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On the Ricci tensor and the generalized Tanaka–Webster
connection of real hypersurfaces in a complex space form

By MAYUKO KON (Nagano)

Abstract. We prove that the Ricci tensor Ŝ with respect to the generalized Tana-

ka–Webster connection of a real hypersurface with the almost contact structure (η, φ, ξ, g)

in a complex space form of complex dimension n ≥ 3 satisfies Ŝ(X,φY ) = λg(X,φY )

for any vector field X and Y , λ being a function, if and only if the real hypersurface is

locally congruent to some type (A) hypersurface.

1. Introduction

Tanaka–Webster connection is a unique affine connection on a non-degener-

ate, pseudo-Hermitian CR manifold which associated with the almost contact

structure ([12], [14]). Tanno [13] gave the generalized Tanaka–Webster connec-

tion (g-Tanaka–Webster connection) for contact metric manifolds, which coinci-

des with Tanaka–Webster connection if the associated CR-structure is integrable.

For a real hypersurface in a Kählerian manifold with an almost contact metric

structure (η, φ, ξ, g), in [3] and [4], Cho defined the g-Tanaka–Webster connection

∇̂(k) for a non-zero real number k. Then we can see that ∇̂(k)η = 0, ∇̂(k)ξ = 0,

∇̂(k)g = 0, ∇̂(k)φ = 0. Moreover, if the shape operator A of a real hypersurface

satisfies φA + Aφ = 2kφ, then the g-Tanaka–Webster connection ∇̂(k) coincides

with the Tanaka–Webster connection.
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For real hypersurfaces in a complex space form Mn(c) of constant holom-

orphic sectional curvature 4c 6= 0, one of the major problem is to determine

real hypersurfaces satisfying certain geometrical assumptions. Cho [5] determi-

ned flat Hopf hypersurfaces in a non-flat complex space form with respect to

the g-Tanaka–Webster connection. Besides, he classified Hopf hypersurfaces in

a non-flat complex space form which admits a pseudo-Einstein CR-structure for

the g-Tanaka–Webster connection.

The purpose of this paper is to study real hypersurfaces in a complex space

form whose Ricci tensor Ŝ with respect to the g-Tanaka–Webster connection ∇̂(k)

satisfies Ŝ(X,φY ) = λg(X,φY ) for any vector fields X and Y .

The author would like to express her sincere gratitude to Professor P. F. Le-

ung for his valuable advice. Also, the author would like to thank the referee for

valuable comments.

2. Preliminaries

Let Mn(c) denote the complex space from of complex dimension n (real

dimension 2n) of constant holomorphic sectional curvature 4c. For the sake of

simplicity, if c > 0, we only use c = +1 and call it the complex projective space

CPn, and if c < 0, we just consider c = −1, so that we call it the complex

hyperbolic space CHn. We denote by J the almost complex structure of Mn(c).

The Hermitian metric of Mn(c) will be denoted by G.

Let M be a real (2n− 1)-dimensional hypersurface immersed in Mn(c). We

denote by g the Riemannian metric induced on M from G. We take the unit

normal vector field V of M in Mn(c). For any vector field X tangent to M , we

define φ, η and ξ by

JX = φX + η(X)V, JV = −ξ,

where φX is the tangential part of JX, φ is a tensor field of type (1, 1), η is a

1-form, and ξ is the unit vector field on M . Then they satisfy

φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0,

η(X) = g(X, ξ), g(φX, φY ) = g(X,Y )− η(X)η(Y ).

Thus (φ, ξ, η, g) defines an almost contact metric structure on M . Let H0 denote

the holomorphic distribution on M defined by H0(x) = {X ∈ Tx(M) | η(X) = 0}.
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We denote by ∇̃ the operator of covariant differentiation in Mn(c), and by ∇
the one in M determined by the induced metric. Then the Gauss and Weingarten

formulas are given respectively by

∇̃XY = ∇XY + g(AX,Y )V, ∇̃XV = −AX

for any vector fields X and Y tangent to M . We call A the shape operator of M .

From the Gauss and Weingarten formulas, we have

∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ.

We denote by R the Riemannian curvature tensor field of M . Then the equation

of Gauss is given by

R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY,

and the equation of Codazzi by

(∇XA)Y − (∇Y A)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}.

