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An η-Einstein Kenmotsu metric as a Ricci soliton

By AMALENDU GHOSH (Krishnanagar)

Abstract. We prove that, if the metric of an η-Einstein Kenmotsu manifold (of

dimension > 3) is a Ricci soliton, then it is Einstein and the soliton is expanding.

1. Introduction

A Ricci soliton is a Riemannian manifold (M, g) together with a vector field V

and a constant λ such that

£V g + 2S + 2λg = 0, (1)

where £V denotes the Lie derivative operator along the vector field V and S is

the Ricci tensor of g. Actually, it is a fixed point of the Hamilton’s [7] Ricci flow:
∂
∂tg = −2S, up to diffeomorphisms and scalings. A Ricci soliton with V zero or

Killing is known as a trivial soliton. Thus, the Ricci soliton may be considered as

an apt generalization of Einstein metric. The Ricci soliton is said to be shrinking

when λ < 0, steady when λ = 0, and expanding when λ > 0. If the vector field V

is the gradient of a potential function −f , then g is called a gradient Ricci soliton.

We remark that on compact manifold Ricci solitons are always gradient solitons

(see Perelman [9]). For details about Ricci solitons and their connection to the

Ricci flow, we refer to Chow–Knopf [3].

In [8], a new class of non-compact almost contact metric manifolds was int-

roduced and studied, which are known as Kenmotsu manifolds. This kind of ma-

nifold is characterized through the warped product. Actually, the warped product
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space R×f V with the warping function f(t) = cet on the real line R and V is a

Kähler manifold admits such a structure. Moreover, every point of a Kenmotsu

manifold has a neighbourhood which is locally a warped product (−ε, ε) ×f V ,

where f(t) = cet is a function on the open interval. Recently, in [5], the aut-

hor proved that if the metric of a 3-dimensional Kenmotsu manifold is a Ricci

soliton, then it is of constant curvature −1 and the soliton is expanding. Such

metric also exists on the warped product of a Riemann surface N of constant

negative curvature (a Kähler manifold) with the real line. It may be mentioned

in this connection that any 3-dimensional Kenmotsu manifold is η-Einstein (i.e.

the Ricci tensor S is of the form S = ag + bη ⊗ η, where a, b are known as asso-

ciated functions). However, in higher dimensions this is not true. We also know

[8] that for dimension > 3, the associated functions of an η-Einstein Kenmotsu

manifold are not constant, like K-contact manifolds [12]. In the literature, the

case of compact Ricci solitons has been studied widely and extensively by several

authors (e.g. see [3]). Thus, in view of recent results on Sasakian manifold [10]

and η-Einstein K-contact manifold [6], a natural question to consider is whet-

her there exist non-compact non-Sasakian almost contact metric manifolds whose

metric is a Ricci soliton. For this, we consider an η-Einstein Kenmotsu manifold;

such a manifold is not compact and in general not K-contact. Here we prove:

Theorem 1. If the metric of an η-Einstein Kenmotsu manifold

M2n+1(ϕ, ξ, η, g), n > 1 is a Ricci soliton then it is Einstein and the soliton is

expanding.

Since the warped product R ×f V (k), where V (k) is a Kähler manifold of

constant holomorphic sectional curvature of dimension 2n and f(t) = cet is the

warping function, naturally admits Kenmotsu structure, we have the following:

Corollary 1. If the metric of the warped product R ×f V (k), (n > 1) is a

Ricci soliton then it is of constant curvature −1 and the soliton is expanding.

2. Preliminaries

A (2n + 1)-dimensional manifold (M, g) is said to have an almost contact

metric structure if there exists a (1, 1) tensor field ϕ, a unit vector field ξ (called

the Reeb vector field), and a 1-form η such that

ϕ2 = −I + η ⊗ ξ,
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where I is the identity transformation. A Riemannian metric g is said to be the

associated metric if it satisfies

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X, Y on M . Then the following formulas also hold

ϕξ = 0, η ◦ ϕ = 0, η(.) = g(., ξ).

