y)− h(x)‖ ≤ ‖λ(f(y)− f(x))‖+ ‖(1− λ)(g(y)− g(x))‖
≤ λM‖y − x‖+ (1− λ)M‖y − x‖ = M‖y − x‖.

Hence C+(Ω,m,M) is convex. Consequently, we have proved that C+(Ω,m,M)

is a compact convex subset of C(Ω, X).

The proof for C+
cv(Ω,m,M) is almost the same but, in addition, we need to

claim the following:

(V1) If {fn} ⊂ C+
cv(Ω,m,M) is a sequence such that limn→∞ fn = f in C(Ω, X)

then

f(λx+ (1− λ)y) ≤K λf(x) + (1− λ)f(y)

for every pair of distinct comparable points x, y ∈ Ω and λ ∈ [0, 1].

(V2) If f, g ∈ C+
cv(Ω,m,M) then

(tf + (1− t)g)(λx+ (1− λ)y) ≤K λ(tf + (1− t)g)(x)

+ (1− λ)(tf + (1− t)g)(y)

for every pair of distinct comparable points x, y ∈ Ω and t, λ ∈ [0, 1].
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By (ii) in Lemma 2.1, the result (V1) follows the fact that fn(λx+(1−λ)y) ≤K

λfn(x) + (1 − λ)fn(y). Let f, g ∈ C+
cv(Ω,m,M) and h := tf + (1 − t)g, where

t ∈ [0, 1]. Then for every pair of distinct comparable points x, y ∈ Ω, λ ∈ [0, 1],

h(λx+ (1− λ)y) ≤K tλf(x) + t(1− λ)f(y) + (1− t)λg(x) + (1− t)(1− λ)g(y)

= λh(x) + (1− λ)h(y),

i.e., (V2) is proved, where the condition (C1) is employed. The proof is comp-

leted. ¤

3. Increasing and decreasing solutions

Before discussing convexity, we prove the existence of increasing and decrea-

sing solutions of equation (1.1) in the ordered real Banach space (X,K, ‖ · ‖) such
that K is normal. First, we investigate increasing solutions. Consider equation

(1.1) with the following hypotheses:

(H1) λ1 > 0, λi ≤ 0, i = 2, 3, . . . , n, and

(H2) the normalization condition
∑n

i=1 λi = 1.

Theorem 3.1. Suppose that (H1) and (H2) hold and F ∈ C+(Ω, 0,M1),

where M1 ∈ (0,+∞) is a constant. If

M1 ≤ λ1M + λ2M
2 + · · ·+ λnM

n (3.1)

for a constant M ∈ (0,+∞), then equation (1.1) has a solution f ∈ C+(Ω, 0,M).

As shown in many papers (e.g. [11], [14], [27], [28], [38]), the nonlinearity of

iteration causes so great difficulties that the conditions in those obtained results

are very restrictive although many efforts (e.g. [4], [25], [29]) have been made. In

our Theorem 3.1 the condition (3.1) also looks so complicated. We will discuss

on it in the final section.

In order to prove Theorem 3.1, we need the following lemmas.

Lemma 3.1. Let (X,K, ‖ · ‖) be an ordered real Banach space. Then com-

position f ◦g is convex (resp. concave) if both f and g are convex (resp. concave)

and increasing. In particular, for increasing convex (resp. concave) operator f ,

the iterate fk is also convex (resp. concave).
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Lemma 3.2. Let (X,K, ‖ · ‖) be an ordered real Banach space such that

K is normal and let f, g ∈ C+(Ω,m,M) (resp. C−(Ω,m,M), C+
cv(Ω,m,M) and

C+
cc(Ω,m,M)), where 0 ≤ m ≤ M ≤ +∞. Then

‖fk − gk‖C(Ω,X) ≤
k−1∑

j=0

M j
0‖f − g‖C(Ω,X), ∀k = 1, 2, . . . .

The above lemmas are the same as Lemmas 2 and 3 given in [38] but the

concepts “increasing”, “decreasing”, “convex” and “concave” are set up on the

K-order. Noting (2.3), we can prove them similarly.