If Aξ = λξ, λ being a function, then M is called a Hopf hypersurface. There

are many results for real hypersurfaces in complex space forms under the as-

sumption that they are Hopf hypersurfaces. By the Codazzi equation, we have

the following result (c.f. [8]).

Proposition A. Let M be a Hopf hypersurface in Mn(c), n ≥ 2, If X ⊥ ξ

and AX = βX, then α = g(Aξ, ξ) is constant and

(2β − α)AφX = (βα+ 2c)φX.

We use the following results for the proof of the main theorem.

Theorem B ([7]). Let M be a Hopf hypersurface in CPn. Then M has

constant principal curvatures if and only if M is locally congruent to one of the

following:

(A1) a geodesic hypersphere of radius r, where 0 < r < π/2,

(A2) a tube over a totally geodesic CP l (1 ≤ l ≤ n− 2), where 0 < r < π/2,

(B) a tube of radius r over a complex quadric Qn−1 and RPn, where 0 <

r < π/4.
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(C) a tube of radius r over CP 1 × CP n−1
2 , where 0 < r < π/4 and n (≥ 5)

is odd,

(D) a tube of radius r over a complex Grassmann CG2,5, where 0 < r < π/4

and n = 9,

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5),

where 0 < r < π/4 and n = 15.

Theorem C ([1]). Let M be a Hopf hypersurface in CHn. Then M has

constant principal curvatures if and only if M is locally congruent to one of the

following:

(A0) a horosphere,

(A1) a tube over a complex hyperbolic hyperplane CHk (k = 0, n− 1),

(A2) a tube over a totally geodesic CH l (1 ≤ l ≤ n− 2),

(B) a tube over a totally real hyperbolic space RHn.

Next we introduce the notion of Tanaka–Webster connection and its generali-

zation. Tanaka [12] defined the canonical affine connection on a non-degenerate,

pseudo-Hermitian CR manifold. As a generalization of Tanaka–Webster connec-

tion, Tanno [13] defined the g-Tanaka–Webster connection for contact metric

manifolds by

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY,

where (η, φ, ξ, g) is a contact metric structure. Using the naturally extended af-

fine connection of Tanno’s g-Tanaka–Webster connection, the g-Tanaka–Webster

connection ∇̂(k) for real hypersurfaces in Kähler manifold is given by,

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY

for a non-zero real number k (see Cho [3], [4]). Then we see that

∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)φ = 0.

In particular, if the shape operator of a real hypersurface satisfies φA+Aφ = 2kφ,

then the g-Tanaka–Webster connection coincides with the Tanaka–Webster con-

nection. Next we define the g-Tanaka–Webster curvature tensor R̂ with respect

to ∇̂(k) by

R̂(X,Y )Z = ∇̂X(∇̂Y Z)− ∇̂Y (∇̂XZ)− ∇̂[X,Y ]Z

for all vector fields X,Y, Z in M . We denote by Ŝ the g-Tanaka Webster Ricci

tensor, which is defined by

Ŝ(Y, Z) = trace of {X 7→ R̂(X,Y )Z}.
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3. The Ricci tensor of real hypersurfaces in a complex space form

To prove the theorem, we prepare the following lemma.

Lemma 3.1. Let M be a real hypersurface in a complex space form Mn(c),

n ≥ 3, c 6= 0. If there exists an orthonormal frame {e1, . . . , e2n−2, ξ} on a suffi-

ciently small neighborhood N of x ∈ M such that the shape operator A can be

represented as

A =




a1 0 h1

. . .
... 0

. . .
...

0 a2n−2 0

h1 0 · · · 0 α




,

then we have

(a1 − aj)g(∇eie1, ej) + (aj − ai)g(∇e1ei, ej) + aih1g(φei, ej) = 0, (3.1)

(aj − a1)g(∇eiej , e1)− (ai − a1)g(∇ejei, e1) + h1(ai + aj)g(φei, ej) = 0, (3.2)

{2c− 2aiaj + α(ai + aj)}g(φei, ej)− h1g(∇eiej , e1) + h1g(∇ejei, e1) = 0, (3.3)

(a1 − ai)g(∇eie1, ei)− (e1ai) = 0, (3.4)

h1(2ai + a1)g(φei, e1) + (a1 − ai)g(∇e1ei, e1) + (eia1) = 0, (3.5)

(c+ a1α− a1ai − h2
1)g(φe1, ei)− (a1 − ai)g(∇ξe1, ei)

+ h1g(∇e1e1, ei) = 0 (3.6)

for any i, j ≥ 2, i 6= j.

