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On the Ricci tensor and the generalized Tanaka—Webster
connection of real hypersurfaces in a complex space form

By MAYUKO KON (Nagano)

Abstract. We prove that the Ricci tensor S with respect to the generalized Tana-
ka—Webster connection of a real hypersurface with the almost contact structure (n, ¢, & g)
in a complex space form of complex dimension n > 3 satisfies g(X, oY) = Ag(X, ¢Y)
for any vector field X and Y, A being a function, if and only if the real hypersurface is
locally congruent to some type (A) hypersurface.

1. Introduction

Tanaka—Webster connection is a unique affine connection on a non-degener-
ate, pseudo-Hermitian C'R manifold which associated with the almost contact
structure ([12], [14]). TANNO [13] gave the generalized Tanaka—Webster connec-
tion (g-Tanaka—Webster connection) for contact metric manifolds, which coinci-
des with Tanaka—Webster connection if the associated C R-structure is integrable.
For a real hypersurface in a Kéahlerian manifold with an almost contact metric
structure (1, ¢, &, g), in [3] and [4], CHO defined the g-Tanaka—Webster connection
V&) for a non-zero real number k. Then we can see that @(k)n =0, @(’“)5 =0,
§(k)g =0, @(k)(b = 0. Moreover, if the shape operator A of a real hypersurface
satisfies pA + A¢ = 2ko, then the g-Tanaka—Webster connection V*) coincides
with the Tanaka—Webster connection.
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For real hypersurfaces in a complex space form M™(c¢) of constant holom-
orphic sectional curvature 4c¢ # 0, one of the major problem is to determine
real hypersurfaces satisfying certain geometrical assumptions. CHO [5] determi-
ned flat Hopf hypersurfaces in a non-flat complex space form with respect to
the g-Tanaka—Webster connection. Besides, he classified Hopf hypersurfaces in
a non-flat complex space form which admits a pseudo-Einstein C'R-structure for
the g-Tanaka—Webster connection.

The purpose of this paper is to study real hypersurfaces in a complex space
form whose Ricci tensor S with respect to the g-Tanaka—Webster connection V&)
satisfies §(X7 dY) = Ag(X, ¢Y) for any vector fields X and Y.

The author would like to express her sincere gratitude to Professor P. F. Le-
ung for his valuable advice. Also, the author would like to thank the referee for
valuable comments.

2. Preliminaries

Let M™(c) denote the complex space from of complex dimension n (real
dimension 2n) of constant holomorphic sectional curvature 4c. For the sake of
simplicity, if ¢ > 0, we only use ¢ = 41 and call it the complex projective space
CP™, and if ¢ < 0, we just consider ¢ = —1, so that we call it the complex
hyperbolic space CH™. We denote by J the almost complex structure of M™(c).
The Hermitian metric of M"(c) will be denoted by G.

Let M be a real (2n — 1)-dimensional hypersurface immersed in M™(c). We
denote by ¢ the Riemannian metric induced on M from G. We take the unit
normal vector field V' of M in M™(c). For any vector field X tangent to M, we
define ¢, n and & by

JX = ¢X +n(X)V, JV ==&,

where ¢X is the tangential part of JX, ¢ is a tensor field of type (1,1), n is a
1-form, and £ is the unit vector field on M. Then they satisfy

n(X) =g(X,§), g(¢X,9Y)=g(X,Y)—n(X)n(Y).

Thus (¢,&,7,9g) defines an almost contact metric structure on M. Let Hy denote
the holomorphic distribution on M defined by Hy(z) = {X € T,(M) | n(X) = 0}.
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We denote by V the operator of covariant differentiation in M"(c), and by V
the one in M determined by the induced metric. Then the Gauss and Weingarten
formulas are given respectively by

VxY =VxY +g(AX,Y)V,  VxV =-AX

for any vector fields X and Y tangent to M. We call A the shape operator of M.
From the Gauss and Weingarten formulas, we have

Vx§=0AX,  (Vx@)Y =n(Y)AX — g(AX,Y)¢.

