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Some convergence theorems for the g-integral

By MINGJIN WANG (Changzhou)

Abstract. First, we use Ramanujan’s 191 summation formula to obtain an inequ-
ality for the bilateral basic hypergeometric series ,4+1%r+1. Then, we give some conver-
gence theorems for the g-integral.

1. Introduction

Convergence is an important problem in the study of g-series. There are
some papers in the literature [7], [8], [9], [10]. For example, ITO used inequality
technique to give a sufficient condition for convergence of a special g-series called
Jackson integral [7]. In this paper, we gave some convergence theorems for the
g-integral. We first recall some definitions, notation and known results in [1]
which will be used in this paper. Throughout the whole paper, it is supposed
that 0 < g < 1. The g¢-shifted factorials are defined as

@ao=1, (@a=[[(1-ad"), (@0w=][0-as").  (11)
k=0 k=0

We also adopt the following compact notation for multiple g-shifted factorials:

(ala az,...,0am; Q)n = (a1§ Q)n(a2; Q)n s (am§ Q)na (12)
where n is an integer or co. We may extend the definition (1.1) of (a;q), to
(45 @)oo

(@;59)a = ( (1.3)

aq®;qQ)oo’
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for any complex number «. In particular,

u _ @ 1 (=g/a)"
(@5 @) (@0 " 0o (ag "5 q)n (@G )n (L4)

The bilateral basic hypergeometric series .1, is defined by

alaaQa"'aaT.
Tws(bl,bg,...,bs’q’z)
= (a1,a ar;q) (z)
_ 1,02, ..,0r;q)n (s—=r)n, (s—7r)(5) n
= -1 2 . (1.5
Z (b17b27~"7b5;q)n( ) 7 ‘ ( )

n=—oo

The following is the well known Ramanujan’s 171 summation formula

Z (a;Q)n n __ <Q7b/a7az>Q/az;q)oo

T , [b/al <[z < 1. 1.6
(b;q)n (b’q/a’z7b/az;Q)oo |/ | | l ( )

2. An inequality for the bilateral basic hypergeometric series

Inequality technique is one of the useful tools in the study of special functions
[2], [3], [4], [8], [9], [10]. In this section, we use Ramanujan’s 1¢); summation for-
mula to derive an inequality for the bilateral basic hypergeometric series ,41941,
which can be used to discuss the convergence of the g-series. The main result of
this section is the following inequality.

Theorem 2.1. Let a, b be any real numbers such that ¢ < b < a <1
ora < b <0, and let a;, b; be any real numbers such that |a;| > ¢, |b;| < 1
for i = 1,2,...,r with r > 1 and |biba...b.| < |ajaz...a.|. Then for any
b/a < |z| <1, we have

Ay Ayy...,0p (q,b/a,a|z|aq/a’|z|;q)oo
r r 5 q, < M s 2.1
1041 <b,b1,...,bT q Z) ‘ (.0/a. 2], b/al2]: 9)m (2.1)

where
s

e = (—lail; @)oo —q/1bil; ¢)
M =ma {H (il 0)oc =11 }

o (@/lailig)oo

PRrROOF. Let n > 0. Since,

|(aj5q I—H\l—agq|<H (1 +lajlg") = (<lajli)n < (=lajl )
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and
n—1 -
Qnl =[] 11 —0,q' > IIl—MM = (1bjl:@)n = (1bj;@)oc > 0
=0 =0
we have ( ) (—lail: )
aj5q)n —1aj]549)
< . 2.2
(i3 @)n |~ (Ibj: D)oo &
Hence,
(alaa%"'va?“;q)n i (_|al|7q)oo
< — 2.3
(1 ba - bria)s (il ) 23
On the other hand, using (1.4) and (2.2) gives
(aﬁ q)*n _ (Q)n (Q/bi;Q)n < ﬁ (_Q/|bi|§ Q)oo. (24)
(bi1q)—n a;’ (q/ai;@)n| = lai|l  (q/lail; @)oo
Consequently,
(av,az,..-,ariq)—n| _ | biba... by |" 77 (—a/Ibil: @)
(01,02, b5 q)—n | ~ |araz...ar| 27 (a/lail; @)oo
_Zlqﬂ%w