Proof. By the equation of Codazzi, we have

g((∇eiA)e1 − (∇e1A)ei, ej) = 0,

where i, j = 2, . . . , 2n− 2. On the other hand, we have

g((∇eiA)e1 − (∇e1A)ei, ej) = g(∇ei(Ae1)−A∇eie1 −∇e1(Aei) +A∇e1ei, ej)

= (a1 − aj)g(∇eie1, ej) + (aj − ai)g(∇e1ei, ej) + aih1g(φei, ej).

Thus we obtain (3.1). By the similar computation, we have our results. ¤
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Theorem 3.2. LetM be a real hypersurface in a complex space formMn(c),

n ≥ 3, c 6= 0. We suppose that the Ricci tensor Ŝ of the generalized Tanaka–

Webster connection ∇̂(k) satisfies Ŝ(X,φY ) = λg(X,φY ) for any vector fields X

and Y , λ being a function.

(1) If c > 0 and k2 6= 4c, then M is a Hopf hypersurface.

(2) If c < 0, then M is a Hopf hypersurface.

Proof. By the definition of the g-Tanaka–Webster connection, we have

(see [5])

R̂(X,Y )Z = R(X,Y )Z + g
(
φ((∇XA)Y − (∇Y A)X), Z

)
ξ + 2g(φAY,Z)φAX

− 2g(φAX,Z)φAY + g
(
(∇Xφ)AY − (∇Y φ)AX,Z

)
ξ

− η(Z)
(
φ
(
(∇XA)Y − (∇Y A)X

)
+ (∇Xφ)AY − (∇Y φ)AX

)

− k
(
g
(
(φA+Aφ)X,Y

)
φZ + η(Y )(∇Xφ)Z − η(X)(∇Y φ)Z

)

+ g(φAX,FY Z)ξ − η(FY Z)φAX − kη(X)φFY Z

− g(φAY, FXZ)ξ + η(FXZ)φAY + kη(Y )φFXZ, (3.7)

where F is given by

FXY = g(φAX, Y )ξ − η(Y )φAX − kη(X)φY.

By the definition of g-Tanaka–Webster Ricci tensor, equation of Gauss and Co-

dazzi, direct calculation shows that

Ŝ(Y, Z) = 2ncg(Y, Z) + (trA− η(Aξ) + k)g(AY,Z)

− g(A2Y, Z)− g(φAφAY,Z)− kg(φAφY,Z) + η(AY )g(Aξ,Z)

+ η(Z)
(−2ncη(Y )− η(AY )trA+ η(A2Y )− kη(AY )

)
.

Now we use the following lemma of Ryan [10].

Lemma D. Let A be a symmetric tensor field of type (1, 1) on a connected

Riemannian manifold Mn. Then there exists λ1 ≥ λ2 ≥ · · · ≥ λn such that for

each point x, {λi(x)} (i = 1, . . . , n) are the eigenvalues of Ax.

For the shape operator A of a real hypersurfaceM , we consider the symmetric

tensor field φAφ of type (1, 1). By the above lemma, we can take an ortonormal

frame {v1, . . . , v2n−2, ξ} in a neighborhood of a point x such that φAφξ = 0,

φAφv1 = −a1v1, . . . , φAφv2n−2 = −a2n−2v2n−2. Then we have

g(Aφvi, φvj) = −g(φAφvi, vj) = 0 (i 6= j),

g(Aφvi, φvi) = −g(φAφvi, vi) = ai.
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We take an orthonormal frame {e1 = φv1, . . . , e2n−2 = φv2n−2, ξ} in a neighbor-

hood N of a point x. Then, in the neighborhood, A is of the form

A =




a1 · · · 0 h1

...
. . .

...
...