We denote by R the Riemannian curvature tensor field of M. Then the equation
of Gauss is given by

R(X.Y)Z = c{g(Y, Z)X — g(X, 2)Y + (Y. 2)6X — g(¢X, Z)dY
— 29(¢X,Y)$Z} + g(AY, Z)AX — g(AX, Z)AY,

and the equation of Codazzi by
(VxA)Y — (Vy A)X = c{n(X)pY —n(Y)opX —29(¢X,Y)E}

If A¢ = A, X being a function, then M is called a Hopf hypersurface. There
are many results for real hypersurfaces in complex space forms under the as-
sumption that they are Hopf hypersurfaces. By the Codazzi equation, we have
the following result (c.f. [8]).

Proposition A. Let M be a Hopf hypersurface in M"(¢), n > 2, If X 1 &
and AX = X, then o = g(AE, €) is constant and

(28 — a)AdX = (Ba + 2¢)pX.

We use the following results for the proof of the main theorem.

Theorem B ([7]). Let M be a Hopf hypersurface in CP™. Then M has
constant principal curvatures if and only if M is locally congruent to one of the
following:

(A1) a geodesic hypersphere of radius r, where 0 < r < 7/2,
(A3) a tube over a totally geodesic CP' (1 <1< n —2), where 0 < r < 7/2,

(B) a tube of radius r over a complex quadric Q"1 and RP", where 0 <
r<m/4
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(C) a tube of radius r over CP! x CP"z", where 0 < r < /4 and n (> 5)
is odd,

(D) a tube of radius r over a complex Grassmann CGs 5, where 0 < r < /4
andn =9,

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5),
where 0 < r < 7/4 and n = 15.

Theorem C ([1]). Let M be a Hopf hypersurface in CH™. Then M has
constant principal curvatures if and only if M is locally congruent to one of the
following:

(Ap) a horosphere,

(A1) a tube over a complex hyperbolic hyperplane CH* (k = 0,n — 1),

(As) a tube over a totally geodesic CH' (1 <1< n —2),

(B) a tube over a totally real hyperbolic space RH™.

Next we introduce the notion of Tanaka—Webster connection and its generali-
zation. TANAKA [12] defined the canonical affine connection on a non-degenerate,
pseudo-Hermitian C'R manifold. As a generalization of Tanaka—Webster connec-

tion, TANNO [13] defined the g-Tanaka—Webster connection for contact metric
manifolds by

VxY =VxY + (Vxn)(Y)E —n(Y)VxE —n(X)gY,

where (1, ¢,&, g) is a contact metric structure. Using the naturally extended af-
fine connection of Tanno’s g-Tanaka—Webster connection, the g-Tanaka—Webster
connection V) for real hypersurfaces in Kéhler manifold is given by,

VEY = VxY + g(0AX, Y)E — n(Y)9AX — kn(X)oY
for a non-zero real number k (see CHO [3], [4]). Then we see that
vhp =0, vbe=0, Vv®g=0, Vv®g¢=0.

In particular, if the shape operator of a real hypersurface satisfies oA+ A¢p = 2k¢,
then the g-Tanaka—Webster connection coincides with the Tanaka—Webster con-
nection. Next we define the g-Tanaka—Webster curvature tensor R with respect
to V(¥) by

R(X,Y)Z =Vx(VyZ) —Vy(VxZ) — Vixy|Z

for all vector fields X,Y,Z in M. We denote by S the g-Tanaka Webster Ricci
tensor, which is defined by

S(Y, Z) = trace of {X — R(X,Y)Z}.
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3. The Ricci tensor of real hypersurfaces in a complex space form

To prove the theorem, we prepare the following lemma.

