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An n-Einstein Kenmotsu metric as a Ricci soliton

By AMALENDU GHOSH (Krishnanagar)

Abstract. We prove that, if the metric of an n-Einstein Kenmotsu manifold (of
dimension > 3) is a Ricci soliton, then it is Einstein and the soliton is expanding.

1. Introduction

A Ricci soliton is a Riemannian manifold (M, g) together with a vector field V'
and a constant A such that
Lyg+25+2Xg =0, (1)
where £y denotes the Lie derivative operator along the vector field V' and S is
the Ricci tensor of g. Actually, it is a fixed point of the HAMILTON’s [7] Ricci flow:
%g = —25, up to diffeomorphisms and scalings. A Ricci soliton with V' zero or
Killing is known as a trivial soliton. Thus, the Ricci soliton may be considered as
an apt generalization of Einstein metric. The Ricci soliton is said to be shrinking
when A < 0, steady when A\ = 0, and expanding when A > 0. If the vector field V'
is the gradient of a potential function — f, then g is called a gradient Ricci soliton.
We remark that on compact manifold Ricci solitons are always gradient solitons
(see PERELMAN [9]). For details about Ricci solitons and their connection to the
Ricci flow, we refer to CHOW—KNOPF [3].
In [8], a new class of non-compact almost contact metric manifolds was int-
roduced and studied, which are known as Kenmotsu manifolds. This kind of ma-
nifold is characterized through the warped product. Actually, the warped product
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space R x ¢V with the warping function f(t) = ce’ on the real line R and V is a
Kdahler manifold admits such a structure. Moreover, every point of a Kenmotsu
manifold has a neighbourhood which is locally a warped product (—e,€) x5 V,
where f(t) = ce' is a function on the open interval. Recently, in [5], the aut-
hor proved that if the metric of a 3-dimensional Kenmotsu manifold is a Ricci
soliton, then it is of constant curvature —1 and the soliton is expanding. Such
metric also exists on the warped product of a Riemann surface N of constant
negative curvature (a Kdhler manifold) with the real line. It may be mentioned
in this connection that any 3-dimensional Kenmotsu manifold is n-Einstein (i.e.
the Ricci tensor S is of the form S = ag + by ® n, where a, b are known as asso-
ciated functions). However, in higher dimensions this is not true. We also know
[8] that for dimension > 3, the associated functions of an 7n-Einstein Kenmotsu
manifold are not constant, like K-contact manifolds [12]. In the literature, the
case of compact Ricci solitons has been studied widely and extensively by several
authors (e.g. see [3]). Thus, in view of recent results on Sasakian manifold [10]
and n-Einstein K-contact manifold [6], a natural question to consider is whet-
her there exist non-compact non-Sasakian almost contact metric manifolds whose
metric is a Ricci soliton. For this, we consider an n-Einstein Kenmotsu manifold;
such a manifold is not compact and in general not K-contact. Here we prove:

Theorem 1. If the metric of an n-Einstein Kenmotsu manifold
M?*H(p, & n,g), n > 1 is a Ricci soliton then it is Einstein and the soliton is
expanding.

Since the warped product R x ¢ V(k), where V (k) is a Kahler manifold of
constant holomorphic sectional curvature of dimension 2n and f(t) = ce' is the
warping function, naturally admits Kenmotsu structure, we have the following:

Corollary 1. If the metric of the warped product R x; V(k), (n > 1) is a
Ricci soliton then it is of constant curvature —1 and the soliton is expanding.

2. Preliminaries

A (2n + 1)-dimensional manifold (M, g) is said to have an almost contact
metric structure if there exists a (1, 1) tensor field ¢, a unit vector field £ (called
the Reeb vector field), and a 1-form 7 such that

e =-T+n®¢,
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where [ is the identity transformation. A Riemannian metric g is said to be the
associated metric if it satisfies

9(pX,Y) = g(X,Y) = n(X)n(Y),

for any vector fields X, Y on M. Then the following formulas also hold

=0, nop=0, n()=g(,%):-

The manifold M equipped with the structure (¢, £, 7, ¢) is called an almost contact
metric manifold. On such a manifold, one can always define a 2-form ¢ by ¢(.,.) =
g(.,¢.), known as the fundamental 2-form. An almost contact metric manifold
with ¢ = dn is known as contact metric manifold. If, in addition ¢ is Killing, then
M is said to be K-contact. Also, an almost contact metric manifold is said to be
Sasakian if and only if [2]:

(Vxp)Y =g(X, V) —n(Y)X,

for any vector field X, Y on M. On the other hand, an almost contact metric
manifold is said to be KENMOTSU [8], if it satisfies

(Vxp)Y = g(pX,Y)§ —n(Y)pX, (2)

for any vector field X, Y on M. An almost contact metric structure (¢,&,1,9)
is said to be a Kenmotsu structure if it satisfies the condition (2). The following
formulas are also valid for a Kenmotsu manifold (see [8])

Vxé&=X—n(X)§. 3)
R(X,Y)§=n(X)Y —n(Y)X. (4)
Q§ = —2n¢, (5)

where R denotes the curvature tensor and () denotes the Ricci operator associated
with the S, i.e. S(X,Y) = ¢(QX,Y). An almost contact metric manifold is said
to be n-Einstein if the Ricci tensor S satisfies

S, 2) = ag(Y, Z) + bn(Y)n(Z), (6)

for any vector field Y, Z on M and a, b are arbitrary functions on M. For a
K-contact manifold of dimension > 3, the functions a, b are constant (see [12]),
but for a Kenmotsu manifold this need not be true (see [8]).
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3. Proof of the results

PROOF OF THEOREM 1. Since M is n-Einstein, equation (6) shows that the
scalar curvature r takes the form

r=(2n+1)a+b. (7)

Also, making use of (5) in (6) we see that a + b = —2n. Combining this with
(7) gives a = 1 + 5~ and b = —{(2n + 1) + 5-}. Therefore, equation (6) can be
written as

r

S(Y,Z) = (1 + o

Jov.2) = {@n+ D+ faOn). ()

By virtue of this, the soliton equation transforms into

r

(Lvg)(¥.2) = = (24 = +22) g(¥. 2) + {22 + 1) + = pn(V)n(2).  (9)

Now, from the well known commutation formula (see p. 23 of [11]):

(£vVxg—VxLyvg—Vyx9)Y,2Z)
= 79((-£Vv)(X7 Y),Z) - g((fvv)(X7 Z),Y),

we obtain
(VxLvg)(Y.Z) = g((£vV)(X,Y), Z) + g((£vV)(X, Z),Y). (10)

Thus, differentiating (1), using it in (10), and through the straightforward com-
binatorial computation, we easily derive

9(LvV)(X,Y), Z) = (Vz5)(X,Y) = (Vx5 (Y, Z2) = (VyS)(X, 2).  (11)

Taking X =Y =e; (where { ¢; : i =1,2,...,2n + 1}) is an orthonormal frame)
in (11) and summing over ¢, we find

(£vV)(ei,e;) =0, (12)

for all vector fields Z. Differentiating (9) along an arbitrary vector field X and
using equations (3) and (10), we have

oV 9)XY), 2) + (v V)X, 2),Y) = = g(v 2y + Bz

+{200 + 1) + ZHg(XYIn(Z) + (X, Z)n(Y) = 20(X)n(¥ )n(2)}.
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By a straightforward combinatorial computation, and since (£ V) is a symmetric
operator, the foregoing equation yields

2n(£yV)(X,Y) =g, Z)Dr — (Xr)Y — (Y1) X + (Xr)n(Y) + (Yr)n(X)
—n(X)n(Y)Dr +2{2n(2n + 1) + rH{g(X,Y)§ — n(X)n(Y)E}, (13)

for all vector fields Z and D is the gradient operator of g. Setting X =Y =e¢; in
(13), we at once obtain

(n—1)Dr + (&r)€ + 2n{2n(2n+ 1) + r}¢ = 0. (14)

Inner product of (14) with & gives &r + 2{2n(2n + 1) + r} = 0. Applying this in
(14) provides Dr = (ér)€, as n > 1. Next, taking X = £ in (13) it follows that

2n(LyV)(Y,€) = (&r)p°Y. (15)
Differentiating (15) along an arbitrary vector field X and making use of (3) and
(15), we find
2n(Vx Ly V)(Y.€) +2n(Ly V)(Y, X) = (X (&)Y
+ (€ {g(X,Y)E+n(Y)X = n(X)Y —n(X)n(Y)E}.