0 · · · a2n−2 h2n−2

h1 · · · h2n−2 α




,

where we have put hi = g(Aei, ξ), i = 1, . . . , 2n− 2, and α = g(Aξ, ξ).

The condition Ŝ(X,φY ) = λg(X,φY ) for any vector fields X and Y is equ-

ivalent to Ŝ(X,Y ) = λg(X,Y ) for any vector field X and any vector field Y

orthogonal to ξ. By the direct computation using the previous equation, we have

Ŝ(ξ, ξ) = 0, Ŝ(ei, ξ) = 0,

Ŝ(ξ, ei) = (trA− α+ k − ai)hi − g(φAφAξ, ei) = 0, (3.8)

Ŝ(ei, ei) = 2nc+ (trA)ai − a2i − αai + kai + (ai + k)g(Aφei, φei) = λ, (3.9)

Ŝ(ei, ej) = (ai + k)g(Aφei, φej) = 0 (i 6= j). (3.10)

In the following, we suppose that M is not a Hopf hypersurface. Then there

is a point x and hence an open neighborhood N of x where Aξ 6= αξ on N . Then

hi 6= 0 for some i.

If ai = −k for all i at some x ∈ N , then (3.9) and trA = −(2n − 2)k + α

imply that

2nc+ (2n− 4)k2 = λ.

By (3.8),

(trA− α+ 2k)hi + g(φAξ,Aφei) = 0.

Since g(φAξ,Aφei) = −khi, trA− α = −(2n− 2)k, we have

(2n− 3)khi = 0.

for all i. Thus we have k = 0. This contradicts to our assumption. Therefore,

ai 6= −k for some i. From (3.10), if ai 6= −k, then g(Aφei, φej) = 0 for all j 6= i.

Thus we set

Aφei = āiφei + h̄iξ,

where we have put āi = g(Aφei, φei) and h̄i = g(Aφei, ξ). We also have

Ŝ(φei, φei) = 2nc+ (trA)āi − ā2i − αāi + kāi + (āi + k)ai = λ. (3.11)
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Using (3.9) and (3.11), we obtain

(ai − āi)(trA− α− ai − āi) = 0.

When ai = āi, (3.9) implies

2nc− λ = ai(α− 2k − trA).

Otherwise, if ai 6= āi, then trA− α = ai + āi. Using (3.9), we obtain

2a2i − 2(trA− α)ai − k(trA− α)− 2nc+ λ = 0,

from which

(ai − aj)(trA− α− ai − aj) = 0

for aj that satisfies aj 6= k and aj 6= āj . If ai 6= aj , then trA−α = ai+aj = ai+āi.

Hence we have aj = āi. We put b = ai and b̄ = āi. They satisfy

b+ b̄ = trA− α, (3.12)

bb̄ = −k

2
(trA− α)− nc+

λ

2
. (3.13)

We remark that b 6= −k or b̄ 6= −k.

From these, in N , we have

A =




b h1

. . .

b

b̄
...

. . .

b̄

d
. . .

d

−k
. . .

−k h2n−2

h1 · · · h2n−2 α




,
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where

d = g(Aes, es) = g(Aφes, φes) 6= −k, 2nc− λ = d(α− 2k − trA). (3.14)

In the following, we use integers y, z, . . . for Aey = bey + hyξ, s . . . for Aes =

des + hsξ and v . . . for Aev = −kev. We denote by H1(x), H2(x), H3(x) and

H4(x) the subspaces of a tangential space at x spanned by {ey}, {φey}, {es} and

{ev}, respectively.
We suppose that dimH3(x) 6= 0 and dimH4(x) 6= 0 at some x ∈ N . Taking

es ∈ H3(x) and ev ∈ H4(x), (3.9) implies

Ŝ(ev, ev) = 2nc− k(trA)− 2k2 + αk = λ.

From this and (3.14), we have

(d+ k)(α− 2k − trA) = 0.

Since d 6= −k, then we have trA− α = −2k and 2nc− λ = 0.

