Distribution functions of ratio sequences, III
 By VLADIMÍR BALÁŽ (Bratislava), LADISLAV MIŠÍK (Ostrava), OTO STRAUCH (Bratislava) and JÁNOS T. TÓTH (Komárno)

Dedicated to Professor Kálmán Györy on the occasion of his 70th birthday

Abstract

In this paper we study the distribution functions $g(x)$ of the sequence of blocks $X_{n}=\left(\frac{x_{1}}{x_{n}}, \frac{x_{2}}{x_{n}}, \ldots, \frac{x_{n}}{x_{n}}\right), n=1,2, \ldots$, where x_{n} is an increasing sequence of positive integers. Assuming that the lower asymptotic density \underline{d} of x_{n} is positive, we find the optimal lower and upper bounds of $g(x)$. As an application, we also get the optimal bounds of limit points of $\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}, n=1,2, \ldots$

1. Introduction

Let $x_{n}, n=1,2, \ldots$, be an increasing sequence of positive integers (by "increasing" we mean strictly increasing). The double sequence $x_{m} / x_{n}, m, n=1,2, \ldots$ is called the ratio sequence of x_{n}, which has been introduced by T. Šalát [Sa]. He studied its everywhere density. For further study of ratio sequences, O. Strauch and J. T. TóTh [ST] introduced the sequence X_{n} of blocks

$$
X_{n}=\left(\frac{x_{1}}{x_{n}}, \frac{x_{2}}{x_{n}}, \ldots, \frac{x_{n}}{x_{n}}\right), \quad n=1,2, \ldots
$$

and they studied the uniform distribution of X_{n} in the sense of the monographs $[\mathrm{KN}]$ and $[\mathrm{DT}]$. The authors in [ST] further studied the distribution functions

[^0]$g(x)$ of X_{n}. The motivation for this is that the existence of strictly increasing $g(x)$ implies everywhere density of x_{m} / x_{n}, which is the primary problem of ŠALÁT in [Sa].

In what follows, we will use the following definitions, and basic properties, see [SP, p. 1-28, 1.8.23].

- Denote by $F\left(X_{n}, x\right)$ the step distribution function

$$
F\left(X_{n}, x\right)=\frac{\#\left\{i \leq n ; \frac{x_{i}}{x_{n}}<x\right\}}{n}
$$

for $x \in[0,1)$, and $F\left(X_{n}, 1\right)=1$. Directly from definition we have

$$
\begin{equation*}
F\left(X_{m}, x\right)=\frac{n}{m} F\left(X_{n}, x \frac{x_{m}}{x_{n}}\right) \tag{1}
\end{equation*}
$$

for all pairs of integers $m<n$, and every $x \in[0,1)$.

- For any increasing sequence of positive integers $x_{n}, n=1,2, \ldots$, we define a counting function $A(t)$ as

$$
A(t)=\#\left\{n \in \mathbb{N} ; x_{n}<t\right\}
$$

Then for every $x \in(0,1]$ we have the equality

$$
\begin{equation*}
\frac{n F\left(X_{n}, x\right)}{x x_{n}}=\frac{A\left(x x_{n}\right)}{x x_{n}} \tag{2}
\end{equation*}
$$

which we shall use to compute the asymptotic density of x_{n}. Here, the lower asymptotic density \underline{d}, and the upper asymptotic density \bar{d} of $x_{n}, n=1,2, \ldots$ are defined as

$$
\underline{d}=\liminf _{t \rightarrow \infty} \frac{A(t)}{t}=\liminf _{n \rightarrow \infty} \frac{n}{x_{n}}, \quad \bar{d}=\limsup _{t \rightarrow \infty} \frac{A(t)}{t}=\limsup _{n \rightarrow \infty} \frac{n}{x_{n}}
$$

- A non-decreasing function $g:[0,1] \rightarrow[0,1], g(0)=0, g(1)=1$ is called a distribution function. We shall identify any two distribution functions coinciding at common points of continuity.
- A distribution function $g(x)$ is a distribution function of the sequence of blocks $X_{n}, n=1,2, \ldots$, if there exists an increasing sequence n_{1}, n_{2}, \ldots of positive integers such that

$$
\lim _{k \rightarrow \infty} F\left(X_{n_{k}}, x\right)=g(x)
$$

almost everywhere in $[0,1]$. This is equivalent to weak convergence; it means that the preceding limit holds for every point $x \in[0,1]$ of continuity of $g(x)$.

In this paper we frequently use the following two theorems of Helly (see First and Second Helly theorem [SP, Theorem 4.1.0.10 and Theorem 4.1.0.11, p. 4-5]). - Helly's selection principle: For any sequence $g_{n}(x), n=1,2, \ldots$, of distribution functions in $[0,1]$ there exists a subsequence $g_{n_{k}}(x), k=1,2, \ldots$, and a distribution function $g(x)$ such that $\lim _{k \rightarrow \infty} g_{n_{k}}(x)=g(x)$ almost everywhere.

- Second Helly theorem: If we have $\lim _{n \rightarrow \infty} g_{n}(x)=g(x)$ almost everywhere in $[0,1]$, then for every continuous function $f:[0,1] \rightarrow \mathbb{R}$ we have $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \mathrm{d} g_{n}(x)=$ $\int_{0}^{1} f(x) \mathrm{d} g(x)$.
- Note that applying Helly's selection principle, from the sequence $F\left(X_{n}, x\right)$, $n=1,2, \ldots$, one can select a subsequence $F\left(X_{n_{k}}, x\right), k=1,2, \ldots$, such that $\lim _{k \rightarrow \infty} F\left(X_{n_{k}}, x\right)=g(x)$ holds not only for the continuity points x of $g(x)$, but also for all $x \in[0,1]$.
- Denote by $G\left(X_{n}\right)$ the set of all distribution functions of $X_{n}, n=1,2, \ldots$. For a singleton $G\left(X_{n}\right)=\{g(x)\}$, the distribution function $g(x)$ is also called asymptotic distribution function of X_{n}.
- We will use the one-step distribution function $c_{\alpha}(x)$ with the step 1 at α defined on $[0,1]$ via

$$
c_{\alpha}(x)= \begin{cases}0, & \text { if } x \leq \alpha \tag{3}\\ 1, & \text { if } x>\alpha\end{cases}
$$

while always $c_{\alpha}(0)=0$ and $c_{\alpha}(1)=1$.