Lemma 3.3. Let (X,K, ‖ · ‖) be an ordered real Banach space and let

f ∈ C−(Ω,m,M), where 0 ≤ m ≤ M < +∞. Then

−M2n−1(y − x) ≤K f2n−1(y)− f2n−1(x) ≤K −m2n−1(y − x),

n = 1, 2, . . . , (3.2)

and

m2n(y − x) ≤K f2n(y)− f2n(x) ≤K M2n(y − x), n = 1, 2, . . . , (3.3)

for all x ≤K y in Ω.

Proof. By the definition of C−(Ω,m,M), for f ∈ C−(Ω,m,M) we see that

−M(y − x) ≤K f(y)− f(x) ≤K −m(y − x), ∀x, y ∈ Ω, (3.4)

if x ≤K y. It further implies that

m2(y − x) ≤K f2(y)− f2(x) ≤K M2(y − x), ∀x, y ∈ Ω, (3.5)

if x ≤K y. In order to prove (3.3), assume that

m2k(y − x) ≤K f2k(y)− f2k(x) ≤K M2k(y − x)

for some positive integer k, if x ≤K y. It implies that

f2k+2(y)− f2k+2(x) = f2(f2k(y))− f2(f2k(x)) ≤K M2(f2k(y)− f2k(x))

≤K M2M2k(y − x) = M2k+2(y − x)

and

f2k+2(y)− f2k+2(x) = f2(f2k(y))− f2(f2k(x)) ≥K m2(f2k(y)− f2k(x))

≥K m2m2k(y − x) = m2k+2(y − x).

Therefore inequality (3.3) is proved by induction. The proof of inequality (3.2)

can be given similarly. ¤
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Proof of Theorem 3.1. Under the hypotheses (H1) and (H2), we can

rewrite equation (1.1) as

f(x) =
1

λ1
F (x)− λ2

λ1
f2(x)− · · · − λn

λ1
fn(x), x ∈ Ω, (3.6)

where
1

λ1
−

n∑

i=2

λi

λ1
= 1. (3.7)

Define a mapping L : C+(Ω, 0,M) → C(Ω, X) by

Lf(x) =
1

λ1
F (x)− λ2

λ1
f2(x)− · · · − λn

λ1
fn(x). (3.8)

We first claim that L is a self-mapping on C+(Ω, 0,M). Obviously Lf(x) ∈
C(Ω, X) and Lf(Ω) ⊂ Ω because of the convexity of Ω. Further, when x, y ∈ Ω

are not comparable, i.e., x−y /∈ K and y−x /∈ K, by the definition of C+(Ω, 0,M)

we have

‖Lf(x)− Lf(y)‖

=

∥∥∥∥
1

λ1
(F (x)− F (y))− λ2

λ1
(f2(x)− f2(y))− · · · − λn

λ1
(fn(x)− fn(y))

∥∥∥∥

≤
∥∥∥∥
1

λ1
(F (x)− F (y))

∥∥∥∥+

∥∥∥∥−
λ2

λ1
(f2(x)− f2(y))

∥∥∥∥+ · · ·+
∥∥∥∥−

λn

λ1
(fn(x)− fn(y))

∥∥∥∥

≤
(

1

λ1
M1 − λ2

λ1
M2 − · · · − λn

λ1
Mn

)
‖x− y‖,

which implies that

‖Lf(x)− Lf(y)‖ ≤ M‖x− y‖ (3.9)

because of inequality (3.1). When x, y ∈ Ω are comparable, suppose that x ≤K y.

By the definition of C+(Ω, 0,M),

θ ≤K Lf(y)− Lf(x)

=
1

λ1
(F (y)− F (x))− λ2

λ1
(f2(y)− f2(x))− · · · − λn

λ1
(fn(y)− fn(x))

≤K
1

λ1
M1(y − x)− λ2

λ1
M2(y − x)− · · · − λn

λ1
Mn(y − x)

≤K

(
1

λ1
M1 − λ2

λ1
M2 − · · · − λn

λ1
Mn

)
(y − x),
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which implies that

θ ≤K Lf(y)− Lf(x) ≤K M(y − x) (3.10)

because of inequality (3.1). Thus, (3.9) and (3.10) imply that L is a self-mapping

on C+(Ω, 0,M).