Moreover, if dimH1(x) = dimH2(x) 6= 0, taking ey ∈ H1(x), (3.12), (3.13)

and (3.14) imply ay = b = −k and āy = b̄ = −k. This case cannot occur. Hence

we have dimH1(x) = dimH2(x) = 0. Then, by φes ∈ H3(x) and φev ∈ H4(x),

we have ai = āi for any i ∈ {1 . . . , 2n− 2}. Thus, by (3.8) and trA− α = −2k,

(−k − ai)hi − g(φAφAξ, ei) = −khi = 0

for all i. This implies k = 0. This contradicts to our assumption.

So, we see that dimH3(x) = 0 or dimH4(x) = 0 at any point x ∈ N , that is,

A =




b h1

. . .

b

b̄
...

. . .

b̄

f
. . .

f h2n−2

h1 · · · h2n−2 α




,
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When dimH4 = 0, f denotes as = d. We remark that f = d satisfies (3.14).

Otherwise, when dimH3 = 0, f denotes av = −k. In this case, we see that

āv = −k by the definition of b and b̄. Thus, using (3.9), f = −k also satisfies

2nc− λ = −k(α− 2k − trA).

Hence, f = f̄ and f satisfies

2nc− λ = f(α− 2k − trA) (3.15)

in both cases.

In the following, we use integers s . . . for Aes = fes+hsξ and redefine H3(x)

as the subspaces of a tangential space at x spanned by {es}.
By a direct computation using (3.8),

(trA− α+ k − b+ b̄)hy = 0, (3.16)

(trA− α+ k + b− b̄)h̄y = 0, (3.17)

(trA− α+ k)hs = 0. (3.18)

Lemma 3.3. We have hs = 0 for all es ∈ H3.

Proof. If there exists es ∈ H3 that satisfies hs 6= 0 at some x, and hence

on some neighborhood N ′ ⊂ N , then

trA− α+ k = 0.

From (3.16) and (3.17), we have

(−b+ b̄)hy = 0, (b− b̄)h̄y = 0.

Since b 6= b̄, we have hy = 0 and h̄y = 0 for all y. The direct computation shows

that

|tE −A| = (t− b)p(t− b̄)p(t− f)q−1

{
(t− f)(t− α)−

q∑
s=1

h2
s

}
,

where p and q are the multiplicities of b and f , respectively. We remark that

2p+ q = 2n− 2.

Suppose Ae′ = fe′ is satisfied by e′ = X + βξ, where X ∈ H3. Since

AX = fX + hξ for some h, we obtain

Ae′ = fX + hξ + β

(∑
hses + αξ

)
.
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On the other hand, we have

Ae′ = f(X + βξ) = fX + fβξ.

From these equations, we obtain

β
∑

hses + (h+ αβ − fβ)ξ = 0.

Since hs 6= 0 for some es, we have β = 0, that is, g(e′, ξ) = 0. Thus, in N ′, we
can represent the shape operator A by a following matrix with respect to a local

orthonormal frame {e1, . . . , ep, φe1, . . . , φep, e2p+1, . . . , e2n−2, ξ}:

A =




b 0
. . .

b

b̄
. . .

...

b̄

f
. . . 0

f h2n−2

0 · · · 0 h2n−2 α




.

From (3.15) and (3.18) we obtain

2nc− λ = −fk, trA− α = −k.

We now suppose that there is a point x in N ′ where p 6= 0. Then (3.12) implies

−(p− 1)k + qf = 0.

By (3.13), we also have

bb̄ =
1

2
(k2 + fk).

Using b+ b̄ = trA− α = −k, we see
(
b+

k

2

)2

+
1

4
(k + 2f)k = 0.

Since (p − 1)k = qf , we see fk ≥ 0. This implies that k + 2f = 0 and hence

(2p− 2 + q)k = 0. Thus we have k = 0. This contradicts to our assumption.

Let us suppose that p = 0 on N ′ of x. Then trA − α = (2n − 2)f = −k

shows that f is non-zero constant on N ′ of x. By (3.5), we see that h2n−2f = 0.