- The lower distribution function $\underline{g}(x)$, and the upper distribution function $\bar{g}(x)$ of a sequence $x_{n}, n=1,2, \ldots$ are defined as

$$
\underline{g}(x)=\inf _{g \in G\left(X_{n}\right)} g(x), \quad \bar{g}(x)=\sup _{g \in G\left(X_{n}\right)} g(x)
$$

In Section 2 of this paper we recall some known theorems, which we shall use and extend. In Section 3 (Theorem 5) we solve Open problem no. 7 from [SN, 1.9. Block sequence] stating that every sequence of blocks X_{n} has a distribution function $g(x)$ such that $g(x) \geq x$ for all $x \in[0,1]$. Then, assuming $\underline{d}>0$, we find (Theorem 6) boundaries $h_{1}(x) \leq g(x) \leq h_{2}(x)$, which hold for every distribution function $g(x) \in G\left(X_{n}\right)$, and which are, in a sense, optimal. As a consequence, we produce boundaries (Theorem 7) for $\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}$. In the last Section 4 (Example 3), we find the exact values of the liminf and lim sup of $\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}$ for integers x_{n} from the intervals $\left(\gamma a^{k}, \delta a^{k}\right), k=1,2, \ldots$.

2. Basic known results

For an increasing sequence $x_{n}, n=1,2, \ldots$ of positive integers the following theorems are known.

Theorem 1 ([ST, Theorem 7.1]). For every sequence of positive integers x_{n} there exits $g(x) \in G\left(X_{n}\right)$ such that

$$
\begin{equation*}
\int_{0}^{1} g(x) \mathrm{d} x \geq \frac{1}{2} . \tag{4}
\end{equation*}
$$

Theorem 2 ([ST, Theorem 6.2 (ii),(iii)]). If $\underline{d}>0$, then there exits $g \in$ $G\left(X_{n}\right)$ such that $g(x) \geq x$ for every $x \in[0,1]$. Furthermore, for every $g(x) \in$ $G\left(X_{n}\right)$, and $x \in[0,1]$ we have

$$
x \frac{\underline{d}}{\bar{d}} \leq g(x) \leq x \frac{\bar{d}}{\underline{d}}
$$

Theorem 3 ([ST, Propozicion 6.1]). Assume for a sequence $n_{k}, k=1,2, \ldots$ that
(i) $\lim _{k \rightarrow \infty} F\left(X_{n_{k}}, x\right)=g(x)$,
(ii) $\lim _{k \rightarrow \infty} \frac{n_{k}}{x_{n_{k}}}=d_{g}$.

Then there exists
(iii) $\lim _{k \rightarrow \infty} \frac{A\left(x x_{n_{k}}\right)}{x x_{n_{k}}}=d_{g}(x)$ and

$$
\begin{equation*}
\frac{g(x)}{x} d_{g}=d_{g}(x) \tag{5}
\end{equation*}
$$

Here the limits (i), and (iii) can be considered for all $x \in(0,1]$, or all continuity points $x \in(0,1]$ of $g(x)$.

Theorem 4 ([ST, Theorem 4.1, Theorem 6.2]). Assume that every distribution function in $G\left(X_{n}\right)$ is continuous at 1. Then each distribution function in $G\left(X_{n}\right)$ is continuous in $(0,1]$, i.e. the only point of discontinuity is possibly 0. Furthermore, if $\underline{d}>0$, then all distribution functions in $G\left(X_{n}\right)$ are continuous in $[0,1]$.

3. Main results

We start with an extension of Theorem 1, and the first part of Theorem 2.
Theorem 5. For every increasing sequence of positive integers x_{n}, $n=1,2, \ldots$, there exists $g(x) \in G\left(X_{n}\right)$ such that $g(x) \geq x$ for all $x \in[0,1]$.

Proof. If $\underline{d}>0$, select n_{k} so that $\frac{n_{k}}{x_{n_{k}}} \rightarrow \underline{d}>0$, and $F\left(X_{n_{k}}, x\right) \rightarrow g(x)$. For such $g(x)$, (5) implies

$$
\frac{g(x)}{x} \underline{d} \geq \underline{d} .
$$

Now, let $\underline{d}=0$. Select n_{k} such that

$$
\frac{n_{k}}{x_{n_{k}}}=\min _{i \leq n_{k}} \frac{i}{x_{i}},
$$

and $F\left(X_{n_{k}}, x\right) \rightarrow g(x)$. Then for every $x \in(0,1]$,

$$
\frac{A\left(x x_{n_{k}}\right)}{x x_{n_{k}}} \geq \frac{n_{k}-1}{x_{n_{k}}} .
$$

Applying (2) yields

$$
\frac{F\left(X_{n_{k}}, x\right)}{x} \frac{n_{k}}{x_{n_{k}}} \geq \frac{n_{k}-1}{x_{n_{k}}},
$$

and taking the limit, as $k \rightarrow \infty$, we obtain $g(x) \geq x$ for all $x \in[0,1]$.
Now we are going to study in more detail the second part of Theorem 2.
Theorem 6. Let $x_{1}<x_{2}<\ldots$ be a sequence of positive integers with positive lower asymptotic density $\underline{d}>0$ and upper asymptotic density \bar{d}. Then all distribution functions $g(x) \in G\left(X_{n}\right)$ are continuous, non-singular and bounded by $h_{1}(x) \leq g(x) \leq h_{2}(x)$, where

$$
\begin{align*}
& h_{1}(x)= \begin{cases}x \frac{\underline{d}}{\underline{\bar{d}}} & \text { if } x \in\left[0, \frac{1-\bar{d}}{1-\underline{d}}\right] \\
\frac{\underline{d}}{\bar{x}-(1-\underline{d})} & \text { otherwise },\end{cases} \tag{6}\\
& h_{2}(x)=\min \left(x \frac{\bar{d}}{\underline{d}}, 1\right) . \tag{7}
\end{align*}
$$

Moreover, $h_{1}(x)$ and $h_{2}(x)$ are the best possible in the following sense: for given $0<\underline{d} \leq \bar{d}$, there exists $x_{1}<x_{2}<\ldots$ with lower and upper asymptotic densitie \underline{d}, \bar{d}, such that $\underline{g}(x)=h_{1}(x)$ for $x \in\left[\frac{1-\bar{d}}{1-\underline{d}}, 1\right]$; also, there exists $x_{1}<x_{2}<\ldots$ with given $0<\underline{d} \leq \bar{d}$ such that $\bar{g}(x)=h_{2}(x) \in G\left(X_{n}\right)$.