Next, we prove the continuity of L. In fact, for any f, g ∈ C+(Ω, 0,M), by

Lemma 3.2 we have

‖Lf − Lg‖C(Ω,X) = sup
x∈Ω

∥∥∥∥−
λ2

λ1
(f2(x)− g2(x))− · · · − λn

λ1
(fn(x)− gn(x))

∥∥∥∥

≤ sup
x∈Ω

∥∥∥∥−
λ2

λ1
(f2(x)− g2(x))

∥∥∥∥+ · · ·+ sup
x∈Ω

∥∥∥∥−
λn

λ1
(fn(x)− gn(x))

∥∥∥∥

= −λ2

λ1
‖f2 − g2‖C(Ω,X) − · · · − λn

λ1
‖fn − gn‖C(Ω,X)

≤ M+‖f − g‖C(Ω,X), (3.11)

where M+ :=
∑n

k=2

( − λk/λ1

)∑k−1
j=0 M

j
0 > 0. As Lemma 2.2 guarantees that

C+(Ω, 0,M) is a compact convex subset, by Schauder’s fixed point theorem we

see that L has a fixed point f ∈ C+(Ω, 0,M). Thus f is an increasing solution of

the equation. The proof is completed. ¤

The following is devoted to decreasing solutions.

Theorem 3.2. Suppose that (H1) and (H2) hold and all coefficients of

even order iterates in equation (1.1) are equal to 0. Let F ∈ C−(Ω, 0,M1),

where M1 ∈ (0,+∞) is a constant. If the condition (3.1) holds for a constant

M ∈ (0,+∞), then equation (1.1) has a solution f ∈ C−(Ω, 0,M).

The proof is almost the same as the proof of Theorem 3.1, but a little bit

more complicated because of the change of monotonicity. In its proof we note

that the function Lf defined in (3.8) is also decreasing because all coefficients of

even order iterates in equation (1.1) are equal to 0. Moreover, in order to prove

the mapping (3.8) to be a self-mapping on C−(Ω, 0,M), we also need a deduction

for an inequality like (3.10). For this purpose we will use Lemma 3.3.

4. Convex and concave solutions

On the basis of last section we can discuss on convexity of continuous so-

lutions for equation (1.1) in the ordered real Banach space (X,K, ‖ · ‖) with a

normal cone K.
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Theorem 4.1. Suppose that (H1) and (H2) hold and F ∈ C+
cv(Ω, 0,M1),

where M1 ∈ (0,+∞) is a constant. If

M1 ≤ λ1M + λ2M
2 + · · ·+ λnM

n (4.1)

for a constant M ∈ (0,+∞), then equation (1.1) has a continuous solution f ∈
C+

cv(Ω, 0,M).

Proof. Define a mapping L : C+
cv(Ω, 0,M) → C(Ω, X) as in Theorem 3.1.

In order to prove that L is a self-mapping on C+
cv(Ω, 0,M), it suffices to prove the

following inequality

Lf(tx+ (1− t)y) ≤K tLf(x) + (1− t)Lf(y), ∀t ∈ [0, 1], (4.2)

for every pair of distinct comparable points x, y ∈ Ω. In fact, each fk, k = 2,

. . . , n, is convex in the sense of K-order because f is increasing and convex by

Lemma 3.1. Hence,

Lf(tx+ (1− t)y)

=
1

λ1
F (tx+ (1− t)y)− λ2

λ1
f2(tx+ (1− t)y)− · · · − λn

λ1
fn(tx+ (1− t)y)

≤K
1

λ1
{tF (x) + (1− t)F (y)} − λ2

λ1
{tf2(x) + (1− t)f2(y)}

− · · · − λn

λ1
{tfn(x) + (1− t)fn(y)}

= t

{
1

λ1
F (x)− λ2

λ1
f2(x)− · · · − λn

λ1
fn(x)

}

+ (1− t)

{
1

λ1
F (y)− λ2

λ1
f2(y)− · · · − λn

λ1
fn(y)

}
= tLf(x) + (1− t)Lf(y),

implying (4.2). The continuity of L was proved in the proof of Theorem 3.1.