This is also a contradiction. This proves our lemma. ¤
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If there exist ey ∈ H1 and φez ∈ H2 that satisfy hy 6= 0 and h̄z 6= 0, (3.16)

and (3.17) implies b = b̄. This case cannot occur. So it is sufficient to consider

the case that h̄y = 0 for any φey ∈ H2. Using (3.12) and (3.16), we have

b = trA− α+
k

2
, b̄ = −k

2
. (3.19)

By the similar calculation as Lemma 3.3, in N , we can represent the shape opera-

tor A by a following matrix with respect to an orthonormal frame {e1, . . . , ep, φe1,
. . . , φep, e2p+1, . . . , e2n−2, ξ}:

A =




b h1

. . . 0

b

b̄
. . .

b̄
...

f
. . .

f 0

h1 0 · · · 0 α




.

Then we have

trA = p(b+ b̄) + qf + α.

Using (3.12),

(p− 1)(b+ b̄) + qf = 0. (3.20)

First, we suppose that trA − α = b + b̄ 6= 0 at a point x and hence an open

neighborhood N ′′ ⊂ N of x. Then (3.20) implies that q 6= 0 on N ′′. Because, if

q = 0 at some point x ∈ N ′′, then p − 1 = 0 and hence n = 2. This contradicts

to n ≥ 3. From (3.13) and (3.19), we have

−k2

4
= −nc+

λ

2
, (3.21)

from which we see that −nc + (λ/2) 6= 0 and λ is constant on N ′′. Thus, by

(3.15) and (3.20), we obtain f 6= 0 and p 6= 1. So we have p ≥ 2. Using (3.15)

and (3.19),

2nc− λ = f(α− 2k − trA) = f
(
−b− 3

2
k
)
. (3.22)
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From (3.19), (3.20), (3.22) and 2p+ q = 2n− 2, we obtain

b2 + kb− 3

4
k2 − (2nc− λ)(2n− 2p− 2)

p− 1
= 0.

Since b is continuous and p is positive integer, we see that b is constant. So (3.22)

implies that f is also constant on N ′′.
We put AU = bU + h1ξ and AZ = fZ. By the equation of Codazzi, compu-

ting g((∇ZA)U − (∇UA)Z, φZ), we have

(b− f)g(∇ZU, φZ) + fh1 = 0

on N ′′. Similarly, computing g((∇ZA)φU − (∇φUA)Z,Z),

(b̄− f)g(∇ZφU,Z) = 0.

If b̄ = f , then (3.21) and (3.22) imply that b = b̄ = −k/2. This case cannot occur.

So we have g(∇ZφU,Z) = 0. On the other hand, we obtain

g(∇ZU, φZ)= −g(U, (∇Zφ)Z)−g(U, φ∇ZZ)= g(φU,∇ZZ)= −g(∇ZφU,Z)= 0.

From these we have fh1 = 0. This contradicts to f 6= 0.

Finally, we consider the case trA−α = b+ b̄ = 0 on N ′′. Then (3.20) implies

that qf = 0. If f = 0, then (3.15) gives 2nc− λ = 0 and hence, by (3.13), we see

bb̄ = −k2

4
= 0,

which contradicts to k 6= 0. So we have q = 0 on N ′′.
From (3.13), (3.19) and (3.20),

b = −b̄ =
k

2
, bb̄ = −nc+

λ

2
.

We can choose an orthonormal frame {e1, e2, . . . , en−1, en, . . . , e2n−2, ξ} on M

which satisfies Ae1 = be1 + h1ξ, Aey = bey for y = 2, . . . , n− 1 and Aφey = b̄φey
for y = 1, . . . , n − 1. Then, in N ′′, the shape operator A is represented by the

following

A =




b h1

. . . 0

b

b̄
...

. . .

b̄ 0

h1 0 · · · 0 α




.

Using Lemma 3.1, we have
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Lemma 3.4. Let φey ∈ H2 be perpendicular to φe1. Then,

∇e1e1 =
h1

2
φe1, (3.23)

∇φeye1 =
2c+ 2nc− λ

h1
ey. (3.24)

Proof. Using (3.5), we have g(∇e1φey, e1) = −g(∇e1e1, φey) = 0. On the

other hand, putting ei = φe1 in (3.5),

h1(2b̄+ b)g(φ2e1, e1) + (b− b̄)g(∇e1φe1, e1) = 0,

from which we obtain

g(∇e1e1, φe1) =
h1

2
.

By (3.6), we see that g(∇e1e1, ey) = 0 for any ey ∈ H1. Since g(∇e1e1, ξ) =

−g(e1, φAe1) = 0, we have (3.23).