Interchanging X, Y of this equation and applying the identity (see p. 23 of [11]):
(LvR)(X,Y)Z = (Vx£vV)(Y, Z) — (Vy Ly V)(X, Z),
it follows that
In( £y R)(X, Y)E = (X(E)G?Y — (Y(E)*X + 2en)in(V)X — n(X)¥).

Contracting this equation over X and since Dr = (£r), we have (£v.5)(Y,£) = 0.
Next, taking the Lie derivative of (5) along V', using the last equation and (8),
we obtain

r

5 } n(£vEn(Y)
= —4n(2n — A\)n(Y) — 2ng(Y, £v€). (16)

(1 + %) g(Y, £y &) — {(211 +1)+

Setting Y = £ in (16) we see that A = 2n and hence the soliton is expanding. On
the other hand, substituting £ for Y and Z in (9) yields n(£v¢) = 0. Consequ-
ently, equation (16) implies that

[r+2n(2n +1)]£v€ = 0.
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Now if r = —2n(2n + 1), then from (8) we see that M is Einstein. So we suppose
that 7 # —2n(2n + 1) in some open set N of M. Then on N, £y¢ = 0. This
together with (3) provides

VeV =V g(V)E. (17)
Finally, taking Y = ¢ in the well-known formula (see p. 39 of [4]):
(LvV)(X,Y)=VxVyV - Vv, vV + RV, X)Y,

and making use of (3), (15), (17) and (4), we have &r = 0. Since Dr = (£r)€, we
see that r is constant. Therefore, (14) implies that » = —2n(2n+1) on N. Thus,
we arrive at a contradiction on N. This completes the proof. O

PRrROOF OF COROLLARY 1. By the result mentioned in the introduction, it
is obvious that the warped product under consideration is a Kenmotsu manifold.
Moreover, the curvature tensor of such a warped product space is given by (see

8], [1])
R(X,Y)Z = Ht){g(Y, 2)X — g(X, Z2)Y} + (H(t) + 1){g(X, Z)n(Y)¢

(Y, Z)n(X)§ +n(X)n(2)Y —n(Y)n(2)X
(X, 0Z)pY — g(Y,0Z2)pX +29(X, Y )pZ}. (18)

-9
+9g
From (18) it is easy to see that the Ricci tensor S takes the form

S(X,Y) = 2{(n - DH(t) - 1}g(X,Y) = 2(n = 1)(H () + D)n(X)n(Y).

This is clearly n-Einstein. Hence applying Theorem 1 we see that the warped

product is Einstein and since n > 1, the last equation implies that H(t) = —1.
Finally, using this in (18) we complete the proof. |
4. Example

We shall now exhibit an example of a Kenmotsu manifold which satisfies the
Theorem 1. Let M be an n-Einstein Kenmotsu manifold (any Kenmotsu space
form provides such example). For this class of space it is well known that (see
[8]) a+ b= —2n and Xb+ 2bn(X) =0, if n > 1, for any vector field X on M.
We choose the vector field V' of the Ricci soliton as a constant multiple of the
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Reeb vector field, i.e. V = f¢, for some constant f. Differentiating this along an
arbitrary vector field X and using (3) we get

VxV = (X[)§+ f(X —n(X)E). (19)

Making use of this and (6) it is easy to see that

(£vg)(X,Y) +25(X,Y) + 209(X,Y) = (X f)n(Y) + (Y /)n(X)
+2(a+ f+N)g(X,Y) +2(b = fHn(X)n(Y). (20)

Since f is constant, the left hand side of this equation will vanish if and only if
f=band A\ = —(a+ b) = 2n. Hence the soliton is expanding. By this choice
of f, it remains to show that the manifold is Einstein. This easily follows from
the formula Xb+ 2bn(X) = 0.

In particular, the metric of the warped product space R x s V' (k) is a Ricci soliton
whose potential vector field V' is given by —2{(n — 1)(H(t) + 1)}¢, for n > 1.
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