The manifoldM equipped with the structure (ϕ, ξ, η, g) is called an almost contact

metric manifold. On such a manifold, one can always define a 2-form φ by φ(., .) =

g(., ϕ.), known as the fundamental 2-form. An almost contact metric manifold

with φ = dη is known as contact metric manifold. If, in addition ξ is Killing, then

M is said to be K-contact. Also, an almost contact metric manifold is said to be

Sasakian if and only if [2]:

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X,

for any vector field X, Y on M . On the other hand, an almost contact metric

manifold is said to be Kenmotsu [8], if it satisfies

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, (2)

for any vector field X, Y on M . An almost contact metric structure (ϕ, ξ, η, g)

is said to be a Kenmotsu structure if it satisfies the condition (2). The following

formulas are also valid for a Kenmotsu manifold (see [8])

∇Xξ = X − η(X)ξ. (3)

R(X,Y )ξ = η(X)Y − η(Y )X. (4)

Qξ = −2nξ, (5)

where R denotes the curvature tensor and Q denotes the Ricci operator associated

with the S, i.e. S(X,Y ) = g(QX,Y ). An almost contact metric manifold is said

to be η-Einstein if the Ricci tensor S satisfies

S(Y, Z) = ag(Y,Z) + bη(Y )η(Z), (6)

for any vector field Y , Z on M and a, b are arbitrary functions on M . For a

K-contact manifold of dimension > 3, the functions a, b are constant (see [12]),

but for a Kenmotsu manifold this need not be true (see [8]).
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3. Proof of the results

Proof of Theorem 1. Since M is η-Einstein, equation (6) shows that the

scalar curvature r takes the form

r = (2n+ 1)a+ b. (7)

Also, making use of (5) in (6) we see that a + b = −2n. Combining this with

(7) gives a = 1 + r
2n and b = −{(2n + 1) + r

2n}. Therefore, equation (6) can be

written as

S(Y, Z) =
(
1 +

r

2n

)
g(Y, Z)−

{
(2n+ 1) +

r

2n

}
η(X)η(Y ). (8)

By virtue of this, the soliton equation transforms into

(£V g)(Y, Z) = −
(
2 +

r

n
+ 2λ

)
g(Y,Z) +

{
2(2n+ 1) +

r

n

}
η(Y )η(Z). (9)

Now, from the well known commutation formula (see p. 23 of [11]):

(£V ∇Xg −∇X£V g −∇[V,X]g)(Y,Z)

= −g((£V ∇)(X,Y ), Z)− g((£V ∇)(X,Z), Y ),

we obtain

(∇X£V g)(Y,Z) = g((£V ∇)(X,Y ), Z) + g((£V ∇)(X,Z), Y ). (10)

Thus, differentiating (1), using it in (10), and through the straightforward com-

binatorial computation, we easily derive

g((£V ∇)(X,Y ), Z) = (∇ZS)(X,Y )− (∇XS)(Y,Z)− (∇Y S)(X,Z). (11)

Taking X = Y = ei (where { ei : i = 1, 2, ..., 2n + 1}) is an orthonormal frame)

in (11) and summing over i, we find

(£V ∇)(ei, ei) = 0, (12)

for all vector fields Z. Differentiating (9) along an arbitrary vector field X and

using equations (3) and (10), we have

g((£V ∇)(X,Y ), Z) + g((£V ∇)(X,Z), Y ) = − (Xr)

n
g(Y,Z) +

(Xr)

n
η(Y )η(Z)

+
{
2(2n+ 1) +

r

n

}
{g(X,Y )η(Z) + g(X,Z)η(Y )− 2η(X)η(Y )η(Z)}.
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By a straightforward combinatorial computation, and since (£V ∇) is a symmetric

operator, the foregoing equation yields

2n(£V ∇)(X,Y ) = g(Y,Z)Dr − (Xr)Y − (Y r)X + (Xr)η(Y ) + (Y r)η(X)

−η(X)η(Y )Dr + 2{2n(2n+ 1) + r}{g(X,Y )ξ − η(X)η(Y )ξ}, (13)

for all vector fields Z and D is the gradient operator of g. Setting X = Y = ei in

(13), we at once obtain

(n− 1)Dr + (ξr)ξ + 2n{2n(2n+ 1) + r}ξ = 0. (14)

Inner product of (14) with ξ gives ξr + 2{2n(2n+ 1) + r} = 0. Applying this in

(14) provides Dr = (ξr)ξ, as n > 1. Next, taking X = ξ in (13) it follows that

2n(£V ∇)(Y, ξ) = (ξr)ϕ2Y. (15)

Differentiating (15) along an arbitrary vector field X and making use of (3) and

(15), we find

2n(∇X£V ∇)(Y, ξ) + 2n(£V ∇)(Y,X) = (X(ξr))ϕ2Y

+ (ξr){g(X,Y )ξ + η(Y )X − η(X)Y − η(X)η(Y )ξ}.