Lemma 3.1. Let M be a real hypersurface in a complex space form M"(c),
n > 3, ¢ # 0. If there exists an orthonormal frame {ey,...,ea,_2,£} on a suffi-
ciently small neighborhood N of x € M such that the shape operator A can be
represented as

ai 0 h1
0
A= :
0 aon—2 | 0
h1 0 O (e

then we have

(a1 —a;)g(Ve,en,e5) + (aj — ai)g(Ve, €, €5) + aihig(dei, e;) = 0,
ai —a1)g(Ve,ei, e1) + hi(a; + a;)g(gei, e;) =0,

(3

(aj —a1)g(Vee5,€1) — (3
tg(deirej) — h1g(Ve,ej,e1) + hi1g(Ve,eier) =0, (3.
(3

(3

(
{2¢ - 2a;a; + a(a; + aj)
(a1 —a;)g(Ve,e1,€;) — (e1a;) =0,
hi(2a; + a1)g(pei, e1) + (a1 — a;)g(Ve, €5, €1) + (e;a1) = 0,
(c+ ara —ara; — hi)g(der, e;) — (a1 — a;)g(Veer, e;)

+ h1g(Ve,e1,€,) =0 (3.6)
forany i,j > 2,4 # j.

PRrROOF. By the equation of Codazzi, we have
g((veiA)el - (velA)eia ej) =0,
where 4,5 = 2,...,2n — 2. On the other hand, we have

g((veiA)el - (velA)ei’ ej) = g(vfii (Ael) - Aveiel - v€1 (Aei) + Aleei’ ej)
= (a1 — a;)g(Ve,e1,€5) + (aj — a;)g(Ve, €, €5) + aihig(gei, e;).

Thus we obtain (3.1). By the similar computation, we have our results. (]
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Theorem 3.2. Let M be a real hypersurface in a complex space form M™(c),
n > 3, ¢ # 0. We suppose that the Ricci tensor S of the generalized Tanaka—
Webster connection V) satisfies S(X, oY) = M\g(X, ¢Y) for any vector fields X
and Y, A being a function.

(1) If ¢ > 0 and k? # 4c, then M is a Hopf hypersurface.
(2) If ¢ <0, then M is a Hopf hypersurface.
PRrROOF. By the definition of the g-Tanaka-Webster connection, we have
(see [5])
R(X,Y)Z = R(X,Y)Z + g(¢((VxA)Y — (Vy A)X), Z)§ + 2g(¢AY, Z)pAX
—29(¢AX, Z)pAY +g((Vxd)AY — (Vy¢)AX, Z)¢

= (Z2)(6((VxA)Y = (Vy A)X) + (Vx0)AY - (Vy6)AX)

—k(g((6A+ 40)X,Y)0Z +1(Y)(Vx#)Z —1(X)(Vy)Z)
+ 9(QAX, Fy Z)§ — n(Fy Z)pAX — kn(X)pFy Z
— g(QAY, Fx 2)¢ + n(Fx Z)pAY + kn(Y)oFx Z, (3.7)
where F' is given by
FxY = g(¢AX,Y){ —n(Y)pAX — kn(X)eY.

By the definition of g-Tanaka—Webster Ricci tensor, equation of Gauss and Co-
dazzi, direct calculation shows that
S(Y,Z) = 2ncg(Y, Z) + (trA — n(A€) + k)g(AY, 2)
— 9(A%Y, Z) — g(pAPAY, Z) — kg(¢AdY, Z) + 1(AY )g(A¢E, Z)
+n(Z)(—2nen(Y) — n(AY )trA + n(A%Y) — kn(AY)).
Now we use the following lemma of RyAN [10].

Lemma D. Let A be a symmetric tensor field of type (1,1) on a connected
Riemannian manifold M™. Then there exists Ay > Ao > -+ > \,, such that for
each point x, {\;(z)} (i =1,...,n) are the eigenvalues of A,.