Proof. For $g(x) \in G\left(X_{n}\right)$, let $n_{k}, k=1,2, \ldots$, be an increasing sequence of indices such that $F\left(X_{n_{k}}, x\right) \rightarrow g(x)$. From n_{k} we can select a subsequence (for simplicity written as the original $\left.n_{k}\right)^{1}$ such that

$$
\begin{equation*}
\frac{n_{k}}{x_{n_{k}}} \rightarrow d_{g}>0 . \tag{8}
\end{equation*}
$$

[^1]Then, by (5), we have

$$
\begin{equation*}
g(x)=x \frac{d_{g}(x)}{d_{g}}, \quad \text { where } \quad \frac{A\left(x x_{n_{k}}\right)}{x x_{n_{k}}} \rightarrow d_{g}(x) \tag{9}
\end{equation*}
$$

for arbitrary $x \in(0,1]$.
We will continue in six steps $1^{0}-6^{0}$.
1^{0}. We prove the continuity of $g(x)$ at $x=1$ (improving (iv) in [ST, Theorem 6.2]) for each $g(x) \in G\left(X_{n}\right)$.

In view of the definition of the counting function $A(t)$

$$
0 \leq A\left(x_{n_{k}}\right)-A\left(x x_{n_{k}}\right) \leq x_{n_{k}}-x x_{n_{k}} ;
$$

thus,

$$
0 \leq \frac{A\left(x_{n_{k}}\right)}{x_{n_{k}}}-\frac{A\left(x x_{n_{k}}\right)}{x_{n_{k}}}=\frac{n_{k}-1}{x_{n_{k}}}-\frac{A\left(x x_{n_{k}}\right)}{x x_{n_{k}}} x \leq 1-x
$$

and, as $k \rightarrow \infty$, we have $0 \leq d_{g}-d_{g}(x) x \leq 1-x$, which implies

$$
0 \leq d_{g}-d_{g}(x)+d_{g}(x)(1-x) \leq 1-x
$$

Consequently, $\lim _{x \rightarrow 1} d_{g}(x)=d_{g}$, and so $\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} x \frac{d_{g}(x)}{d_{g}}=1$. Since $g(x) \in G\left(X_{n}\right)$ is arbitrary, Theorem 4 gives continuity of $g(x)$ in the whole unit interval $[0,1]$.
2^{0}. We prove that $g(x)$ has a bounded right derivative for every $x \in(0,1)$, and for each $g(x) \in G\left(X_{n}\right)$.

For $0<x<y<1$ again

$$
0 \leq A\left(y x_{n_{k}}\right)-A\left(x x_{n_{k}}\right) \leq(y-x) x_{n_{k}},
$$

which implies

$$
0 \leq \frac{A\left(y x_{n_{k}}\right)}{y x_{n_{k}}} y-\frac{A\left(x x_{n_{k}}\right)}{x x_{n_{k}}} x \leq y-x
$$

Letting $k \rightarrow \infty$, we get $0 \leq d_{g}(y) y-d_{g}(x) x \leq y-x$, hence

$$
0 \leq g(y)-g(x)=\frac{d_{g}(y) y-d_{g}(x) x}{d_{g}} \leq \frac{y-x}{d_{g}}
$$

Consequently,

$$
\begin{equation*}
0 \leq \frac{g(y)-g(x)}{y-x} \leq \frac{1}{d_{g}} \tag{10}
\end{equation*}
$$

for all $x, y \in(0,1), x<y$, which gives the upper bound of the right derivatives of $g(x)$ for every $x \in(0,1)$. Note that a singular distribution function (continuous, strictly increasing, having zero derivative almost everywhere) has infinite right Dini derivatives in a dense subset of $(0,1)$.
3^{0}. We prove a local form of Theorem 5 .
As $\underline{d} \leq d_{g} \leq \bar{d},(9)$ implies

$$
\begin{equation*}
x \frac{\underline{d}}{d_{g}} \leq g(x) \leq x \frac{\bar{d}}{d_{g}} \tag{11}
\end{equation*}
$$

for every $x \in[0,1]$. It follows from (10), that there exists an extreme point $A_{g}=\left(x_{g}, y_{g}\right)$ on the line $y=x \frac{d}{d_{g}}$ such that $g(x)$ has no common point with this line for $x>x_{g}$. This point A_{g} is the intersection of the lines

$$
\begin{equation*}
y=x \frac{\underline{d}}{d_{g}} \text { and, } y=x \frac{1}{d_{g}}+1-\frac{1}{d_{g}} \tag{12}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
A_{g}=\left(x_{g}, y_{g}\right)=\left(\frac{1-d_{g}}{1-\underline{d}}, \frac{\underline{d}}{d_{g}} \frac{1-d_{g}}{1-\underline{d}}\right) . \tag{13}
\end{equation*}
$$

It means that for a given $g(x) \in G\left(X_{n}\right), h_{1, g}(x) \leq g(x) \leq h_{2, g}(x)$, where

$$
\begin{align*}
& h_{1, g}(x)= \begin{cases}x \frac{d}{d_{g}} & \text { if } x<y_{0}=\frac{1-d_{g}}{1-\underline{d}} \\
x \frac{1}{d_{g}}+1-\frac{1}{d_{g}} & \text { if } y_{0} \leq x \leq 1\end{cases} \tag{14}\\
& h_{2, g}(x)=\min \left(x \frac{\bar{d}}{d_{g}}, 1\right) . \tag{15}
\end{align*}
$$

4^{0}. Now we find $h_{1}(x)$, and $h_{2}(x)$ such that

$$
h_{1}(x) \leq h_{1, g}(x) \leq h_{2, g}(x) \leq h_{2}(x)
$$

for every $g \in G\left(X_{n}\right)$.
In the parametric expression (13) of A_{g}, the local asymptotic density d_{g} defined by (8) belongs to the interval $[\underline{d}, \bar{d}]$. The well-known Darboux property of the asymptotic density implies that for an arbitrary $d \in[\underline{d}, \bar{d}]$ there exists an increasing $n_{k}, k=1,2, \ldots$, such that $\frac{n_{k}}{x_{n_{k}}} \rightarrow d^{2}$, and then the Helly selection

[^2]principle implies the existence of a subsequence of n_{k} such that $F\left(X_{n_{k}}, x\right) \rightarrow g(x)$ for some $g(x) \in G\left(X_{n}\right)$. Thus, if $g(x)$ runs over $G\left(X_{n}\right)$, then d_{g} runs over the entire interval $[\underline{d}, \bar{d}]$. Substituting $d_{g}=1-x_{g}(1-\underline{d})$ in $A_{g}=\left(x_{g}, y_{g}\right)$ we get
$$
y_{g}=y_{g}\left(x_{g}\right)=\frac{\underline{d}}{\frac{1}{x_{g}}-(1-\underline{d})}
$$
where $x_{g}=\frac{1-d_{g}}{1-\underline{d}}$ runs through the interval $I=\left[\frac{1-\bar{d}}{1-\underline{d}}, 1\right]$ for $d_{g} \in[\underline{d}, \bar{d}]$. By putting $x_{g}=x$, and $y_{g}^{-}=h_{1}$ we find a part of $h_{1}(x)$ for $x \in I$ in (6). The remaining part of $h_{1}(x)$, and also the whole $h_{2}(x)$, follow from the basic inequality (11), see Figure 1.