Combining (2.3) and (2.5) gives

(017027~~~7ar§(1)n |az| q e} - q/|b ‘ q
< M = max , , (2.6
(01,02, brsq)n | H(Iblq 11 (a/lail; @)oo (26)
where n =---—2,—-1,0,1,2,....
Under the condition ¢ < b < a <1ora<b<0, it is easy to know
(@an o 9 1012, (2.7)
(030)n
and
0<b/a<l. (2.8)

Using (2.6), (2.7), (2.8), and Ramanujan’s 171 summation formula (1.6), we
have

" (a,al,...,ahqz)‘_
r+1%r41 i) -
b,bi,...,b,

i (a7a17~-' aaT;Q)nzn
(b,blv"'abT;Q)n

n=—oo
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o0 o0 n
< Z (a7a17~-~aa7';Q)n n| _ Z {(a§Q)7L|Z| ) (ala---var;q>n }
o ne—oo (bablv"'ab’r;q)’n ne—oo (bvq)n (b17"‘7b7“;q)n
o0
(a;9)n (¢,b/a,alz|,q/alz]; )
<M 2" =M , 2.9
SM Y G =M ga e bal T ) 29)

where b/a < |z| < 1. Therefor inequality (2.1) holds. Thus, we complete the
proof. ([

3. Some convergence theorems for the g-integral

F. H. JACKSON defined the g-integral by [6]

d [e%s)
/0 f)dgt = d(1 - q) S F(da™)a", (3.1)
n=0

and
d d c
s [ s [ s (3:2)

In this section, we use the inequality (2.1) to give some sufficient conditions
for convergence of the g-integral. First, we give the following lemma:

Lemma 3.1. Let a;, b; be any real numbers such that |a;| > ¢, |b;| < 1 for
i=1,2,...,r withr > 1 and |bibs...b.| < |ajas...a,|, let {u,} and {v,} be any
convergence real number series such that ¢ < v, < u, < 1 or u, < v, <0 and let
{en} and {d,,} be any convergence real number series such that v, /u, < |d,| < 1.
If
Cn+1

Cn

=p<l,

n— oo

then the g-series

s Upy ALy -y Ap
Z Cn r+1¢7’+1 < ! b 7Q7dn) (33)

el Un, bl7 N
converges absolutely.

PROOF. Letting a = u,, b = v, and z = d, in (2.1) gives

Up, A1y .-y Qp (Q7 Un/unaun|dn|yQ/Un‘dnh Q)oc
r1Ur 1q,dp | | <M . 3.4
+1w i (vn:b17~~~7br 1 ) ’ ('Unv(I/una|dn|7vn/un|dn‘;q)oo ( )
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Multiplying both sides of (3.4) by |c,| gets

Un, A1, .-, Gr
Cn r41¥ri1 ( b b 3¢, dn
Un,01,...,0p

(@, Un/Un, Uun|dnl, ¢/Un|dn|; @)oo

<len|M . (3.5
| n| (Unv(I/una|dn|avn/un|dn‘QQ)oo ( )
Let
e, = |Cn|M<Q7 Un/un»unldn‘,Q/un‘dn!§Q)oo.
(vnv(I/una|dn|avn/un|dn‘aQ)oo
Since
lim &L = i |9 = p <1,
n—oo €, n—oo| ¢,

the ratio test shows that the series
o0
D en
n=0
is convergent. From (3.5), it is sufficient to establish that the g-series (3.3) is

absolutely convergent. |

Using Lemma 3.1, we can easily get some convergence theorems for the ¢-
integral.

Theorem 3.2. Let a, b be any real numbers such that ¢ < b < a < 1
ora < b < 0, let a;, b; be any real numbers such that |a;| > ¢, |b;| < 1 for
i=1,2,...,7 withr > 1 and |b1bs...b.| < |araz...a,|. Then for any 0 < d < 1
and o > —1, the g-integral

/Od £ 1t <Zzllzqz) dyt (3.6)
converges absolutely. Where z = b/a + (1 — b/a)t.
PRrROOF. It is easy to see that
b/a<b/a+ (1-0b/a)dg" <1, n=0,1,....