For the shape operator A of a real hypersurface M, we consider the symmetric
tensor field pA¢ of type (1,1). By the above lemma, we can take an ortonormal
frame {v1,...,v2,-2,£} in a neighborhood of a point x such that ¢APS = 0,
¢A¢U1 = —Qa1V1,..., ¢A¢U2n_2 = —Aa2p—2V2n—2. Then we have

g(A¢Ui7¢Uj) = 79(¢A¢Ui7vj) =0 (27&])3
9(Agv;, pv;) = —g(dAPv;, v;) = a;.
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We take an orthonormal frame {e; = ¢v1,...,ean_2 = Pv2,_2,&} in a neighbor-
hood A of a point 2. Then, in the neighborhood, A is of the form

aq e 0 hl

A— : - : : 7
0 -+ azp—2 | han—o
hy - hop—o ‘ «@

where we have put h; = g(A4e;, &), i=1,...,2n — 2, and a = g(A&,§).

The condition S‘(X, dY) = Ag(X, ¢Y) for any vector fields X and Y is equ-
ivalent to S(X,Y) = Ag(X,Y) for any vector field X and any vector field Y
orthogonal to . By the direct computation using the previous equation, we have

S(6,6) =0, S(ei,€) =0,

S(& ei) = (trA — a + k — a;)h; — g($APAE, e;) = 0, (3.8)
S(ei,ei) = 2ne + (trA)a; — a? — aa; + ka; + (a; + k)g(Ades, de;) = A, (3.9)
S(ei,ej) = (a; + k)g(Age;, pe;) =0 (i # 7). (3.10)

In the following, we suppose that M is not a Hopf hypersurface. Then there
is a point z and hence an open neighborhood N of x where A¢ # o on A. Then
h; # 0 for some 1.

If a; = —k for all ¢ at some x € N, then (3.9) and trA = —(2n — 2)k + «
imply that

2nc + (2n — 4)k* = \.
By (3.8),
(trA — a + 2k)h; + g(pAE, Ade;) =0

Since g(pAE, Age;) = —kh;, trA — a = —(2n — 2)k, we have
(2n — 3)kh; = 0.

for all . Thus we have £ = 0. This contradicts to our assumption. Therefore,
a; # —k for some 7. From (3.10), if a; # —k, then g(Ag¢e;, pe;) = 0 for all j # 1.
Thus we set

Ade; = aige; + hik,
where we have put @; = g(Ade;, de;) and h; = g(Age;, &). We also have

S(pes, pe;) = 2ne + (trA)a; — a2 — ad; + ka; + (a; + k)a; = \. (3.11)
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Using (3.9) and (3.11), we obtain
(a; —a;)(trA —a—a; —a;) = 0.
When a; = a;, (3.9) implies
2ne — X = a;(a — 2k — trA).
Otherwise, if a; # a;, then trA — « = a; + @;. Using (3.9), we obtain
2a? — 2(trA — a)a; — k(trA — a) — 2nc+ A =0,

from which
(a; —a;)(trA—a—a; —aj) =0

for a; that satisfies a; # k and a; # a;. If a; # a;, thentr A—a = a;+a; = a;+a;.
Hence we have a; = a;. We put b = a; and b = a;. They satisfy

b+b=trd —a, (3.12)
bB:fg(trAfa)fnch%. (3.13)

We remark that b # —k or b # —k.
From these, in A/, we have

b h1
b
b
b
A= d ,
d
—k
—k h2n72
hl [N hgn_g (0%
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where
d = g(Aes, es) = g(Ades, pes) # —k, 2nec — A =d(a—2k —trd). (3.14)

In the following, we use integers y,z,... for Aey, = bey + h,&, s... for Aey, =
des + hs€ and v... for Ae, = —ke,. We denote by H;(z), Hy(z), H3(x) and
Hy(x) the subspaces of a tangential space at « spanned by {e,}, {¢e,}, {es} and
{ey }, respectively.

We suppose that dim H3(z) # 0 and dim Hy(z) # 0 at some x € N. Taking
es € Hs(z) and e, € Hy(x), (3.9) implies

S(ey, ey) = 2nc — k(trA) — 2k + ak = A.
From this and (3.14), we have
(d+k)(a—2k—trA) =0.