Figure 1. Boundaries of $g(x) \in G\left(X_{n}\right)$
5^{0}. The optimality of $h_{1}(x)$ follows from the following example. The increasing sequence x_{n} of the integers lying in the intervals

$$
(\gamma, \delta),(\gamma a, \delta a), \ldots,\left(\gamma a^{k}, \delta a^{k}\right), \ldots
$$

where $1 \leq \gamma<\delta \leq a$, has been used in [ST, pp. 774-777, Example 11.2]. For its lower, and upper asymptotic densities \underline{d}, and \bar{d}, it has been shown that

$$
\begin{equation*}
\underline{d}=\frac{(\delta-\gamma)}{\gamma(a-1)}, \quad \bar{d}=\frac{(\delta-\gamma) a}{\delta(a-1)}, \tag{16}
\end{equation*}
$$

and that the graph of every $g \in G\left(X_{n}\right)$ lies in the intervals

$$
[1 / a, 1] \times[1 / a, 1] \cup\left[1 / a^{2}, 1 / a\right] \times\left[1 / a^{2}, 1 / a\right] \cup \ldots
$$

Moreover, the part of the graph in $\left[1 / a^{k}, 1 / a^{k-1}\right] \times\left[1 / a^{k}, 1 / a^{k-1}\right]$ is similar to the part of the graph in $\left[1 / a^{k+1}, 1 / a^{k}\right] \times\left[1 / a^{k+1}, 1 / a^{k}\right]$ with the scale a. It is also proved in [ST], that the graph of $\underline{g}(x)$ in $[1 / a, 1] \times[1 / a, 1]$ has the form $\underline{g}(x)=\left(1+\frac{1}{d}\left(\frac{1}{x}-1\right)\right)^{-1}$ for $x \in\left[\frac{\gamma}{\delta}, 1\right]$, and it coincides with the graph of $h_{1}(x)$ in the interval $I=\left[\frac{1-\bar{d}}{1-\underline{d}}, 1\right]$, since $\frac{1-\bar{d}}{1-\underline{d}}=\frac{\gamma}{\delta}$.
6^{0}. Finally, we prove the optimality of $h_{2}(x)$. Before proving it in several substeps, note that in 5^{0} the graph of the upper distribution function $\bar{g}(x)$ in $[1 / a, 1] \times[1 / a, 1]$ is a straight line which intersects the line $y=1$ at $x=\frac{\delta}{\gamma a}=\frac{d}{\bar{d}}$. Thus, $\bar{g}(\underline{\underline{\underline{d}}})=h_{2}(\underline{\underline{\underline{d}}})=1$ proving that the point $(\underline{\underline{\underline{d}}}, 1)$ is optimal.

To complete the proof of 6^{0}, in the following steps a)- f) we shall construct a sequence of positive integers $x_{1}<x_{2}<\ldots$ with $0<\underline{d} \leq \bar{d}$ such that $h_{2}(x) \in$ $G\left(X_{n}\right)$. This implies $h_{2}(x)=\bar{g}(x)$.
a) The condition $h_{2}(x) \in G\left(X_{n}\right)$ for a sequence of positive integers $x_{1}<$ $x_{2}<\ldots$ is equivalent to the existence of an increasing sequence of indices n_{k} such that $F\left(X_{n_{k}}, x\right) \rightarrow h_{2}(x)$ for $x \in[0,1]$, and $\frac{n_{k}}{n_{k+1}} \rightarrow 0$. An application of (1) yields that this is equivalent (see Fig. 2) to the existence of $m_{k}^{\prime}<m_{k}<n_{k}$ such that the values $x_{m_{k}^{\prime}}<x_{m_{k}}<x_{n_{k}}$ satisfy
(i) $\frac{x_{m_{k}}}{x_{n_{k}}} \rightarrow \frac{d}{\bar{d}}$,
(ii) $\frac{m_{k}}{n_{k}} \rightarrow 1$,
(iii) $\frac{x_{m_{k}^{\prime}}}{x_{n_{k}}} \rightarrow 0$,
(iv) $\frac{m_{k}^{\prime}}{n_{k}} \rightarrow 0$.

Moreover, because the sequence of positive integers x_{n} increases, we have (see Figure 3)
(v) $x_{m_{k}}-x_{m_{k}^{\prime}} \geq m_{k}-m_{k}^{\prime}$,
vi) $x_{n_{k}}-x_{m_{k}} \geq n_{k}-m_{k}$,
(vii) $x_{m_{k+1}^{\prime}}-x_{n_{k}} \geq m_{k+1}^{\prime}-n_{k}$,
(viii) $n_{k}<m_{k+1}^{\prime}$,
(ix) $m_{1}^{\prime} \leq x_{m_{1}^{\prime}}$.

Figure 2: $F\left(X_{n_{k}}, x\right) \rightarrow h_{2}(x)$, the properties (i)-(iv).

Figure 3: The (v)-(viii) properties.
b) Before solving (i)-(ix) we must capture a role of \underline{d} and \bar{d}. By (i) and, (ii) we have the limit

$$
\frac{n_{k}}{m_{k}} \frac{x_{m_{k}}}{x_{n_{k}}} \rightarrow \frac{d}{\overline{\bar{d}}}
$$

Selecting a subsequence of $\left(m_{k}, n_{k}\right), k=1,2, \ldots$, we can assume the existence of the limits $\frac{n_{k}}{x_{n_{k}}} \rightarrow d_{h_{2}}$, and $\frac{m_{k}}{x_{m_{k}}} \rightarrow d_{g}$ (for simplicity, also assume $F\left(X_{m_{k}}, x\right) \rightarrow$ $g(x))$. Then

$$
\frac{n_{k}}{m_{k}} \frac{x_{m_{k}}}{x_{n_{k}}}=\frac{\frac{x_{m_{k}}}{m_{k}}}{\frac{x_{n_{k}}}{n_{k}}} \rightarrow \frac{\frac{1}{d_{g}}}{\frac{1}{d_{n_{2}}}}=\frac{d}{\bar{d}},
$$

and since

$$
\frac{\underline{d}}{\underline{\bar{d}}}=\min _{d_{1}, d_{2} \in[\underline{d}, \bar{d}]} \frac{d_{1}}{d_{2}}
$$

we have $d_{h_{2}}=\underline{d}$, and $d_{g}=\bar{d}$. This yields the additional conditions
(x) $\frac{n_{k}}{x_{n_{k}}} \rightarrow \underline{d}$,
(xi) $\frac{m_{k}}{x_{m_{k}}} \rightarrow \bar{d}$.
c) In what follows, we assume $\underline{d}<\bar{d}$, because from Theorem 2 , by $0<\underline{d}=\bar{d}$, we get $G\left(X_{n}\right)=\{x\}$, and also $h_{2}(x)=x$.
d) To find a sequence x_{n} which satisfies (i)-(xi), we define $x_{n_{k}}, x_{m_{k}}, m_{k}$, $x_{m_{k}^{\prime}}, m_{k}^{\prime}$ by using n_{k} (for a simplifying the definitions, the integer part will be omitted):