Interchanging X, Y of this equation and applying the identity (see p. 23 of [11]):

(£V R)(X,Y )Z = (∇X£V ∇)(Y,Z)− (∇Y £V ∇)(X,Z),

it follows that

2n(£V R)(X,Y )ξ = (X(ξr))ϕ2Y − (Y (ξr))ϕ2X + 2(ξr){η(Y )X − η(X)Y }.

Contracting this equation over X and since Dr = (ξr)ξ, we have (£V S)(Y, ξ) = 0.

Next, taking the Lie derivative of (5) along V , using the last equation and (8),

we obtain

(
1 +

r

2n

)
g(Y,£V ξ)−

{
(2n+ 1) +

r

2n

}
η(£V ξ)η(Y )

= −4n(2n− λ)η(Y )− 2ng(Y,£V ξ). (16)

Setting Y = ξ in (16) we see that λ = 2n and hence the soliton is expanding. On

the other hand, substituting ξ for Y and Z in (9) yields η(£V ξ) = 0. Consequ-

ently, equation (16) implies that

[r + 2n(2n+ 1)]£V ξ = 0.
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Now if r = −2n(2n+1), then from (8) we see that M is Einstein. So we suppose

that r 6= −2n(2n + 1) in some open set N of M . Then on N , £V ξ = 0. This

together with (3) provides

∇ξV = V − η(V )ξ. (17)

Finally, taking Y = ξ in the well-known formula (see p. 39 of [4]):

(£V ∇)(X,Y ) = ∇X∇Y V −∇∇XY V +R(V,X)Y,

and making use of (3), (15), (17) and (4), we have ξr = 0. Since Dr = (ξr)ξ, we

see that r is constant. Therefore, (14) implies that r = −2n(2n+1) on N . Thus,

we arrive at a contradiction on N . This completes the proof. ¤

Proof of Corollary 1. By the result mentioned in the introduction, it

is obvious that the warped product under consideration is a Kenmotsu manifold.

Moreover, the curvature tensor of such a warped product space is given by (see

[8], [1])

R(X,Y )Z = H(t){g(Y, Z)X − g(X,Z)Y }+ (H(t) + 1){g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ + η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ}. (18)

From (18) it is easy to see that the Ricci tensor S takes the form

S(X,Y ) = 2{(n− 1)H(t)− 1}g(X,Y )− 2(n− 1)(H(t) + 1)η(X)η(Y ).

This is clearly η-Einstein. Hence applying Theorem 1 we see that the warped

product is Einstein and since n > 1, the last equation implies that H(t) = −1.

Finally, using this in (18) we complete the proof. ¤

4. Example

We shall now exhibit an example of a Kenmotsu manifold which satisfies the

Theorem 1. Let M be an η-Einstein Kenmotsu manifold (any Kenmotsu space

form provides such example). For this class of space it is well known that (see

[8]) a + b = −2n and Xb + 2bη(X) = 0, if n > 1, for any vector field X on M .

We choose the vector field V of the Ricci soliton as a constant multiple of the
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Reeb vector field, i.e. V = fξ, for some constant f . Differentiating this along an

arbitrary vector field X and using (3) we get

∇XV = (Xf)ξ + f(X − η(X)ξ). (19)

Making use of this and (6) it is easy to see that

(£V g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = (Xf)η(Y ) + (Y f)η(X)

+ 2(a+ f + λ)g(X,Y ) + 2(b− f)η(X)η(Y ). (20)

Since f is constant, the left hand side of this equation will vanish if and only if

f = b and λ = −(a + b) = 2n. Hence the soliton is expanding. By this choice

of f , it remains to show that the manifold is Einstein. This easily follows from

the formula Xb+ 2bη(X) = 0.

In particular, the metric of the warped product space R×f V (k) is a Ricci soliton

whose potential vector field V is given by −2{(n− 1)(H(t) + 1)}ξ, for n > 1.
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