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Distribution functions of ratio sequences, III
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Dedicated to Professor Kálmán Győry on the occasion of his 70th birthday

Abstract. In this paper we study the distribution functions g(x) of the sequence

of blocks Xn =
(

x1

xn
, x2

xn
, . . . , xn

xn

)

, n = 1, 2, . . . , where xn is an increasing sequence of

positive integers. Assuming that the lower asymptotic density d of xn is positive, we

find the optimal lower and upper bounds of g(x). As an application, we also get the

optimal bounds of limit points of 1
n

∑n

i=1

xi

xn
, n = 1, 2, . . .

1. Introduction

Let xn, n = 1, 2, . . . , be an increasing sequence of positive integers (by “incre-

asing” we mean strictly increasing). The double sequence xm/xn, m,n = 1, 2, . . .

is called the ratio sequence of xn, which has been introduced by T. Šalát [Sa]. He

studied its everywhere density. For further study of ratio sequences, O. Strauch

and J. T. Tóth [ST] introduced the sequence Xn of blocks

Xn =

(

x1

xn

,
x2

xn

, . . . ,
xn

xn

)

, n = 1, 2, . . .

and they studied the uniform distribution of Xn in the sense of the monographs

[KN] and [DT]. The authors in [ST] further studied the distribution functions
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g(x) of Xn. The motivation for this is that the existence of strictly increasing g(x)

implies everywhere density of xm/xn, which is the primary problem of Šalát

in [Sa].

In what follows, we will use the following definitions, and basic properties,

see [SP, p. 1–28, 1.8.23].

• Denote by F (Xn, x) the step distribution function

F (Xn, x) =
#{i ≤ n; xi

xn
< x}

n
,

for x ∈ [0, 1), and F (Xn, 1) = 1. Directly from definition we have

F (Xm, x) =
n

m
F

(

Xn, x
xm

xn

)

(1)

for all pairs of integers m < n, and every x ∈ [0, 1).

• For any increasing sequence of positive integers xn, n = 1, 2, . . . , we define a

counting function A(t) as

A(t) = #{n ∈ N; xn < t}.

Then for every x ∈ (0, 1] we have the equality

nF (Xn, x)

xxn

=
A(xxn)

xxn

, (2)

which we shall use to compute the asymptotic density of xn. Here, the lower

asymptotic density d, and the upper asymptotic density d of xn, n = 1, 2, . . . are

defined as

d = lim inf
t→∞

A(t)

t
= lim inf

n→∞

n

xn

, d = lim sup
t→∞

A(t)

t
= lim sup

n→∞

n

xn

.

• A non-decreasing function g : [0, 1] → [0, 1], g(0) = 0, g(1) = 1 is called a

distribution function. We shall identify any two distribution functions coinciding

at common points of continuity.

• A distribution function g(x) is a distribution function of the sequence of blocks

Xn, n = 1, 2, . . . , if there exists an increasing sequence n1, n2, . . . of positive

integers such that

lim
k→∞

F (Xnk
, x) = g(x)

almost everywhere in [0, 1]. This is equivalent to weak convergence; it means that

the preceding limit holds for every point x ∈ [0, 1] of continuity of g(x).
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In this paper we frequently use the following two theorems of Helly (see First

and Second Helly theorem [SP, Theorem 4.1.0.10 and Theorem 4.1.0.11 , p. 4–5]).

• Helly’s selection principle: For any sequence gn(x), n = 1, 2, . . . , of distribu-

tion functions in [0, 1] there exists a subsequence gnk
(x), k = 1, 2, . . . , and a

distribution function g(x) such that limk→∞ gnk
(x) = g(x) almost everywhere.

• Second Helly theorem: If we have limn→∞ gn(x) = g(x) almost everywhere in

[0,1], then for every continuous function f : [0,1]→R we have lim
n→∞

∫ 1

0f(x)dgn(x) =
∫ 1

0 f(x)dg(x).

• Note that applying Helly’s selection principle, from the sequence F (Xn, x),

n = 1, 2, . . . , one can select a subsequence F (Xnk
, x), k = 1, 2, . . . , such that

limk→∞ F (Xnk
, x) = g(x) holds not only for the continuity points x of g(x), but

also for all x ∈ [0, 1].