Lemma 2.2 guarantees that C+
cv(Ω, 0,M) is a compact convex subset. Therefore,

this proof can be completed by using Schauder’s fixed point theorem. ¤

Similarly, we can prove the following result for concavity of solutions.

Theorem 4.2. Suppose that (H1) and (H2) hold and F ∈ C+
cc(Ω, 0,M1),

where M1 ∈ (0,+∞) is a constant. If

M1 ≤ λ1M + λ2M
2 + · · ·+ λnM

n (4.3)

for a constant M ∈ (0,+∞), then equation (1.1) has a continuous solution f ∈
C+

cc(Ω, 0,M).
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Example 4.1. Consider the equation

6

5
f(x1, x2)− 1

5
f2(x1, x2) =

(
1

2
x1,

1

2
x2
2

)
, ∀(x1, x2) ∈ Ω, (4.4)

where Ω := {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1, x2 ≥ 0}. Clearly, equation (4.4) is

of the form (1.1), where F (x1, x2) :=
(
1
2x1,

1
2x

2
2

)
, λ1 = 6/5 and λ2 = −1/5. Ω

is a compact convex subset of the ordered real Banach space (X,K, ‖ · ‖), where
X = R2, ‖x‖ = (x2

1+x2
2)

1/2 and K := {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0} is a normal

order cone. One can check that (H1) and (H2) are satisfied. We further claim

that F (x) ∈ C+
cv(Ω, 0, 1). In fact,

‖F (y)− F (x)‖ ≤
√

1

4
(y1 − x1)2 + (y2 − x2)2 ≤ ‖y − x‖, ∀x, y ∈ Ω, (4.5)

implying that F (x) ∈ C(Ω, X), and
(
1

2
x1

)2

+

(
1

2
x2
2

)2

=
1

4
x2
1 +

1

4
x4
2 ≤ 1, ∀x ∈ Ω,

because x2
1 + x2

2 ≤ 1 and 1
2x

2
2 ≥ 0, implying that F (Ω) ⊂ Ω. Note that x ≤K y if

and only if y1−x1 ≥ 0 and y2−x2 ≥ 0. Thus, when x, y ∈ Ω are not comparable

(i.e., y − x /∈ K and x − y /∈ K), we have (4.5); when x, y ∈ Ω are comparable,

we calculate

F (y)− F (x) =

(
1

2
(y1 − x1),

1

2
(y2 − x2)(y2 + x2)

)
, ∀x, y ∈ Ω,

implying that

θ ≤K F (y)− F (x) ≤K (y − x)

if x ≤K y because 0 ≤ x2 ≤ y2 ≤ 1. We can also check

F (λx+ (1− λ)y) =

(
1

2
(λx1 + (1− λ)y1),

1

2
(λx2 + (1− λ)y2)

2

)

≤K

(
1

2
λx1 +

1

2
(1− λ)y1,

1

2
(λx2

2 + (1− λ)y22)

)

= λF (x) + (1− λ)F (y)

for all λ ∈ [0, 1] and every pair of distinct comparable points x, y ∈ Ω, implying

that F (x) is convex in K-order on Ω. Thus the claim is proved. Since

−1

5
M2 +

6

5
M − 1 = −1

5
(M − 3)2 +

4

5
≥ 0

for all M ∈ [1, 5], i.e., inequality (4.1) holds for any M ∈ [1, 5], by Theorem 4.1

we see that equation 4.4 has a convex solution f ∈ C+
cv(Ω, 0,M).
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Opposite to the above example, let us consider an example in the infinite-

dimensional setting.