Since d # —k, then we have trA — a = —2k and 2nc — A = 0.

Moreover, if dim Hq(z) = dim Ha(z) # 0, taking e, € Hi(x), (3.12), (3.13)
and (3.14) imply a, = b = —k and a, = b = —k. This case cannot occur. Hence
we have dim Hy(z) = dim Ha(x) = 0. Then, by ¢es; € Hz(x) and ¢e, € Hy(x),

we have a; = a; for any 7 € {1...,2n — 2}. Thus, by (3.8) and tr4 — o = —2k,
(—k - az)hz — g((bA(bAg, €i) = —khl =0

for all ¢. This implies k = 0. This contradicts to our assumption.
So, we see that dim Hs(z) = 0 or dim Hy(z) = 0 at any point « € NV, that is,

b hi
b
b
A= B ;
b
f
f h2n72
hi ce hon—2 (64
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When dim Hy = 0, f denotes a; = d. We remark that f = d satisfies (3.14).
Otherwise, when dim Hs = 0, f denotes a, = —k. In this case, we see that
d, = —k by the definition of b and b. Thus, using (3.9), f = —k also satisfies

2ne — A = —k(a — 2k — trd).
Hence, f = f and f satisfies

2ne— A= fla—2k —trA) (3.15)
in both cases.
In the following, we use integers s... for Ae; = fes+hs§ and redefine Hs(x)
as the subspaces of a tangential space at x spanned by {es}.
By a direct computation using (3.8),

(trA—a+k—b+bh, =0, (3.16)
(trA—a+k+b—bh, =0, (3.17)
(trA — a+ k)hs = 0. (3.18)

Lemma 3.3. We have hy, = 0 for all e, € Hs.

PROOF. If there exists e, € H3 that satisfies hy; # 0 at some x, and hence
on some neighborhood N’/ C N, then

trA—a+k=0.
From (3.16) and (3.17), we have
(=b+b)h, =0, (b—1b)h, =0.

Since b # b, we have h, = 0 and h, = 0 for all y. The direct computation shows
that

6E — A] = (t — by (t — BYP(t f>q-1{<t CPt-a) - Zhi},

where p and ¢ are the multiplicities of b and f, respectively. We remark that
2p+q=2n-2.

Suppose Ae’ = fe' is satisfied by ¢ = X + B¢, where X € Hs. Since
AX = fX + h& for some h, we obtain

Ae’zfX+h§+B<Zhses+a§>.
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On the other hand, we have
Ae' = f(X + BE) = X + B¢
From these equations, we obtain
B> hses+ (h+aB — fB)E=0.

Since hs # 0 for some e;, we have 8 = 0, that is, g(¢/,£) = 0. Thus, in N, we
can represent the shape operator A by a following matrix with respect to a local

orthonormal frame {e1,..., ey, de1,...,Pep, €2p41,...,€m—2,&}:
b 0
b
b
A= _
b
f
0
/ hon_2

0 s 0 hgn,Q «

From (3.15) and (3.18) we obtain
2nc — X = —fk, trA—oa=—k.
We now suppose that there is a point « in N’ where p # 0. Then (3.12) implies
—(p—-1k+gqf=0.
By (3.13), we also have
b — %(k? +IR).

Using b+b=tr A —a = —k, we see

2

Since (p — 1)k = qf, we see fk > 0. This implies that k + 2f = 0 and hence
(2p — 2+ ¢)k = 0. Thus we have k = 0. This contradicts to our assumption.

Let us suppose that p = 0 on N’ of z. Then trA —a = (2n —2)f = —k
shows that f is non-zero constant on N’ of z. By (3.5), we see that ho,_of = 0.

2
(b+ k) +i(k+2f)k:0.