• Denote by G(Xn) the set of all distribution functions of Xn, n = 1, 2, . . . . For a

singleton G(Xn) = {g(x)}, the distribution function g(x) is also called asymptotic

distribution function of Xn.

• We will use the one-step distribution function cα(x) with the step 1 at α defined

on [0, 1] via

cα(x) =

{

0, if x ≤ α;

1, if x > α,
(3)

while always cα(0) = 0 and cα(1) = 1.

• The lower distribution function g(x), and the upper distribution function g(x)

of a sequence xn, n = 1, 2, . . . are defined as

g(x) = inf
g∈G(Xn)

g(x), g(x) = sup
g∈G(Xn)

g(x).

In Section 2 of this paper we recall some known theorems, which we shall

use and extend. In Section 3 (Theorem 5) we solve Open problem no. 7 from

[SN, 1.9. Block sequence] stating that every sequence of blocks Xn has a dis-

tribution function g(x) such that g(x) ≥ x for all x ∈ [0, 1]. Then, assuming

d > 0, we find (Theorem 6) boundaries h1(x) ≤ g(x) ≤ h2(x), which hold for

every distribution function g(x) ∈ G(Xn), and which are, in a sense, optimal.

As a consequence, we produce boundaries (Theorem 7) for 1
n

∑n
i=1

xi

xn
. In the

last Section 4 (Example 3), we find the exact values of the lim inf and lim sup of
1
n

∑n
i=1

xi

xn
for integers xn from the intervals (γak, δak), k = 1, 2, . . . .
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2. Basic known results

For an increasing sequence xn, n = 1, 2, . . . of positive integers the following

theorems are known.

Theorem 1 ([ST, Theorem 7.1]). For every sequence of positive integers xn

there exits g(x) ∈ G(Xn) such that
∫ 1

0

g(x)dx ≥ 1

2
. (4)

Theorem 2 ([ST, Theorem 6.2 (ii),(iii)]). If d > 0, then there exits g ∈
G(Xn) such that g(x) ≥ x for every x ∈ [0, 1]. Furthermore, for every g(x) ∈
G(Xn), and x ∈ [0, 1] we have

x
d

d
≤ g(x) ≤ x

d

d
.

Theorem 3 ([ST, Propozicion 6.1]). Assume for a sequence nk, k = 1, 2, . . .

that

(i) limk→∞ F (Xnk
, x) = g(x),

(ii) limk→∞
nk

xnk

= dg.

Then there exists

(iii) limk→∞
A(xxnk

)

xxnk

= dg(x) and

g(x)

x
dg = dg(x). (5)

Here the limits (i), and (iii) can be considered for all x ∈ (0, 1], or all continuity

points x ∈ (0, 1] of g(x).

Theorem 4 ([ST, Theorem 4.1, Theorem 6.2]). Assume that every distri-

bution function in G(Xn) is continuous at 1. Then each distribution function in

G(Xn) is continuous in (0, 1], i.e. the only point of discontinuity is possibly 0.

Furthermore, if d > 0, then all distribution functions in G(Xn) are continuous in

[0, 1].

3. Main results

We start with an extension of Theorem 1, and the first part of Theorem 2.

Theorem 5. For every increasing sequence of positive integers xn,

n = 1, 2, . . . , there exists g(x) ∈ G(Xn) such that g(x) ≥ x for all x ∈ [0, 1].
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Proof. If d > 0, select nk so that nk

xnk

→ d > 0, and F (Xnk
, x) → g(x). For

such g(x), (5) implies
g(x)

x
d ≥ d.

Now, let d = 0. Select nk such that

nk

xnk

= min
i≤nk

i

xi

,

and F (Xnk
, x) → g(x). Then for every x ∈ (0, 1],

A(xxnk
)

xxnk

≥ nk − 1

xnk

.

Applying (2) yields
F (Xnk

, x)

x

nk

xnk

≥ nk − 1

xnk

,

and taking the limit, as k → ∞, we obtain g(x) ≥ x for all x ∈ [0, 1]. �

Now we are going to study in more detail the second part of Theorem 2.