Example 4.2. Let X = C([0, 1],R) equipped with the norm ‖x‖ = sup
t∈[0,1]

|x(t)|
for x ∈ X. Let Ω := {x ∈ C([0, 1], [0, 1]) : |x(t1)−x(t2)| ≤ |t1−t2|, t1, t2 ∈ [0, 1]},
a subset of X. Then, the equation

9

8
f(x(t))− 1

8
f2(x(t)) = sinx(t), ∀x ∈ Ω, (4.6)

is an iterative equation of the form (1.1) in the infinite-dimensional setting, where

λ1 = 9/8, λ2 = −1/8 and F (x) := sinx. Note that K := R[0,1]
+ := {x ∈

C([0, 1], R) | x(t) ≥ 0} is a normal order cone in X. Then, Ω is a compact

convex subset of the ordered real Banach space (X,K, ‖ · ‖). Clearly, (H1) and

(H2) are satisfied. Note that F ∈ C(Ω, X) because

‖F (y)− F (x)‖ = sup
t∈[0,1]

| sin y(t)− sinx(t)| ≤ ‖y − x‖, ∀x, y ∈ Ω. (4.7)

Moreover, F (Ω) ⊂ Ω because | sinx(t1)−sinx(t2)| ≤ |x(t1)−x(t2)|. Furthermore,

when x, y ∈ Ω are comparable, we have

0 ≤K F (y)− F (x) ≤K (y − x) if x ≤K y;

otherwise, (4.7) remains valid. This implies that F ∈ C+(Ω, 0, 1). For every

λ ∈ [0, 1] and every pair of distinct comparable points x, y ∈ Ω, we can also check

that

F (λx+ (1− λ)y) ≥K λF (x) + (1− λ)F (y)

implying that F ∈ C+
cc(Ω, 0, 1). In this case

−1

8
M2 +

9

8
M − 1 = −1

8

(
M − 9

2

)2

+
49

32
≥ 0

for all M ∈ [1, 8], i.e., inequality (4.3) holds for any M ∈ [1, 8]. By Theorem 4.2,

equation (4.6) has a concave solution f ∈ C+
cc(Ω, 0, 1).

5. Some remarks

As mentioned just after the statement of Theorem 3.1, the condition (3.1)

is complicated but demanded in all of our theorems. It leads to an interesting

question: Given a constant M1 > 0, does the polynomial

p(x) := λnx
n + · · ·+ λ2x

2 + λ1x−M1 (5.1)
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have a positive root under the hypotheses (H1) and (H2)?There have been given

many methods ([5], [12], [21], [31], [32]) to determine the existence of positive

roots for polynomials. The Descartes’ Rule of Signs (see [5] or [8, Theorem 2])

indicates that for any nonzero real polynomial the number of coefficient sign

variations exceeds the number of positive real roots—counting multiplicities—by

a non-negative even integer. In our case the number of coefficient sign variations

of the polynomial p defined in (5.1) is 2. The Descartes’ Rule of Signs cannot

give a definite answer. The criterion given in [12, Theorem 1] requires that all

coefficients are positive but our p is not the case. In [21] all roots are required to be

real. In addition, Sturm’s sequence ([32]) can also be employed for this purpose.

Another method is to use the discriminants ([31]) to determine the number of real

roots of a polynomial which is modified from p by replacing x with x2. However,

both of them are not efficient for general n and symbolic/literal coefficients.

Concerning the existence of positive roots, let us investigate p on (0,+∞).

Since p(0) = −M1 < 0 and p(x) → −∞ as x → +∞, a necessary and sufficient

condition for the existence of positive roots is that the maximum of p is greater

than or equal to 0. Note that p′′(x) = n(n− 1)λnx
n−2 + · · ·+ 2λ2 < 0, implying

that the derivative p′(x) = nλnx
n−1 + · · · + 2λ2x + λ1 has a unique zero ζ. It

is equivalent to say that p has a positive zero if and only if p(ζ) ≥ 0. Numerical

computation will be helpful to finding the values of ζ and p(ζ).

Without giving concrete values of coefficients of p, it is hard to obtain an

approximation of ζ and p(ζ). However, we know that

(−nλn − · · · − 2λ2)x− λ1 ≤ −p′(x) ≤ (−nλn − · · · − 2λ2)x
n−1 − λ1

for all x ≥ 1 and

(−nλn − · · · − 2λ2)x
n−1 − λ1 ≤ −p′(x) ≤ (−nλn − · · · − 2λ2)x− λ1

for all 0 < x < 1.