Next, putting ei = φey and ej = φez in (3.1), we have g(∇φeye1, φez) = 0 for

any φey, φez ∈ H2, y 6= z. Moreover, we have g(∇φeye1, φey) = 0 by (3.4). On

the other hand, using (3.2), we see that

g(∇ezφey, e1) = 0 (3.25)

for any ez ∈ H1. Thus, putting ei = ez and ej = φey in (3.3), direct calculation

shows that

g(∇φeye1, ez) =
2c+ 2nc− λ

h1
g(φez, φey).

Since g(∇φeye1, ξ) = 0 and g(∇φeye1, e1) = 0, we have (3.24). ¤

Using this lemma, we compute the sectional curvature spanned by e1 and

φey ⊥ φe1. From (3.23), we have

g(∇φey∇e1e1, φey) = −h1

2
g(φe1,∇φeyφey).

Since g(φe1, φey) = 0, we have

g(φe1,∇φeyφey) = −g(∇φeyφe1, φey) = −g(φ∇φeye1, φey)

= −g(∇φeye1, ey) =
−2c− 2nc+ λ

h1
.

Thus we obtain

g(∇φey∇e1e1, φey) = c+ nc− λ

2
.
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On the other hand, by (3.24),

g(∇e1∇φeye1, φey) = ∇e1g(∇φeye1, φey)− g(∇φeye1,∇e1φey)

=
−2c− 2nc+ λ

h1
g(ey,∇e1φey).

Putting ei = φey and ej = ey in (3.1), we have g(∇e1φey, ey) = −h1/2. From

these equations, we obtain

g(∇e1∇φeye1, φey) = c+ nc− λ

2
.

Next, we see that

g(∇[φey,e1]e1, φey) = g(∇ξe1, φey)g(ξ, [φey, e1]) + g(∇e1e1, φey)g(e1, [φey, e1])

+
∑

z≥2

g(∇eze1, φey)g(ez, [φey, e1]) +
∑

z≥1

g(∇φeze1, φey)g(φez, [φey, e1]) = 0.

Here we note that we have g(∇φezφey, e1) = 0 for z 6= y from (3.1) and

g(∇φeyφey, e1) = 0 from (3.4).

From these equations, we see that

g(R(φey, e1)e1, φey) = g(∇φey∇e1e1, φey)− g(∇e1∇φeye1, φey)

− g(∇[φey,e1]e1, φey) = 0.

On the other hand, the equation of Gauss implies that

g(R(φey, e1)e1, φey) = c+ bb̄ = c− nc+
λ

2
.

So we have nc − λ/2 = c. Since bb̄ = −c and b = −b̄ = k/2, we see that c > 0,

b2 = c and k2 = 4c. This contradicts to our assumption k2 6= 4c.

From these considerations we see that M has no point x where Aξ 6= αξ, and

hence M is a Hopf hypersurface. This proves our theorem. ¤

Using Theorem 3.2 and Theorem B-C, we have our main result.

Theorem 3.5. LetM be a real hypersurface in a complex space formMn(c),

n ≥ 3, c 6= 0. We suppose that the Ricci tensor Ŝ of the generalized Tanaka–

Webster connection ∇̂(k) satisfies Ŝ(X,φY ) = λg(X,φY ) for any vector fields X

and Y , λ being a function.

(1) If M is a real hypersurface in CPn and k2 6= 4, then M is locally congruent

to one of the following:
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(a) a geodesic hypersphere with k2 ≥ (2n− 2)(2n− λ),

(b) a tube over a totally geodesic CP l (1 ≤ l ≤ n− 2) with λ = 2n.

(2) If M is a real hypersurface in CHn, then M is locally congruent to one of

the following:

(a) a geodesic hypersphere with k2 ≥ (−2n− 2)(2n− λ),

(b) a tube over a complex hyperbolic hyperplane with

k2 ≥ (−2n− 2)(2n− λ),

(c) a horosphere with λ = 2k − 2,

(d) a tube over a totally geodesic CH l (1 ≤ l ≤ n− 2) with λ = −2n.