Theorem 6. Let x1 < x2 < . . . be a sequence of positive integers with

positive lower asymptotic density d > 0 and upper asymptotic density d. Then

all distribution functions g(x) ∈ G(Xn) are continuous, non-singular and bounded

by h1(x) ≤ g(x) ≤ h2(x), where

h1(x) =















x
d

d
if x ∈

[

0,
1− d

1− d

]

;

d
1
x
− (1− d)

otherwise,
(6)

h2(x) = min

(

x
d

d
, 1

)

. (7)

Moreover, h1(x) and h2(x) are the best possible in the following sense: for given

0 < d ≤ d, there exists x1 < x2 < . . . with lower and upper asymptotic densitie d,

d, such that g(x) = h1(x) for x ∈
[

1−d
1−d

, 1
]

; also, there exists x1 < x2 < . . . with

given 0 < d ≤ d such that g(x) = h2(x) ∈ G(Xn).

Proof. For g(x) ∈ G(Xn), let nk, k = 1, 2, . . . , be an increasing sequence

of indices such that F (Xnk
, x) → g(x). From nk we can select a subsequence (for

simplicity written as the original nk)
1 such that

nk

xnk

→ dg > 0. (8)

1We call dg a local asymptotic density related to g(x).
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Then, by (5), we have

g(x) = x
dg(x)

dg
, where

A(xxnk
)

xxnk

→ dg(x) (9)

for arbitrary x ∈ (0, 1].

We will continue in six steps 10–60.

10. We prove the continuity of g(x) at x = 1 (improving (iv) in [ST, The-

orem 6.2]) for each g(x) ∈ G(Xn).

In view of the definition of the counting function A(t)

0 ≤ A(xnk
)−A(xxnk

) ≤ xnk
− xxnk

;

thus,

0 ≤ A(xnk
)

xnk

− A(xxnk
)

xnk

=
nk − 1

xnk

− A(xxnk
)

xxnk

x ≤ 1− x,

and, as k → ∞, we have 0 ≤ dg − dg(x)x ≤ 1− x, which implies

0 ≤ dg − dg(x) + dg(x)(1 − x) ≤ 1− x.

Consequently, limx→1 dg(x) = dg, and so limx→1 g(x) = limx→1 x
dg(x)
dg

= 1. Since

g(x) ∈ G(Xn) is arbitrary, Theorem 4 gives continuity of g(x) in the whole unit

interval [0, 1].

20. We prove that g(x) has a bounded right derivative for every x ∈ (0, 1),

and for each g(x) ∈ G(Xn).

For 0 < x < y < 1 again

0 ≤ A(yxnk
)−A(xxnk

) ≤ (y − x)xnk
,

which implies

0 ≤ A(yxnk
)

yxnk

y − A(xxnk
)

xxnk

x ≤ y − x.

Letting k → ∞, we get 0 ≤ dg(y)y − dg(x)x ≤ y − x, hence

0 ≤ g(y)− g(x) =
dg(y)y − dg(x)x

dg
≤ y − x

dg
.

Consequently,

0 ≤ g(y)− g(x)

y − x
≤ 1

dg
(10)
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for all x, y ∈ (0, 1), x < y, which gives the upper bound of the right derivatives of

g(x) for every x ∈ (0, 1). Note that a singular distribution function (continuous,

strictly increasing, having zero derivative almost everywhere) has infinite right

Dini derivatives in a dense subset of (0, 1).

30. We prove a local form of Theorem 5.

As d ≤ dg ≤ d, (9) implies

x
d

dg
≤ g(x) ≤ x

d

dg
(11)

for every x ∈ [0, 1]. It follows from (10), that there exists an extreme point

Ag = (xg, yg) on the line y = x d

dg
such that g(x) has no common point with this

line for x > xg. This point Ag is the intersection of the lines

y = x
d

dg
and, y = x

1

dg
+ 1− 1

dg
(12)

therefore,

Ag = (xg, yg) =

(

1− dg
1− d

,
d

dg

1− dg
1− d

)

. (13)

It means that for a given g(x) ∈ G(Xn), h1,g(x) ≤ g(x) ≤ h2,g(x), where

h1,g(x) =







x d

dg
if x < y0 =

1−dg

1−d
;

x 1
dg

+ 1− 1
dg

if y0 ≤ x ≤ 1,
(14)

h2,g(x) = min

(

x
d

dg
, 1

)

. (15)

40. Now we find h1(x), and h2(x) such that

h1(x) ≤ h1,g(x) ≤ h2,g(x) ≤ h2(x)

for every g ∈ G(Xn).