It follows that ζ lies between Γ(λ1, . . . , λn) := λ1

−nλn−(n−1)λn−1−···−2λ2
and its

(n − 1)-th root. Their geometric mean Γ̃(λ1, . . . , λn) := Γ(λ1, . . . , λn)
n

2(n−1) is

closer to ζ and can be considered as a rough but simple approximation of ζ.

Clearly, p(Γ̃(λ1, . . . , λn)) ≤ p(ζ). This concludes the following sufficient condition.

Proposition 5.1. Under the hypotheses (H1) and (H2), the polynomial p

defined in (5.1) has a positive root if p(Γ̃(λ1, . . . , λn)) ≥ 0.

The condition obtained in Proposition 5.1 can be demonstrated by Exam-

ple 4.1 because Γ̃(λ1, λ2) = λ1/(−2λ2) = 3 and λ1Γ̃(λ1, λ2) + λ2Γ̃(λ1, λ2)
2 :=

9/5 > M1 := 1.
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Another remark is that the uniqueness and continuous dependence for solu-

tions with monotonicity and convexity in the sense of K-order can be given by

using the same arguments as in [28], [38]. We only show the results but omit their

proofs.

Proposition 5.2. Suppose that (H1) and (H2) hold and F ∈ C+(Ω, 0,M1)

(resp. C+
cv(Ω, 0,M1) and C+

cc(Ω, 0,M1)), where M1 ∈ (0,+∞) is a constant. If in

addition to (3.1) the following inequality

λ1 +

n∑

k=2

λk

k−1∑

j=0

M j
0 > 0 (5.2)

also holds for a constant M ∈ (0,+∞), where M0 = max{M,N(K)M}, then
equation (1.1) has a unique solution f ∈ C+(Ω, 0,M) (resp. C+

cv(Ω, 0,M) and

C+
cc(Ω, 0,M)). Moreover, the solution depends upon F continuously, i.e.,

‖f1 − f2‖C(Ω,X) ≤ ‖F1 − F2‖C(Ω,X)/

(
λ1 +

n∑

k=2

λk

k−1∑

j=0

M j
0

)

if f1, f2 are the solutions of equation (1.1) with respect to the given functions F1,

F2 respectively.

Proposition 5.3. Suppose that (H1) and (H2) hold and all coefficients

of even order iterates in equation (1.1) are equal to 0. Let F ∈ C−(Ω, 0,M1),

where M1 ∈ (0,+∞) is a constant. If (3.1) and (5.2) hold, then equation (1.1)

has a unique solution f ∈ C−(Ω, 0,M). Moreover, the solution depends upon F

continuously.

We remark on difficulties encountered in some cases. First, without requiring

λi ≤ 0 for all i = 2, . . . , n, we hardly give the existence of increasing (resp.

decreasing) solutions because we cannot prove that the mapping defined in (3.8)

is a self-mapping, i.e., Lf(Ω) ⊂ Ω. On the other hand, we do not consider the

mapping T in the same form T f := L−1
f ◦ F as in [28] because of difficulties in

discussing monotonicity of the function T f(x) in infinite-dimensional spaces. In

contrast to [28], we did not discuss decreasing convex (resp. concave) solutions

for equation (1.1) because in the infinite-dimensional setting no arguments of

“divided difference” are known for us to discuss the convexity of the composition

of two decreasing convex (resp. concave) operators and the convexity of the

linear combination of iterates of decreasing convex (resp. concave) operators.

Besides, the existence of decreasing (resp. increasing) solutions for given F ∈
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C+(Ω, 0,M1) (resp. C−(Ω, 0,M1)) and the existence of increasing convex (resp.

concave) solution for given F ∈ C+
cc(Ω, 0,M1) (resp. C

+
cv(Ω, 0,M1)) are not given

yet for equation (1.1) because of difficulties for the mapping defined in (3.8) to

be a self-mapping. Those cases will be subjects of our next work.