This is also a contradiction. This proves our lemma. ([l
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If there exist e, € Hy and ¢e, € Hs that satisfy h, # 0 and h, # 0, (3.16)
and (3.17) implies b = b. This case cannot occur. So it is sufficient to consider
the case that h, = 0 for any ¢e, € Hy. Using (3.12) and (3.16), we have

k- k
b=trA — — b=——. 3.19
T a+2, 5 ( )

By the similar calculation as Lemma 3.3, in N/, we can represent the shape opera-

tor A by a following matrix with respect to an orthonormal frame {e, ..., ep, deq,
R ¢€;D7 €2p+1,---,€2n—2; f}
b hy
0
b
b
A= B
b
f

fl10
hy O e 0| «

Then we have
trA=p(b+b)+qf + .

Using (3.12),
(p—1)(b+b)+qf =0. (3.20)

First, we suppose that trA —a = b4+ b # 0 at a point 2 and hence an open
neighborhood N/ C N of z. Then (3.20) implies that ¢ # 0 on N”’. Because, if
g = 0 at some point z € N/, then p — 1 = 0 and hence n = 2. This contradicts
to n > 3. From (3.13) and (3.19), we have

k? A
et (3.21)

from which we see that —nc + (A/2) # 0 and A is constant on A”/. Thus, by
(3.15) and (3.20), we obtain f # 0 and p # 1. So we have p > 2. Using (3.15)
and (3.19),

2nc— A= f(a—2k —trd) = f(—b— gk) (3.22)
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From (3.19), (3.20), (3.22) and 2p + ¢ = 2n — 2, we obtain

b2+kb7§k27 (2nc—N)(2n —2p —2)
4 p—1

Since b is continuous and p is positive integer, we see that b is constant. So (3.22)

=0.

implies that f is also constant on N”’.
We put AU = bU + hi€ and AZ = fZ. By the equation of Codazzi, compu-
ting g(VzA)U — (VuA)Z,¢Z), we have

(b= Ng(VzU,9Z) + fh1 =0
on N, Similarly, computing g((VzA)pU — (VevA)Z, Z),
(b— fg(VzeU,Z) = 0.
If b = f, then (3.21) and (3.22) imply that b = b = —k/2. This case cannot occur.
So we have g(Vz¢U, Z) = 0. On the other hand, we obtain
9(VzU,02)=—g(U,(V20)Z) —g(U,¢V 22Z) = g(¢U,V 2Z) = — g(V 20U, Z) = 0.

From these we have fh; = 0. This contradicts to f # 0.
Finally, we consider the case tr A—a = b+b = 0 on N”". Then (3.20) implies
that ¢f = 0. If f =0, then (3.15) gives 2nc — A = 0 and hence, by (3.13), we see
- k2
b=~ =0,
which contradicts to k # 0. So we have ¢ = 0 on N”.

From (3.13), (3.19) and (3.20),

-k - A
We can choose an orthonormal frame {ej,es,...,en_1,€n,... 22,6} on M

which satisfies Ae; = be1 + i€, Aey = bey for y=2,...,n—1 and Age, = Bgﬁey
for y = 1,...,n — 1. Then, in AN’”, the shape operator A is represented by the

following
b hy
0
b
A= b
b| o
hy 0 - 0| «

Using Lemma 3.1, we have
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Lemma 3.4. Let ¢e, € Hy be perpendicular to ¢e;. Then,

h
Ve, €1 = ?1(1)61, (3.23)
2¢c +2nc — \
Ve, €1 = — (3.24)

PRrROOF. Using (3.5), we have g(Ve, dey,e1) = —g(Ve, €1, ¢e,) = 0. On the
other hand, putting e; = ¢e; in (3.5),

h1(2B + b)g(¢2€1,€1) + (b — B)g(Velqﬁel, 61) = O7

from which we obtain h
9(Ve,e1, ¢e1) = ?1

By (3.6), we see that g(V.,ei,e,) = 0 for any e, € H;. Since g(V.,e1,§) =
—g(e1,pAer) = 0, we have (3.23).