In the parametric expression (13) of Ag, the local asymptotic density dg
defined by (8) belongs to the interval [d, d ]. The well-known Darboux property

of the asymptotic density implies that for an arbitrary d ∈ [d, d ] there exists an

increasing nk, k = 1, 2, . . . , such that nk

xnk

→ d 2, and then the Helly selection

2A simple proof follows from the fact that for every d ∈ (d, d) there exist infinitely many n ∈ N

such that A(n)/n ≤ d ≤ A(n+ 1)/(n + 1). These n we denote as nk.
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principle implies the existence of a subsequence of nk such that F (Xnk
, x) → g(x)

for some g(x) ∈ G(Xn). Thus, if g(x) runs over G(Xn), then dg runs over the

entire interval [d, d ]. Substituting dg = 1− xg(1− d) in Ag = (xg, yg) we get

yg = yg(xg) =
d

1
xg

− (1− d)
,

where xg =
1−dg

1−d
runs through the interval I =

[

1−d
1−d

, 1
]

for dg ∈ [d, d ]. By putting

xg = x, and yg = h1 we find a part of h1(x) for x ∈ I in (6). The remaining

part of h1(x), and also the whole h2(x), follow from the basic inequality (11), see

Figure 1.

Figure 1. Boundaries of g(x) ∈ G(Xn)

50. The optimality of h1(x) follows from the following example.

The increasing sequence xn of the integers lying in the intervals

(γ, δ), (γa, δa), . . . , (γak, δak), . . . ,

where 1 ≤ γ < δ ≤ a, has been used in [ST, pp. 774–777, Example 11.2]. For its

lower, and upper asymptotic densities d, and d, it has been shown that

d =
(δ − γ)

γ(a− 1)
, d =

(δ − γ)a

δ(a− 1)
, (16)
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and that the graph of every g ∈ G(Xn) lies in the intervals

[1/a, 1]× [1/a, 1]∪
[

1/a2, 1/a
]

×
[

1/a2, 1/a
]

∪ . . .

Moreover, the part of the graph in
[

1/ak, 1/ak−1
]

×
[

1/ak, 1/ak−1
]

is similar to

the part of the graph in
[

1/ak+1, 1/ak
]

×
[

1/ak+1, 1/ak
]

with the scale a. It is

also proved in [ST], that the graph of g(x) in
[

1/a, 1
]

×
[

1/a, 1
]

has the form

g(x) =
(

1 + 1
d

(

1
x
− 1

))−1
for x ∈

[

γ
δ
, 1
]

, and it coincides with the graph of h1(x)

in the interval I =
[

1−d
1−d

, 1
]

, since 1−d
1−d

= γ
δ
.

60. Finally, we prove the optimality of h2(x). Before proving it in several

substeps, note that in 50 the graph of the upper distribution function g(x) in
[

1/a, 1
]

×
[

1/a, 1
]

is a straight line which intersects the line y = 1 at x = δ
γa

= d

d
.

Thus, g(d
d
) = h2(

d

d
) = 1 proving that the point

(

d

d
, 1
)

is optimal.

To complete the proof of 60, in the following steps a)- f) we shall construct

a sequence of positive integers x1 < x2 < . . . with 0 < d ≤ d such that h2(x) ∈
G(Xn). This implies h2(x) = g(x).

a) The condition h2(x) ∈ G(Xn) for a sequence of positive integers x1 <

x2 < . . . is equivalent to the existence of an increasing sequence of indices nk

such that F (Xnk
, x) → h2(x) for x ∈ [0, 1], and nk

nk+1
→ 0. An application of (1)

yields that this is equivalent (see Fig. 2) to the existence of m′
k < mk < nk such

that the values xm′

k
< xmk

< xnk
satisfy

(i)
xmk

xnk

→ d

d
,

(ii) mk

nk
→ 1,

(iii)
xm′

k

xnk

→ 0,

(iv)
m′

k

nk
→ 0.