$$
\begin{aligned}
& x_{n_{k}}=\frac{n_{k}}{\underline{d}} \\
& x_{m_{k}}=x_{n_{k}} \frac{d}{\bar{d}}=\frac{n_{k}}{\bar{d}} \\
& m_{k}=x_{m_{k}} \bar{d}-o\left(n_{k}\right)=n_{k}-\sqrt{n_{k}}, \\
& x_{m_{k}^{\prime}}=\sqrt{x_{m_{k}}}=\sqrt{\frac{n_{k}}{\bar{d}}} \\
& m_{k}^{\prime}=d^{\prime} x_{m_{k}^{\prime}}=d^{\prime} \sqrt{\frac{n_{k}}{\bar{d}}}
\end{aligned}
$$

for some $d^{\prime} \in(\underline{d}, \bar{d})$.
These $x_{n_{k}}, x_{m_{k}}, x_{m_{k}^{\prime}}, m_{k}, m_{k}^{\prime}$ satisfy (i)-(vii), (x), (xi). For (viii) we need

$$
n_{k+1}>\frac{\bar{d}}{d^{\prime 2}} \frac{1}{\underline{d}^{2}} n_{k}^{2}
$$

for $k=2,3, \ldots$, and for (ix) the n_{1} must be large.
e) For linearity of $h_{2}(x)$ in $\left[0, \frac{d}{\bar{d}}\right]$, and to guarantee the asymptotic densities \underline{d}, \bar{d}, define
(xii) $x_{n}=x_{a}+(n-a) \frac{x_{b}-x_{a}}{b-a}$ for $n \in(a, b)$, where (a, b) coincides successively with $\left(m_{k}^{\prime}, m_{k}\right),\left(m_{k}, n_{k}\right)$, or $\left(n_{k}, m_{k+1}^{\prime}\right)$.
Then

$$
\frac{n}{x_{n}}=\frac{a+(n-a)}{x_{a}+(n-a) \frac{x_{b}-x_{a}}{b-a}},
$$

and because the derivative $\left(\frac{A x+B}{C x+D}\right)^{\prime}=\frac{A D-B C}{(C x+D)^{2}}$, the minimum and maximum of $\frac{n}{x_{n}}$ for $n \in(a, b)$ are attained at the endpoints $n=a$, and $n=b$, i.e., for $n=m_{k}^{\prime}, m_{k}, n_{k}$. Since the limits of $\frac{n_{k}}{x_{n_{k}}}, \frac{m_{k}}{x_{m_{k}}}, \frac{m_{k}}{x_{m_{k}^{\prime}}}$ are from $[\underline{d}, \bar{d}]$, and the boundary points are attained, $\lim \inf _{n \rightarrow \infty} \frac{n}{x_{n}}=\underline{d}$, and $\lim \sup _{n \rightarrow \infty} \frac{n}{x_{n}}=\bar{d}$.
f) For such $x_{1}<x_{2}<\ldots$ we have \underline{d}, \bar{d}, and $F\left(X_{n_{k}}, x\right) \rightarrow h_{2}(x)$ for $x \in[0,1]$; hence, the proof of Theorem 6 is finished.

Remark 1. In a sharp contrast to $h_{2}(x) \in G\left(X_{n}\right)$ in 6^{0} we note that for every sequence of integers $x_{1}<x_{2}<\ldots, 0<\underline{d}<\bar{d}$, we have $h_{1}(x) \notin G\left(X_{n}\right)$, because for every $g(x) \in G\left(X_{n}\right), h_{1, g}(x) \leq g(x) \leq h_{2, g}(x)$, and $h_{1, g}(x) \neq h_{1}(x)$.

Theorem 6 implies the following best possible boundaries of the sum

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}
$$

Theorem 7. For every increasing sequence $x_{1}<x_{2}<\ldots$ of positive integers with $0<\underline{d} \leq \bar{d}$ we have

$$
\begin{gather*}
\frac{1}{2} \frac{d}{\bar{d}} \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}} \tag{17}\\
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}} \leq \frac{1}{2}+\frac{1}{2}\left(\frac{1-\min (\sqrt{\underline{d}}, \bar{d})}{1-\underline{d}}\right)\left(1-\frac{\underline{d}}{\min (\sqrt{\underline{d}}, \bar{d})}\right) . \tag{18}
\end{gather*}
$$

Here the equality in both (17) and $(18)^{3}$ can be attained.
Proof. By the Helly theorem, $F\left(X_{n_{k}}, x\right) \rightarrow g(x)$ forces

$$
\begin{equation*}
\int_{0}^{1} x \mathrm{~d} F\left(X_{n_{k}}, x\right)=\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \frac{x_{i}}{x_{n_{k}}} \rightarrow \int_{0}^{1} x \mathrm{~d} g(x)=1-\int_{0}^{1} g(x) \mathrm{d} x \tag{19}
\end{equation*}
$$

thus,

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}=1-\max _{g \in G\left(X_{n}\right)} \int_{0}^{1} g(x) \mathrm{d} x, \tag{20}\\
& \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}=1-\min _{g \in G\left(X_{n}\right)} \int_{0}^{1} g(x) \mathrm{d} x . \tag{21}
\end{align*}
$$

[^3]If $\underline{d}>0$, then by Theorem $6, h_{1}(x) \leq g(x) \leq h_{2}(x)$, which implies

$$
\begin{equation*}
1-\int_{0}^{1} h_{2}(x) \mathrm{d} x \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}} \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}} \leq 1-\int_{0}^{1} h_{1}(x) \mathrm{d} x \tag{22}
\end{equation*}
$$

For $x_{1}<x_{2}<\ldots$ in step 6^{0}, where $h_{2}(x) \in G\left(X_{n}\right)$, we have equality on the left hand side of (22). On the other hand, Remark 1 implies a sharp inequality on the right hand side, therefore,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}<1-\frac{1}{2} \frac{\underline{\bar{d}}}{\overline{\bar{d}}}\left(\frac{1-\overline{\bar{d}}}{1-\underline{d}}\right)^{2}-\frac{\underline{d}}{(1-\underline{d})^{2}}\left(\log \frac{\underline{d}}{\overline{\bar{d}}}-(\bar{d}-\underline{d})\right) \tag{23}
\end{equation*}
$$

holds for an arbitrary sequence of integers $x_{1}<x_{2}<\ldots$ with $0<\underline{d}<\bar{d}$.
Applying the inequality $h_{1, g}(x) \leq g(x) \leq h_{2, g}(x)$ for every $g \in G\left(X_{n}\right)$ from step 3^{0} to (19), we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}} \leq \max _{g(x) \in G\left(X_{n}\right)}\left(1-\int_{0}^{1} h_{1, g}(x) \mathrm{d} x\right) \tag{24}
\end{equation*}
$$