By the definition of g-integral (3.1), we get
d
a,ai,...,0
[ T T 34, dqt
/o +1¢+1<b,b1,...,br qz) q

_ Jltaq S n(l+a) a,ag,...,0ar - n
=d (1 Q)Zq r+1¢r+1(b7b17“_,br,q7b/a+(1 b/a)dq). (3.7)

n=0
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Using Lemma 3.1 with u,, = a, v, = b, ¢, = ¢+ d,, = b/a+ (1 — b/a)dq",

and noticing
q(n+1)(1+a)

i — (1+a)
nh~>nc10 qn(1+a) =4 < 1’

we know the g-integral (3.6) converges absolutely. O
By the definition of ¢-integral (3.2), we immediately get

Corollary 3.3. Let a, b be any real numbers such that ¢ < b < a < 1
ora < b < 0, let a;, b; be any real numbers such that |a;| > ¢, |b;| < 1 for
i=1,2,...,r withr > 1 and |biby...b:| < l|ajas...a,|. Then for any0 < ¢,d <1
and o > —1, the g-integral

d
a,ai,...,ar
/ £ 1 <b bll b ;q,z) dqt (3.8)
converges absolutely. Where z = b/a + (1 — b/a)t.

Theorem 3.4. Let a, b and ¢ be any real numbers such that a < 0, b < 0,
b/a < ¢ < 1, let a;, b; be any real numbers such that |a;| > ¢, |b;| < 1 for
1=1,2,...,7 withr > 1 and |b1bs...b,.| < |araz...a,|. Then for any 0 < d < 1
and o > —1, the g-integral

d
@ a,a1,...,0y¢
. 3 q, d 3.9
/0 z r+1¢r+1 (bz,bl,...7b,« q CZ) q? ( )
converges absolutely.

PROOF. By the definition of ¢-integral (3.1), we get

d
a,a1y...,0p
(e} b b b
2% 1Yt ( ;q,cz) dgz
/0 bz, by, ... b,

_ d1+0¢ 1— TL(1+04)T - a,ar, ..., ar : d n . 310
( Q);q +1%r41 bdq”,bl,...,b,«’q’cq ( )

Using Lemma 3.1 with u,, = a, v, = bdq", ¢, = q" and d,, = c¢dq™ and noticing
a < bdg" <0, bdg"/a < cdg"™ < 1,

we get the g-integral (3.9) converges absolutely. |

By the definition of g-integral (3.2), we immediately get
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Corollary 3.5. Let a, b and ¢ be any real numbers such that a < 0, b < 0,
b/a < ¢ < 1, let a;, b; be any real numbers such that |a;| > ¢, |b;| < 1 for
i=1,2,...,r withr > 1and |biby...b;| < l|ajas...a,|. Then forany 0 < d,e <1
and o > —1, the g-integral

d
Ay A1y .y Oy
2% 1t 1< ;q,cz)dz 3.11
/e T bz by, by a (3.11)
converges absolutely.

Theorem 3.6. Let a, b and ¢ be any real numbers such that a < 0, b < 0,
b/a < ¢ < 1, let a;, b; be any real numbers such that |a;| > ¢, |b;] < 1 for
1=1,2,...;r withr > 1 and |b1by...b.| <|araz...a,|. Then for a > —1, <0
and 1 < d < 1/c, the g-integral

d B
o az’,ay, ..., a
. 3 q, d 3.12
/(; : " 1¢T 1( bZ,bl,...,bT qCZ> a* ( )
converges absolutely.

PROOF. By the definition of g-integral (3.1), we get

d
/ e w (aZﬁ’al,'."aT'qcz)dz
Cr4+1%r+1 q
0 bz,by,...,by 7

o0
dg™®,a1,...,a
— (1 — n+e) GHL B8O edgn ) (313
( q);q T+1¢7"+1 bdqn,bl,...,br ;4 caq ( )

Using Lemma 3.1 with u,, = adq™®, v, = bdq", ¢,, = ¢"'T%) and d,, = cdg" and
noticing
ag™ < bg" < 0, bq"(l_’g)/a <edq™ <1,

we have the g-integral (3.12) converges absolutely. O

Corollary 3.7. Let a, b and ¢ be any real numbers such that a < 0, b < 0,
b/a < ¢ < 1, let a;, b; be any real numbers such that |a;| > ¢, |b;| < 1 for
i=1,2,...,r withr > 1 and |bybs...b.| <|ajaz...a|. Then fora > —1, <0
and 1 <d, e < 1/c, the g-integral

d B
azfay, ..., a,
/ 2% rp1r ( be bll b "iq, cz) dgz (3.14)

converges absolutely.
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