Moreover, because the sequence of positive integers xn increases, we have (see

Figure 3)

(v) xmk
− xm′

k
≥ mk −m′

k,

vi) xnk
− xmk

≥ nk −mk,

(vii) xm′

k+1
− xnk

≥ m′
k+1 − nk,

(viii) nk < m′
k+1,

(ix) m′
1 ≤ xm′

1
.
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h2(x)

q

d

d

mk

nk

xmk

xnk

q

q

m′

k

nk

xm′

k

xnk

q

q

Figure 2: F (Xnk
, x) → h2(x), the properties (i)–(iv).

m′
k mk nk m′

k+1

p p p p

xm′

k

xmk

xnk

xm′

k+1

p

p

p

p

Figure 3: The (v)–(viii) properties.

b) Before solving (i)-(ix) we must capture a role of d and d. By (i) and, (ii)

we have the limit
nk

mk

xmk

xnk

→ d

d
.

Selecting a subsequence of (mk, nk), k = 1, 2, . . . , we can assume the existence of

the limits nk

xnk

→ dh2
, and mk

xmk

→ dg (for simplicity, also assume F (Xmk
, x) →

g(x)). Then

nk

mk

xmk

xnk

=

xmk

mk

xnk

nk

→
1
dg

1
dh2

=
d

d
,
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and since
d

d
= min

d1,d2∈[d,d ]

d1
d2

,

we have dh2
= d, and dg = d. This yields the additional conditions

(x) nk

xnk

→ d,

(xi) mk

xmk

→ d.

c) In what follows, we assume d < d, because from Theorem 2, by 0 < d = d,

we get G(Xn) = {x}, and also h2(x) = x.

d) To find a sequence xn which satisfies (i)–(xi), we define xnk
, xmk

, mk,

xm′

k
, m′

k by using nk (for a simplifying the definitions, the integer part will be

omitted):

xnk
=

nk

d
,

xmk
= xnk

d

d
=

nk

d
,

mk = xmk
d− o(nk) = nk −

√
nk,

xm′

k
=

√
xmk

=

√

nk

d
,

m′
k = d′xm′

k
= d′

√

nk

d
,

for some d′ ∈ (d, d).

These xnk
, xmk

, xm′

k
,mk,m

′
k satisfy (i)–(vii), (x), (xi). For (viii) we need

nk+1 >
d

d′2
1

d2
n2
k

for k = 2, 3, . . . , and for (ix) the n1 must be large.

e) For linearity of h2(x) in
[

0, d

d

]

, and to guarantee the asymptotic densities

d, d, define

(xii) xn = xa+(n−a)xb−xa

b−a
for n ∈ (a, b), where (a, b) coincides successively with

(m′
k,mk), (mk, nk), or (nk,m

′
k+1).

Then
n

xn

=
a+ (n− a)

xa + (n− a)xb−xa

b−a

,
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and because the derivative
(

Ax+B
Cx+D

)′
= AD−BC

(Cx+D)2 , the minimum and maximum

of n
xn

for n ∈ (a, b) are attained at the endpoints n = a, and n = b, i.e., for

n = m′
k,mk, nk. Since the limits of nk

xnk

, mk

xmk

, mk

xm′

k

are from [d, d], and the

boundary points are attained, lim infn→∞
n
xn

= d, and lim supn→∞
n
xn

= d.

f) For such x1 < x2 < . . . we have d, d, and F (Xnk
, x) → h2(x) for x ∈ [0, 1];

hence, the proof of Theorem 6 is finished. �

Remark 1. In a sharp contrast to h2(x) ∈ G(Xn) in 60 we note that for every

sequence of integers x1 < x2 < . . . , 0 < d < d, we have h1(x) 6∈ G(Xn), because

for every g(x) ∈ G(Xn), h1,g(x) ≤ g(x) ≤ h2,g(x), and h1,g(x) 6= h1(x).

Theorem 6 implies the following best possible boundaries of the sum

1

n

n
∑

i=1

xi

xn

.

Theorem 7. For every increasing sequence x1 < x2 < . . . of positive inte-

gers with 0 < d ≤ d we have

1

2

d

d
≤ lim inf

n→∞

1

n

n
∑

i=1

xi

xn

, (17)

lim sup
n→∞

1

n

n
∑

i=1

xi

xn

≤ 1

2
+

1

2

(

1−min(
√
d, d)

1− d

)(

1− d

min(
√
d, d)

)

. (18)

Here the equality in both (17) and (18)3 can be attained.