If the maximum in (24) is attained for $g_{0}(x) \in G\left(X_{n}\right)$, and $h_{1, g_{0}}(x) \in G\left(X_{n}\right)$, then $g_{0}(x)=h_{1, g_{0}}(x)$, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}=1-\int_{0}^{1} h_{1, g_{0}}(x) \mathrm{d} x . \tag{25}
\end{equation*}
$$

Using (14) we get

$$
\int_{0}^{1} h_{1, g}(x) \mathrm{d} x=\frac{1}{2}\left(1+\frac{1-d_{g}}{1-\underline{d}}\left(\frac{\underline{d}}{d_{g}}-1\right)\right)
$$

and taking derivative with respect to $d_{g} \in[\underline{d}, \bar{d}]$

$$
\left(\int_{0}^{1} h_{1, g}(x) \mathrm{d} x\right)^{\prime}=\frac{1}{2(1-\underline{d})}\left(1-\frac{\underline{d}}{\left(d_{g}\right)^{2}}\right)
$$

shows that $\min \int_{0}^{1} h_{1, g}(x) \mathrm{d} x$ is attained for $d_{g_{0}}=\min (\sqrt{\underline{d}}, \bar{d})$.
Now, to prove (25) we shall construct integers $x_{1}<x_{2}<\ldots$ with $0<\underline{d} \leq \bar{d}$ such that $h_{1, g_{0}}(x) \in G\left(X_{n}\right)$. We start with the sequence of indices n_{k}, and then
by (14) we shall find indices $m_{k}^{\prime}<m_{k}<n_{k}$, and integers $x_{m_{k}^{\prime}}<x_{m_{k}}<x_{n_{k}}$ such that
(i) $\frac{n_{k}}{x_{n_{k}}} \rightarrow d_{g_{0}}$,
(ii) $\frac{m_{k}}{n_{k}} \rightarrow \frac{\underline{d}}{d_{g_{0}}} \frac{1-d_{g_{0}}}{1-\underline{d}}$,
(iii) $\frac{x_{m_{k}}}{x_{n_{k}}} \rightarrow \frac{1-d_{g_{0}}}{1-\underline{d}}$,
(iv) $\frac{x_{m_{k}^{\prime}}}{x_{n_{k}}} \rightarrow 0$,
(v) $\frac{m_{k}^{\prime}}{n_{k}^{\prime}} \rightarrow 0$,
(vi) $\frac{m_{k}^{\prime}}{x_{m_{k}^{\prime}}} \rightarrow \bar{d}$.

Then from (i), (ii), and (iii) it follows that $\frac{m_{k}}{x_{m_{k}}} \rightarrow \underline{d}$. Furthermore, assume
(v) $x_{m_{k}}-x_{m_{k}^{\prime}} \geq m_{k}-m_{k}^{\prime}$,
(vi) $\quad x_{n_{k}}-x_{m_{k}} \geq n_{k}-m_{k}$,
(vii) $x_{m_{k+1}^{\prime}}-x_{n_{k}} \geq m_{k+1}^{\prime}-n_{k}$,
(viii) $n_{k}<m_{k+1}^{\prime}$,
(ix) $\quad m_{1}^{\prime} \leq x_{m_{1}^{\prime}}$.

For these (i)-(ix) a sequence of integers x_{n} can be found similarly to $6^{0} \mathrm{~d}$). The rest of the terms of x_{n} define linearly as in e).

4. Examples

Example 1. a) If $0<\underline{d}=\bar{d}$, then the bounds in both (17), and (18) equal to $\frac{1}{2}$, which implies

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}=\frac{1}{2}
$$

This also follows from the fact that $G\left(X_{n}\right)=\{x\}$, see Theorem 2.
b) If $\underline{d}=\frac{1}{2}$, and $\bar{d}=1$, then by (23), $\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}<2-\log 4<1$. Using (18) we have an even better estimate $\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}} \leq 2-\sqrt{2}$.

Example 2. Omitting $\underline{d}>0$, we can find a sequence of positive integers $x_{1}<x_{2}<\ldots$ such that $c_{0}(x), c_{1}(x) \in G\left(X_{n}\right)$, where $c_{0}(x), c_{1}(x)$ are one-steps
distribution functions defined by (3) in the Introduction. In this case

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}=0=1-\int_{0}^{1} c_{0}(x) \mathrm{d} x \\
& \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}=1=1-\int_{0}^{1} c_{1}(x) \mathrm{d} x .
\end{aligned}
$$

We shall construct such x_{n} by applying [GS, Theorem 5]. For the index sequences $m_{k}^{\prime}<m_{k}<n_{k}^{\prime}<n_{k}$ we shall find sequences of positive integers $x_{m_{k}^{\prime}}<x_{m_{k}}<$ $x_{n_{k}^{\prime}}<x_{n_{k}}$ such that
(i) $\frac{n_{k}^{\prime}}{n_{k}} \rightarrow 0$,
(ii) $\frac{m_{k}^{\prime}}{m_{k}} \rightarrow 1$,
(iii) $\frac{x_{n_{k}^{\prime}}}{x_{n_{k}}} \rightarrow 1$,
(iv) $\frac{x_{m_{k}^{\prime}}}{x_{m_{k}}} \rightarrow 0$.

Furthermore,
(v) $x_{n_{k}}-x_{n_{k}^{\prime}} \geq n_{k}-n_{k}^{\prime}$,
(vi) $\quad x_{n_{k}^{\prime}}-x_{m_{k}} \geq n_{k}^{\prime}-m_{k}$,
(vii) $x_{m_{k}}-x_{m_{k}^{\prime}} \geq m_{k}-m_{k}^{\prime}$,
(viii) $m_{k+1}^{\prime}>n_{k}$,
(ix) $\quad x_{m_{1}^{\prime}} \geq m_{1}^{\prime}$,
(x) $\quad x_{m_{k+1}^{\prime}}-x_{n_{k}} \geq m_{k+1}^{\prime}-n_{k}$.