Next, putting e; = ¢e,, and e; = e, in (3.1), we have g(Vye,e1, ge.) = 0 for
any ¢e,, pe, € Ha, y # z. Moreover, we have g(Vge, e1,¢e,) = 0 by (3.4). On
the other hand, using (3.2), we see that

g(vez¢ey> 61) =0 (325)
for any e, € H;. Thus, putting e; = e, and e; = ¢e, in (3.3), direct calculation
shows that

2¢ + 2nc — A
Tg(aﬁez, pey).

Since g(Vge,e1,§) = 0 and g(Vge,e1,e1) = 0, we have (3.24). O

9(Vge,e1,€.) =

Using this lemma, we compute the sectional curvature spanned by e; and
¢ey, L ¢eq. From (3.23), we have

h
g(v¢€yve1elv ¢€y) = _?19(¢617 v¢ey¢€y)'
Since g(¢e1, ge,) = 0, we have

g(¢617 v¢ey¢ey) = _g(v¢ey¢61, ¢ey) = _g(¢v¢eyelu ¢ey)
—2c—2nc+ A

= —g(V¢Eye1,€y) - hy

Thus we obtain

A
g(v¢eyv€1€17¢ey) =c+nc— 5
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On the other hand, by (3.24),

g(V61v¢eyelu ¢ey) = v€lg(v¢eyel7 (bey) - g(v¢eyel7 Ve1 ¢ey)

—2c —2nc+ A\
= h—lg(eyave1¢€y)-

Putting e; = ¢e, and e; = e, in (3.1), we have g(V,, dey,e,) = —hq1/2. From
these equations, we obtain

V.V A
9(Ve, ¢ey617¢€y)zc+nc—§,
Next, we see that

g(v[qbey,el]ela d)ey) = g(vfela d)ey)g(f, [¢eya 81]) + g(vq €1, ¢€y)g(61a [¢6y, 61])
+ ZQ(Vezelv pey)g(ez, [dey, e1]) + ZQ(VMZ e1, pey)g(ges, [dey, e1]) = 0.

z2>2 z>1

Here we note that we have g(Vg., ¢e,,e1) =0 for z # y from (3.1) and
9(Vge, ey, e1) = 0 from (3.4).
From these equations, we see that

g(R(¢ey7 61)617 (beu) = g(v¢ey Velel’ ¢67l) - g(vel v¢€yel7 (bell)
- g(v[¢ey,el]ela ¢ey) =0.

On the other hand, the equation of Gauss implies that
- A
g(R(gey, e1)er, pey) =c+bb=c—nc+ 3

So we have nc — \/2 = ¢. Since bb = —c and b = —b = k/2, we see that ¢ > 0,
b? = c and k? = 4c¢. This contradicts to our assumption k2 # 4c.

From these considerations we see that M has no point & where A¢ # &, and
hence M is a Hopf hypersurface. This proves our theorem. O

Using Theorem 3.2 and Theorem B-C, we have our main result.

Theorem 3.5. Let M be a real hypersurface in a complex space form M™(c),
n > 3, ¢ # 0. We suppose that the Ricci tensor S of the generalized Tanaka—
Webster connection V) satisfies S(X, oY) = A\g(X, ¢Y) for any vector fields X
and Y, X being a function.
(1) If M is a real hypersurface in CP™ and k? # 4, then M is locally congruent
to one of the following:
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(a) a geodesic hypersphere with k* > (2n — 2)(2n — \),
(b) a tube over a totally geodesic CP' (1 <1<n —2) with A = 2n.
(2) If M is a real hypersurface in CH™, then M is locally congruent to one of
the following:
(a) a geodesic hypersphere with k? > (—2n — 2)(2n — \),
(b) a tube over a complex hyperbolic hyperplane with
k? > (—2n —2)(2n — \),
(c) a horosphere with A\ = 2k — 2,
(d) a tube over a totally geodesic CH' (1 <1<n —2) with A\ = —2n.