Proof. By the Helly theorem, F (Xnk
, x) → g(x) forces

∫ 1

0

xdF (Xnk
, x) =

1

nk

nk
∑

i=1

xi

xnk

→
∫ 1

0

xdg(x) = 1−
∫ 1

0

g(x)dx; (19)

thus,

lim inf
n→∞

1

n

n
∑

i=1

xi

xn

= 1− max
g∈G(Xn)

∫ 1

0

g(x)dx, (20)

lim sup
n→∞

1

n

n
∑

i=1

xi

xn

= 1− min
g∈G(Xn)

∫ 1

0

g(x)dx. (21)

3If
√

d ≤ d then the right-hand side in (18) is 1

1+
√

d
.
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If d > 0, then by Theorem 6, h1(x) ≤ g(x) ≤ h2(x), which implies

1−
∫ 1

0

h2(x)dx ≤ lim inf
n→∞

1

n

n
∑

i=1

xi

xn

≤ lim sup
n→∞

1

n

n
∑

i=1

xi

xn

≤ 1−
∫ 1

0

h1(x)dx. (22)

For x1 < x2 < . . . in step 60, where h2(x) ∈ G(Xn), we have equality on the left

hand side of (22). On the other hand, Remark 1 implies a sharp inequality on

the right hand side, therefore,

lim sup
n→∞

1

n

n
∑

i=1

xi

xn

< 1− 1

2

d

d

(

1− d

1− d

)2

− d

(1− d)2

(

log
d

d
− (d− d)

)

(23)

holds for an arbitrary sequence of integers x1 < x2 < . . . with 0 < d < d.

Applying the inequality h1,g(x) ≤ g(x) ≤ h2,g(x) for every g ∈ G(Xn) from

step 30 to (19), we obtain

lim sup
n→∞

1

n

n
∑

i=1

xi

xn

≤ max
g(x)∈G(Xn)

(

1−
∫ 1

0

h1,g(x)dx

)

. (24)

If the maximum in (24) is attained for g0(x) ∈ G(Xn), and h1,g0(x) ∈ G(Xn),

then g0(x) = h1,g0(x), and

lim sup
n→∞

1

n

n
∑

i=1

xi

xn

= 1−
∫ 1

0

h1,g0(x)dx. (25)

Using (14) we get

∫ 1

0

h1,g(x)dx =
1

2

(

1 +
1− dg
1− d

(

d

dg
− 1

))

,

and taking derivative with respect to dg ∈ [d, d ]

(
∫ 1

0

h1,g(x)dx

)′

=
1

2(1− d)

(

1− d

(dg)2

)

shows that min
∫ 1

0
h1,g(x)dx is attained for dg0 = min(

√
d, d).

Now, to prove (25) we shall construct integers x1 < x2 < . . . with 0 < d ≤ d

such that h1,g0(x) ∈ G(Xn). We start with the sequence of indices nk, and then
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by (14) we shall find indices m′
k < mk < nk, and integers xm′

k
< xmk

< xnk
such

that

(i) nk

xnk

→ dg0 ,

(ii) mk

nk
→ d

dg0

1−dg0

1−d
,

(iii)
xmk

xnk

→ 1−dg0

1−d
,

(iv)
xm′

k

xnk

→ 0,

(v)
m′

k

n′

k

→ 0,

(vi)
m′

k

xm′

k

→ d.

Then from (i), (ii), and (iii) it follows that mk

xmk

→ d. Furthermore, assume

(v) xmk
− xm′

k
≥ mk −m′

k,

(vi) xnk
− xmk

≥ nk −mk,

(vii) xm′

k+1
− xnk

≥ m′
k+1 − nk,

(viii) nk < m′
k+1,

(ix) m′
1 ≤ xm′

1
.

For these (i)–(ix) a sequence of integers xn can be found similarly to 60d). The

rest of the terms of xn define linearly as in e). �

4. Examples

Example 1. a) If 0 < d = d, then the bounds in both (17), and (18) equal

to 1
2 , which implies

lim
n→∞

1

n

n
∑

i=1

xi

xn

=
1

2
.

This also follows from the fact that G(Xn) = {x}, see Theorem 2.

b) If d = 1
2 , and d = 1, then by (23), lim supn→∞

1
n

∑n
i=1

xi

xn
< 2− log 4 < 1.

Using (18) we have an even better estimate lim supn→∞
1
n

∑n
i=1

xi

xn
≤ 2−

√
2.