Then (i)-(x) will be satisfied, if for a given n_{k} we put $x_{n_{k}}=n_{k}^{2}, x_{n_{k}^{\prime}}=n_{k}^{2}-n_{k}$, $x_{m_{k}}=n_{k}^{2}-2 n_{k}, x_{m_{k}^{\prime}}=n_{k}, n_{k}^{\prime}=\sqrt{n_{k}}, m_{k}=\sqrt{n_{k}}-\sqrt[4]{n_{k}}, m_{k}^{\prime}=\sqrt{n_{k}}-2 \sqrt[4]{n_{k}} ;$ further, (viii) holds if $n_{k+1} \geq n_{k}^{4}$. For the other n 's in the intervals $\left(m_{k}^{\prime}, m_{k}\right)$, $\left(m_{k}, n_{k}^{\prime}\right),\left(n_{k}^{\prime}, n_{k}\right)$, and $\left(n_{k}, m_{k+1}^{\prime}\right)$ define x_{n} linearly.

Now, by (i), and (iii) we have $F\left(X_{n_{k}}, x\right) \rightarrow c_{1}(x)$, and (ii), (iv) imply $F\left(X_{m_{k}}, x\right) \rightarrow c_{0}(x)$.

Example 3. In this example we extend a characterization of distribution functions of the sequence $x_{1}<x_{2}<\ldots$ in [ST, Example 11.2]. This sequence was used in the proof of Theorem 6, part 5^{0}.

Let $x_{n}, n=1,2, \ldots$, be the increasing sequence of all integer points in the sequence of intervals $\left(\gamma a^{k}, \delta a^{k}\right)$ (in short $\left.a^{k}(\gamma, \delta)\right), k=0,1,2, \ldots$, where $1 \leq \gamma<\delta \leq a$ are real numbers.

It is proved in [ST, Ex. 11.2] that
1^{0}. The set of all distribution functions can be expressed in parametric form as $G\left(X_{n}\right)=\left\{g_{t}(x) ; t \in[0,1]\right\}$, where

$$
\begin{equation*}
F\left(X_{n_{k}}, x\right) \rightarrow g_{t}(x) \text { for } n_{k} \quad \text { such that } x_{n_{k}}=\left[a^{k} \gamma+t a^{k}(\delta-\gamma)\right] \tag{26}
\end{equation*}
$$

2^{0}. The function $g_{t}(x)$ has constant values $g_{t}(x)=\frac{1}{a^{2}(1+t(a-1))}$ for $x \in$ $\frac{(\delta, a \gamma)}{a^{i+1}(\gamma+t(\delta-\gamma))}, i=0,1,2, \ldots$, and in the component intervals it has a constant derivative $g_{t}^{\prime}(x)=\frac{(a-1)(\gamma+t(\delta-\gamma))}{(\delta-\gamma)(1+t(a-1))}$ for $x \in \frac{(\gamma, \delta)}{a^{i+1}(\gamma+t(\delta-\gamma))}, i=0,1,2, \ldots$, and $x \in\left(\frac{\gamma}{\gamma+t(\delta-\gamma)}, 1\right) .{ }^{4}$
3^{0}. The graph of every $g \in G\left(X_{n}\right)$ lies in the intervals

$$
[1 / a, 1] \times[1 / a, 1] \cup\left[1 / a^{2}, 1 / a\right] \times\left[1 / a^{2}, 1 a /\right] \cup \ldots,
$$

and the graph of g in $\left[1 / a^{k}, 1 / a^{k-1}\right] \times\left[1 / a^{k}, 1 / a^{k-1}\right]$ is similar to the graph of g in $\left[1 / a^{k+1}, 1 / a^{k}\right] \times\left[1 / a^{k+1}, 1 / a^{k}\right]$ with coefficient a.
4^{0}. We have $g_{0}(x)=\bar{g}(x), \underline{g}(x) \notin G\left(X_{n}\right)$, and the asymptotic densities \underline{d}, \bar{d} are

$$
\underline{d}=\frac{(\delta-\gamma)}{\gamma(a-1)}, \quad \bar{d}=\frac{(\delta-\gamma) a}{\delta(a-1)}
$$

We can add the following new properties $5^{0}-8^{0}$:
5^{0}. By definition (8) of the local asymptotic density d_{g}, along with (26) for $g(x)=g_{t}(x)$ we get

$$
\begin{align*}
d_{g_{t}}=\lim _{k \rightarrow \infty} \frac{n_{k}}{x_{n_{k}}} & =\lim _{k \rightarrow \infty} \frac{\sum_{i=0}^{k-1} a^{i}(\delta-\gamma)+t a^{k}(\delta-\gamma)}{a^{k} \gamma+t a^{k}(\delta-\gamma)} \\
& =\frac{(\delta-\gamma)(1+t(a-1))}{(a-1)(\gamma+t(\delta-\gamma))} \tag{27}
\end{align*}
$$

for $t=0, d_{g_{0}}=\underline{d}$, for $t=1, d_{g_{1}}=\bar{d}$, and we have

$$
\begin{equation*}
g_{t}^{\prime}(x)=\frac{1}{d_{g_{t}}} \tag{28}
\end{equation*}
$$

for x in intervals where the derivative of $g_{t}(x)$ is constant.

[^4]6^{0}. For the function $h_{1, g}(x)$ defined in (14), putting $g(x)=g_{t}(x)$, we have
$$
\frac{\underline{d}}{d_{g_{t}}}=\frac{\gamma+t(\delta-\gamma)}{\gamma(1+t(a-1))}, \frac{1-d_{g_{t}}}{1-\underline{d}}=\frac{\gamma}{\gamma+t(\delta-\gamma)}, \frac{\underline{d}}{d_{g_{t}}} \frac{1-d_{g_{t}}}{1-\underline{d}}=\frac{1}{1+t(a-1)}
$$

Then

$$
h_{1, g_{t}}(x)=\left\{\begin{align*}
& g_{t}(x)=x \frac{1}{d_{g_{t}}}+1-\frac{1}{d_{g_{t}}}, \text { for } x \in\left(\frac{\gamma}{\gamma+t(\delta-\gamma}, 1\right) \tag{29}\\
& g_{t}(x)=\frac{1}{a^{i}(1+t(a-1))}, \text { for } x=\frac{\gamma}{a^{i}(\gamma+t(\delta-\gamma))}, \\
& i=0,1,2, \ldots,
\end{align*}\right.
$$

see Figure 4.