As indicated in the Introduction, a Banach space does not have such a natural

order as R has, but monotonicity and convexity of functions require an order.

Therefore, in this paper we need to consider an order in the Banach space. The

order considered in section 2 is the so-called linear order, which is compatible with

the linear operations as shown in (C1) and (C2). Indicated in [1], for every vector

space there is a one-to-one correspondence between the family of linear orders and

the family of order cones. Therefore, the structure of order is decided by the order

cone. The natural order in R can be defined by the cone R+ := {x ∈ R : x ≥ 0}.
The natural order in R2 can be defined by the cone R+ ×R+. The natural order

in C(X,R) is defined by K := {f ∈ C(X,R) : f(x) ≥ 0, ∀x ∈ X}. Clearly, those
spaces can be ordered by another cones, for example, R− := {x ∈ R : x ≤ 0} for

the one-dimensional R and {(x1, x2) : x1 ≤ 0, x2 ≥ 0} for the two-dimensional R2.

Different cones define different orders. Different orders define different concepts

of monotonicity and convexity. In R a convex function in the sense of the cone R−
is a concave function in the sense of the cone R+. Therefore, our results depend

on the choice of the order cone seriously.

Appendix: Ascoli’s Theorem

Ascoli’s Theorem ([13, Theorem 3.1, p. 55]). Let X be a compact subset

of a metric space, and let F be a Banach space. Let Φ be a subset of the space

of continuous maps C(X,F ) with sup norm. Then Φ is relatively compact in

C(X,F ) if and only if the following two conditions are satisfied:

(ASC1) Φ is equicontinuous.

(ASC2) For each x ∈ X, the set Φ(x) consisting of all values f(x) for f ∈ Φ is

relatively compact.
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Acad. Pol. Sci. Sèr. Sci. Math. Astron. Phys. 16 (1968), 717–720.

[11] M. Kulczycki and J. Tabor, Iterative functional equations in the class of Lipschitz func-
tions, Aequationes Math. 64 (2002), 24–33.

[12] D. C. Kurtz, A sufficient condition for all the roots of a polynomial to be real, Amer.
Math. Monthly 99 (1992), 259–263.

[13] S. Lang, Real Analysis, (second edition), Addison-Wesley, New York, 1983.

[14] J. Mai and X. Liu, Existence, uniqueness and stability of Cm solutions of iterative func-
tional equations, Sci. China Ser. A 43 (2000), 897–913.

[15] M. Malenica, On the solutions of the functional equation φ(x) + φ2(x) = F (x), Mat.
Vesnik. 6 (1982), 301–305.

[16] J. Matkowski and W. Zhang, On linear dependence of iterates, J. Appl. Anal. 6 (2000),
149–157.

[17] A. Mukherjea and J. S. Ratti, On a functional equation involving iterates of a bijection
on the unit interval, Nonlinear Anal. 7 (1983), 899–908.

[18] A. Mukherjea and J. S. Ratti, On a functional equation involving iterates of a bijection
on the unit interval II, Nonlinear Anal. 31 (1998), 459–464.

[19] C. T. Ng and W. Zhang, An algebraic equation for linear operators, Linear Algebra Appl.
412 (2006), 303–325.

[20] M. Sablik, Differentiable solutions of functional equations in Banach spaces, Ann. Math.
Sil. 7 (1993), 17–55.

[21] B. I. Sauber, When a polynomial has exactly one positive root and no roots in (0, 1),
Linear Algebra Appl. 128 (1990), 107–115.

[22] J. Si, Existence of locally analytic solutions of the iterated equation
∑n

i=1 λif
i(x) = F (x),

Acta Math. Sinica. 37 (1994), 590–600 (in Chinese).

[23] J. Tabor, Difference and iterative equations, Funct. Diff. Equ. 11 (2004), 185–193.

[24] J. Tabor and J. Tabor, On a linear iterative equation, Results Math. 27 (1995), 412–421.



358 X. Gong and W. Zhang : Convex solutions of the polynomial-like iterative. . .
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