Example 2. Omitting d > 0, we can find a sequence of positive integers

x1 < x2 < . . . such that c0(x), c1(x) ∈ G(Xn), where c0(x), c1(x) are one-steps
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distribution functions defined by (3) in the Introduction. In this case

lim inf
n→∞

1

n

n
∑

i=1

xi

xn

= 0 = 1−
∫ 1

0

c0(x)dx,

lim sup
n→∞

1

n

n
∑

i=1

xi

xn

= 1 = 1−
∫ 1

0

c1(x)dx.

We shall construct such xn by applying [GS, Theorem 5]. For the index sequences

m′
k < mk < n′

k < nk we shall find sequences of positive integers xm′

k
< xmk

<

xn′

k
< xnk

such that

(i)
n′

k

nk
→ 0,

(ii)
m′

k

mk
→ 1,

(iii)
xn′

k

xnk

→ 1,

(iv)
xm′

k

xmk

→ 0.

Furthermore,

(v) xnk
− xn′

k
≥ nk − n′

k,

(vi) xn′

k
− xmk

≥ n′
k −mk,

(vii) xmk
− xm′

k
≥ mk −m′

k,

(viii) m′
k+1 > nk,

(ix) xm′

1
≥ m′

1,

(x) xm′

k+1
− xnk

≥ m′
k+1 − nk.

Then (i)–(x) will be satisfied, if for a given nk we put xnk
= n2

k, xn′

k
= n2

k − nk,

xmk
= n2

k − 2nk, xm′

k
= nk, n

′
k =

√
nk, mk =

√
nk − 4

√
nk, m

′
k =

√
nk − 2 4

√
nk;

further, (viii) holds if nk+1 ≥ n4
k. For the other n’s in the intervals (m′

k,mk),

(mk, n
′
k), (n

′
k, nk), and (nk,m

′
k+1) define xn linearly.

Now, by (i), and (iii) we have F (Xnk
, x) → c1(x), and (ii), (iv) imply

F (Xmk
, x) → c0(x).

Example 3. In this example we extend a characterization of distribution func-

tions of the sequence x1 < x2 < . . . in [ST, Example 11.2]. This sequence was

used in the proof of Theorem 6, part 50.
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Let xn, n = 1, 2, . . . , be the increasing sequence of all integer points in

the sequence of intervals (γak, δak) (in short ak(γ, δ)), k = 0, 1, 2, . . . , where

1 ≤ γ < δ ≤ a are real numbers.

It is proved in [ST, Ex. 11.2] that

10. The set of all distribution functions can be expressed in parametric form

as G(Xn) = {gt(x); t ∈ [0, 1]}, where

F (Xnk
, x) → gt(x) for nk such that xnk

= [akγ + tak(δ − γ)] (26)

20. The function gt(x) has constant values gt(x) = 1
ai(1+t(a−1)) for x ∈

(δ,aγ)
ai+1(γ+t(δ−γ)) , i = 0, 1, 2, . . . , and in the component intervals it has a constant

derivative g′t(x) = (a−1)(γ+t(δ−γ))
(δ−γ)(1+t(a−1)) for x ∈ (γ,δ)

ai+1(γ+t(δ−γ)) , i = 0, 1, 2, . . . , and

x ∈
(

γ
γ+t(δ−γ) , 1

)

.4

30. The graph of every g ∈ G(Xn) lies in the intervals

[1/a, 1]× [1/a, 1] ∪
[

1/a2, 1/a
]

×
[

1/a2, 1a/
]

∪ . . . ,

and the graph of g in
[

1/ak, 1/ak−1
]

×
[

1/ak, 1/ak−1
]

is similar to the graph of g

in
[

1/ak+1, 1/ak
]

×
[

1/ak+1, 1/ak
]

with coefficient a.

40. We have g0(x) = g(x), g(x) /∈ G(Xn), and the asymptotic densities d, d

are

d =
(δ − γ)

γ(a− 1)
, d =

(δ − γ)a

δ(a− 1)
.

We can add the following new properties 50–80:

50. By definition (8) of the local asymptotic density dg, along with (26) for

g(x) = gt(x) we get

dgt = lim
k→∞

nk

xnk

= lim
k→∞

∑k−1
i=0 ai(δ − γ) + tak(δ − γ)

akγ + tak(δ − γ)

=
(δ − γ)(1 + t(a− 1))

(a− 1)(γ + t(δ − γ))
, (27)

for t = 0, dg0 = d, for t = 1, dg1 = d, and we have

g′t(x) =
1

dgt
(28)

for x in intervals where the derivative of gt(x) is constant.