Figure 4: $g_{t}(x)$ and $h_{1, g_{t}}(x)$.
7^{0}. In the proof of the upper bound (18) we have proved that $1-\int_{0}^{1} h_{1, g}(x) \mathrm{d} x$ is maximal for $d_{g}=\min (\sqrt{\underline{d}}, \bar{d})$. Let $t_{0} \in[0,1]$ be such that $d_{g_{t_{0}}}=\min (\sqrt{\underline{d}}, \bar{d})$. This $t=t_{0}$ we shall find from (27) as

$$
\begin{equation*}
t=\frac{d_{g_{t}}(a-1) \gamma-(\delta-\gamma)}{(\delta-\gamma)(a-1)\left(1-d_{g_{t}}\right)} \tag{30}
\end{equation*}
$$

8^{0}. Let $P(t)$ be the area in $\left[\frac{1}{a}, 1\right] \times\left[\frac{1}{a}, 1\right]$ bounded by the graph of $g_{t}(x)$. Then
$\int_{0}^{1} g_{t}(x) \mathrm{d} x=P(t) \frac{1}{1-\frac{1}{a^{2}}}+\frac{1}{a+1}=\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{(a+1)} \cdot \frac{(\gamma a-\delta)}{(1+t(a-1))(\gamma+t(\delta-\gamma))}$

$$
\begin{equation*}
+\frac{1}{2} \cdot \frac{t(\delta-\gamma a)}{(1+t(a-1))(\gamma+t(\delta-\gamma))} \tag{31}
\end{equation*}
$$

and, since $g_{0}(x)=\bar{g}(x), \max _{t \in[0,1]} \int_{0}^{1} g_{t}(x) \mathrm{d} x$ is attained at $t=0$. Putting $P^{\prime}(t)=0$ it follows that $\min _{t \in[0,1]} \int_{0}^{1} g_{t}(x) \mathrm{d} x$ is attained at $t=1$. This can be derived also from the fact that for $x_{n+1}=x_{n}+1$,

$$
\begin{aligned}
\frac{1}{n+1} \sum_{i=1}^{n+1} \frac{x_{i}}{x_{n+1}}-\frac{1}{n} & \sum_{i=1}^{n} \frac{x_{i}}{x_{n}} \\
& =\frac{1}{n+1}-\left(\frac{1}{x_{n}+1}+\frac{1}{n+1} \cdot \frac{1}{1+\frac{1}{x_{n}}}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}\right)>0
\end{aligned}
$$

and, because $c_{1}(x) \notin G\left(X_{n}\right), \lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}<1$. Denoting the index n_{k} for $x_{n_{k}}=\left[a^{k} \delta\right]$, the limsup of $\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}$ is attained over $n=n_{k}, k=0,1,2, \ldots$, and for such n_{k} (see (26)) we have $F\left(X_{n_{k}}, x\right) \rightarrow g_{1}(x)$ for $x \in[0,1]$.

It follows, by (20), and (21) that

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}=1-\int_{0}^{1} g_{0}(x) \mathrm{d} x=\frac{1}{2}-\frac{1}{2} \cdot \frac{1}{(a+1)}\left(\frac{\gamma a-\delta}{\gamma}\right), \tag{32}\\
& \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}}{x_{n}}=1-\int_{0}^{1} g_{1}(x) \mathrm{d} x=\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{(a+1)}\left(\frac{\gamma a-\delta}{\delta}\right) . \tag{33}
\end{align*}
$$

The upper bound in (18) coincides with the maximal value of $1-\int_{0}^{1} h_{1, g}(x) \mathrm{d} x$ attained for $d_{g}=\min (\sqrt{\underline{d}}, \bar{d})$. Since $1-\int_{0}^{1} g_{1}(x) \mathrm{d} x$ is maximal for all $1-\int_{0}^{1} g_{t}(x) \mathrm{d} x$, $t \in[0,1]$, and $1-\int_{0}^{1} g_{1}(x) \mathrm{d} x \leq 1-\int_{0}^{1} h_{1, g_{1}}(x) \mathrm{d} x$, the upper bound (33) satisfies (18).

Using the explicit formulas (16) for asymptotic densities, we see again that (32), and (33) satisfy (17), and (18), respectively, in Theorem 7.

References

[DT] M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, Heidelberg, 1997.
[GS] G. Grekos and O. Strauch, Distribution functions of ratio sequences, II, Unif. Distrib. Theory 2, no. 1 (2007), 53-77.
[KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley \& Sons, New York, 1974, reprint: Dover Publications, Inc. Mineola, New York, 2006.
[Sa] T. Šalát, On ratio sets of sets of natural numbers, Acta Arith. XV (1969), 273-278.
[SN] O. Strauch and R. Nair, Unsolved Problems, 2008, http://udt.mat.savba.sk/.
[SP] O. Strauch and Š. Porubský, Distribution of Sequences: A Sampler, Peter Lang, Frankfurt am Main, 2005.
[ST] o. Strauch and J.T. Tóth, Distribution functions of ratio sequences, Publ. Math. Debrecen 58 (2001), 751-778.

VLADIMÍR BALÁž
INSTITUTE OF INFORMATION, ENGINEERING
AUTOMATION AND MATHEMATICS
OTO STRAUCH
MATHEMATICAL INSTITUTE
FACULTY OF CHEMICAL
SLOVAK ACADEMY OF SCIENCES
AND FOOD TECHNOLOGY
SLOVAK UNIVERSITY OF TECHNOLOGY
ŠTEFÁNIKOVA 49
SK-814 73 BRATISLAVA
IN BRATISLAVA
SLOVAKIA
SLOVAKIA
E-mail: vladimir.balaz@stuba.sk
LADISLAV MIŠík
DEPARTMENT OF MATHEMATICS AND
CENTRE OF EXCELLENCE ITAINNOVATIONS
DIVISION UO - IRAFM
UNIVERSITY OF OSTRAVA
30. DUBNA 22

70103 OSTRAVA 1
E-mail: strauch@mat.savba.sk

JÁNOS T. TÓTH
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF J. SELYE
UNIVERSITY OF J. SE
BRATISLAVSKÁ 3322
SK-945 01 KOMÁRNO
SLOVAKIA
E-mail: tothj@selyeuni.sk
E-mail: ladislav.misik@osu.cz
(Received November 16, 2009; revised January 28, 2013)

[^0]: Mathematics Subject Classification: 11K31.
 Key words and phrases: blocks sequence, distribution function, asymptotic density.
 Supported by the APVV Projects SK-CZ-0098-07, SK-HU-0009-08, by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and VEGA $1 / 1022 / 12$.

[^1]: ${ }^{1}$ We call d_{g} a local asymptotic density related to $g(x)$.

[^2]: ${ }^{2}$ A simple proof follows from the fact that for every $d \in(\underline{d}, \bar{d})$ there exist infinitely many $n \in \mathbb{N}$ such that $A(n) / n \leq d \leq A(n+1) /(n+1)$. These n we denote as n_{k}.

[^3]: ${ }^{3}$ If $\sqrt{\underline{d}} \leq \bar{d}$ then the right-hand side in (18) is $\frac{1}{1+\sqrt{\underline{d}}}$.

[^4]: ${ }^{4}$ Here, as above, we write $(x z, y z)=(x, y) z$, and $(x / z, y / z)=(x, y) / z$.