PRrROOF. From Theorem 3.2, M is a Hopf hypersurface of M"(c). Then Pro-
position A shows

(26 — a)AdX = (Ba + 2c)¢X,

where AX = X, g(X,€) =0 and o = g(A4&, £). We notice that « is constant. If
28 —a =0, then Sa+2¢ =0, and hence o? +4¢ = 0. Thus we have ¢ < 0 and M
has two distinct constant principal curvatures o and b with multiplicities 1 and
2n — 2 respectively. Moreover b is constant and M is a horosphere of principal
curvatures 2 and 1 with multiplicities 1 and 2n — 2, respectively (see BERNDT
[1]). By (3.9) and ¢ = —1, we have A\ = 2k — 2.

In the following, we assume that 28 — a # 0. Then

Ba + 2¢
260 — «

ApX = PX.

We put 8 = (Ba + 2¢)/(28 — a). Then, by the assumption on S, we obtain
A=2nc+ (trA—a+k)3— %+ BB+ kB,
A=2nc+ (trA—a+k)B— B2+ BB+ kB. (3.26)

These imply
0=(B-P)trAd—a—p-p)

Suppose 8 # 3. Then trA —a — 8 — 3 = 0. Substituting 3 = tr A — a — 3 into
the equation above, we obtain

26% —2(tr A — a)B — k(tr A — a) —2nc+ A = 0. (3.27)
Therefore, 5 satisfies the quadratic equation

26> — 2(tr A — a)t — k(tr A — a) — 2nc + A = 0.
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From this we see that at most two distinct /3 satisfies the above equation. But 3
also satisfies the above quadratic equation, and M has two principal curvatures
b and b with multiplicities p and p, 0 < p < n — 1, that satisfies b # b.

We next suppose that 3 = 8. Then 82 — af — ¢ = 0. Therefore, M has
at most two non-zero distinct constant principal curvatures d and f such that
d=d, f = f with multiplicities ¢ and r, respectively, where 2p + g+ 17 = 2n — 2.
On the other hand, from (3.26), we have

2nc— A+ (trA—a+2k)d =0, 2ne— A+ (trA—a+2k)f=0.(3.28)

If M has 5 distinct principal curvatures b # b, d, f and o, then the above
equations show that tr A — o + 2k = 0 and 2nc — A = 0 since d # f. Moreover,
from (3.27), we have 2b% + 4kb + 2k = 2(b+ k)2 = 0 and (b + k)2 = 0. Hence we
obtain b = b = —k. This contradicts to the assumption b # b.

We now suppose that M has 4 distinct principal curvatures b # b, d, . Then
we have

trA—a=>b+b=pb+b)+qd
From this and 2p + ¢ = 2n — 2,
(p—1)(b+b)+ (2n —2p —2)d = 0.

We notice that b and b is continuous. Since p is positive integer and d is non-zero
constant, we see that p # 1 and b+ b is constant. Moreover, tr A — o is constant.
So (3.28) shows that ) is constant. Hence, from (3.27), b and b are also constant.
But there is no Hopf hypersurface with constant four principal curvatures.
If M has two constant principal curvatures d and «, then tr A—a = (2n—2)d.
From (3.26),
(2n — 2)d* + 2kd + 2nc — A = 0.

This gives a root when
k* — (2n — 2)(2nc — \) > 0.
Next, if M has three distinct principal curvatures b, b and «, then
trA—a=b+b=(n—1)(b+b).
Hence we have b+ b =tr A — a = 0. On the other hand, b and b satisfy

— 2h%2 4+ 2¢
b+b=—-—"
+ 2b — «

Thus we have ¢ < 0. But the condition ¢ < 0 implies that the principal curvatu-

=0.

res b and b are positive. This contradicts to b+ b = 0.
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Finally we consider the case that M has three constant principal curvatures
d, f, a, where d = d, f = f. Since d # f, we have

trA—a=-2k, 2nc—X=0.

From these considerations and Theorems B, C we have our assertion. ([l
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