Proof. From Theorem 3.2, M is a Hopf hypersurface of Mn(c). Then Pro-

position A shows

(2β − α)AφX = (βα+ 2c)φX,

where AX = βX, g(X, ξ) = 0 and α = g(Aξ, ξ). We notice that α is constant. If

2β−α = 0, then βα+2c = 0, and hence α2+4c = 0. Thus we have c < 0 and M

has two distinct constant principal curvatures α and b with multiplicities 1 and

2n − 2 respectively. Moreover b is constant and M is a horosphere of principal

curvatures 2 and 1 with multiplicities 1 and 2n − 2, respectively (see Berndt

[1]). By (3.9) and c = −1, we have λ = 2k − 2.

In the following, we assume that 2β − α 6= 0. Then

AφX =
βα+ 2c

2β − α
φX.

We put β̄ = (βα+ 2c)/(2β − α). Then, by the assumption on Ŝ, we obtain

λ = 2nc+ (trA− α+ k)β − β2 + ββ̄ + kβ̄,

λ = 2nc+ (trA− α+ k)β̄ − β̄2 + β̄β + kβ. (3.26)

These imply

0 = (β − β̄)(trA− α− β − β̄).

Suppose β 6= β̄. Then trA − α − β − β̄ = 0. Substituting β̄ = trA − α − β into

the equation above, we obtain

2β2 − 2(trA− α)β − k(trA− α)− 2nc+ λ = 0. (3.27)

Therefore, β satisfies the quadratic equation

2t2 − 2(trA− α)t− k(trA− α)− 2nc+ λ = 0.
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From this we see that at most two distinct β satisfies the above equation. But β̄

also satisfies the above quadratic equation, and M has two principal curvatures

b and b̄ with multiplicities p and p, 0 ≤ p ≤ n− 1, that satisfies b 6= b̄.

We next suppose that β = β̄. Then β2 − αβ − c = 0. Therefore, M has

at most two non-zero distinct constant principal curvatures d and f such that

d = d̄, f = f̄ with multiplicities q and r, respectively, where 2p+ q+ r = 2n− 2.

On the other hand, from (3.26), we have

2nc− λ+ (trA− α+ 2k)d = 0, 2nc− λ+ (trA− α+ 2k)f = 0. (3.28)

If M has 5 distinct principal curvatures b 6= b̄, d, f and α, then the above

equations show that trA − α + 2k = 0 and 2nc − λ = 0 since d 6= f . Moreover,

from (3.27), we have 2b2 +4kb+2k2 = 2(b+ k)2 = 0 and (b̄+ k)2 = 0. Hence we

obtain b = b̄ = −k. This contradicts to the assumption b 6= b̄.

We now suppose that M has 4 distinct principal curvatures b 6= b̄, d, α. Then

we have

trA− α = b+ b̄ = p(b+ b̄) + qd.

From this and 2p+ q = 2n− 2,

(p− 1)(b+ b̄) + (2n− 2p− 2)d = 0.

We notice that b and b̄ is continuous. Since p is positive integer and d is non-zero

constant, we see that p 6= 1 and b+ b̄ is constant. Moreover, trA−α is constant.

So (3.28) shows that λ is constant. Hence, from (3.27), b and b̄ are also constant.

But there is no Hopf hypersurface with constant four principal curvatures.

IfM has two constant principal curvatures d and α, then trA−α = (2n−2)d.

From (3.26),

(2n− 2)d2 + 2kd+ 2nc− λ = 0.

This gives a root when

k2 − (2n− 2)(2nc− λ) ≥ 0.

Next, if M has three distinct principal curvatures b, b̄ and α, then

trA− α = b+ b̄ = (n− 1)(b+ b̄).

Hence we have b+ b̄ = trA− α = 0. On the other hand, b and b̄ satisfy

b+ b̄ =
2b2 + 2c

2b− α
= 0.

Thus we have c < 0. But the condition c < 0 implies that the principal curvatu-

res b and b̄ are positive. This contradicts to b+ b̄ = 0.
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Finally we consider the case that M has three constant principal curvatures

d, f , α, where d = d̄, f = f̄ . Since d 6= f , we have

trA− α = −2k, 2nc− λ = 0.

From these considerations and Theorems B, C we have our assertion. ¤
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