4Here, as above, we write (xz, yz) = (x, y)z, and (x/z, y/z) = (x, y)/z.
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60. For the function h1,g(x) defined in (14), putting g(x) = gt(x), we have

d

dgt
=

γ + t(δ − γ)

γ(1 + t(a− 1))
,
1− dgt
1− d

=
γ

γ + t(δ − γ)
,

d

dgt

1− dgt
1− d

=
1

1 + t(a− 1)
.

Then

h1,gt(x) =



























gt(x) = x
1

dgt
+ 1− 1

dgt
, for x ∈

(

γ

γ + t(δ − γ
, 1

)

;

gt(x) =
1

ai(1 + t(a− 1))
, for x =

γ

ai(γ + t(δ − γ))
,

i = 0, 1, 2, . . . ,

(29)

see Figure 4.

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

��
��

,
,

,
,

,
,

,
,

,
,

,
,

,
,,

gt(x)

h1,gt(x)

(1, 1)

( 1
a
, 1
a
)

( 1
a2 ,

1
a2 )

Figure 4: gt(x) and h1,gt(x).

70. In the proof of the upper bound (18) we have proved that 1−
∫ 1

0
h1,g(x)dx

is maximal for dg = min(
√
d, d). Let t0 ∈ [0, 1] be such that dgt0 = min(

√
d, d).

This t = t0 we shall find from (27) as

t =
dgt(a− 1)γ − (δ − γ)

(δ − γ)(a− 1)(1− dgt)
. (30)

80. Let P (t) be the area in
[

1
a
, 1
]

×
[

1
a
, 1
]

bounded by the graph of gt(x).

Then
∫ 1

0

gt(x)dx = P (t)
1

1− 1
a2

+
1

a+ 1
=

1

2
+

1

2
.

1

(a+ 1)
.

(γa− δ)

(1 + t(a− 1))(γ + t(δ − γ))
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+
1

2
.

t(δ − γa)

(1 + t(a− 1))(γ + t(δ − γ))
, (31)

and, since g0(x) = g(x), maxt∈[0,1]

∫ 1

0 gt(x)dx is attained at t = 0. Putting

P ′(t) = 0 it follows that mint∈[0,1]

∫ 1

0
gt(x)dx is attained at t = 1. This can be

derived also from the fact that for xn+1 = xn + 1,

1

n+ 1

n+1
∑

i=1

xi

xn+1
− 1

n

n
∑

i=1

xi

xn

=
1

n+ 1
−
(

1

xn + 1
+

1

n+ 1
.

1

1 + 1
xn

)(

1

n

n
∑

i=1

xi

xn

)

> 0,

and, because c1(x) /∈ G(Xn), lim supn→∞
1
n

∑n
i=1

xi

xn
< 1. Denoting the index nk

for xnk
= [akδ], the lim sup of 1

n

∑n
i=1

xi

xn
is attained over n = nk, k = 0, 1, 2, . . . ,

and for such nk (see (26)) we have F (Xnk
, x) → g1(x) for x ∈ [0, 1].

It follows, by (20), and (21) that

lim inf
n→∞

1

n

n
∑

i=1

xi

xn

= 1−
∫ 1

0

g0(x)dx =
1

2
− 1

2
.

1

(a+ 1)

(

γa− δ

γ

)

, (32)

lim sup
n→∞

1

n

n
∑

i=1

xi

xn

= 1−
∫ 1

0

g1(x)dx =
1

2
+

1

2
.

1

(a+ 1)

(

γa− δ

δ

)

. (33)

The upper bound in (18) coincides with the maximal value of 1−
∫ 1

0
h1,g(x)dx at-

tained for dg = min(
√
d, d). Since 1−

∫ 1

0
g1(x)dx is maximal for all 1−

∫ 1

0
gt(x)dx,

t ∈ [0, 1], and 1 −
∫ 1

0 g1(x)dx ≤ 1 −
∫ 1

0 h1,g1(x)dx, the upper bound (33) satis-

fies (18).

Using the explicit formulas (16) for asymptotic densities, we see again that

(32), and (33) satisfy (17), and (18), respectively, in Theorem 7.
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VLADIMÍR BALÁŽ
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