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Coleman automorphisms of standard wreath products
of finite abelian groups by 2-closed groups

By ZHENGXING LI (Qingdao) and JINKE HAI (Qingdao)

Abstract. Let G be the standard wreath product of a finite abelian group by a

2-closed group (a group having a normal Sylow 2-subgroup). It is shown that every

Coleman automorphism of G is an inner automorphism. As an immediate consequence

of this result, we obtain that the normalizer property holds for such G.

1. Introduction

Let G be a finite group. Recall that an automorphism ρ of G is called a

Coleman automorphism, provided that ρ2 ∈ Inn(G), ρ preserves the conjugacy

classes of G and the restriction of ρ to any Sylow subgroup of G equals the rest-

riction of some inner automorphism of G. This notion was initially introduced

by Marciniak and Roggenkamp [10]. It should be noted that the same no-

tion was also used by Hertweck and Kimmerle in [5], but which has different

meanings with that mentioned above. Coleman automorphisms discussed in this

paper are in the sense of that introduced by Marciniak and Roggenkamp.

All Coleman automorphisms of G form a group, denoted by AutC(G); obviously,

Inn(G) ≤ AutC(G). Recently, many results on Coleman automorphisms of finite

groups have appeared in the literature, see [3], [4], [7], [8], [10].

Our interest in Coleman automorphisms arises from the fact that they play

an important role in the study of the normalizer problem of integral group rings.
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Denote by ZG the integral group ring of G over Z. Denote by U(ZG) the group

of all the units of the ring ZG. A longstanding problem (see [15, Problem 43])

asks whether NU(ZG)(G) = GZ(U(ZG)) for any finite group G, where Z(U(ZG))

denotes the center of U(ZG) and NU(ZG)(G) is the normalizer of G in U(ZG). We

often refer to this problem as the normalizer problem. If this equality holds, then

we say that the normalizer property holds for G. This equality was first shown to

be true for finite nilpotent groups by Coleman [1], and later this result was ex-

tended to any finite group having a normal Sylow 2-subgroup by Jackowski and

Marciniak [6]. It was Mazur [11] who first noticed that there are close connec-

tions between the normalizer problem and the isomorphism problem. Based on

Mazur’s observations, among other things, Hertweck [2] constructed the first

counterexample to the normalizer problem and then the first counterexample to

the isomorphism problem. Nevertheless, it is still of interest to determine for

which groups the normalizer property holds. Recently, many positive results on

the normalizer problem have been obtained, see [3], [9], [13], [14]. To see how

Coleman automorphisms occur naturally in the study of the normalizer prob-

lem, we should recall the equivalent form of the normalizer problem. For any

u ∈ NU(ZG)(G), denote by ϕu the automorphism of G induced by u via conjuga-

tion, i.e., ϕu(g) = u−1gu for all g ∈ G. Denote by AutU (G) the group formed by

all such automorphisms of G. Obviously, Inn(G) ≤ AutU (G). A question raised

by Jackowski and Marciniak in [6] asks whether AutU (G) = Inn(G) for any

finite group G. It is easy to see that this question is equivalent to the normalizer

problem mentioned above. So we can investigate the normalizer problem by using

this equivalent form, which is more convenient than not often. It is known that

AutU (G) ≤ AutC(G). Thus, if one can show that Coleman automorphisms of G

are inner then the normalizer property holds for G.

The aim of this paper is to study Coleman automorphisms of standard wreath

products of finite abelian groups by finite 2-closed groups. For general information

on standard wreath products, refer to [12]. Before stating our main result, we

would like to mention that Marciniak and Roggenkamp in [10] established

a finite metabelian group isomorphic to (C4
2 × C3) o C3

2 which has a non-inner

Coleman automorphism. This example demonstrates that if G is a finite abelian-

by-2-closed group, then in general it is not the case that AutC(G) = Inn(G).

However, in this paper, we shall prove the following main result:

Main Theorem. Let G = AwrN be the standard wreath product of A

by N , where A is a finite abelian group and N is a finite 2-closed group. Then

every Coleman automorphism of G is an inner automorphism, i.e., AutC(G) =

Inn(G).
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2. Preliminaries

In this section, we recall several results which will be used in the proof of

Main Theorem. First we fix some notation. Let G be a finite group and let ρ be

an automorphism of G. For any subset U of G, write ρ|U for the restriction of ρ

to U . Let N be a normal subgroup of G which is fixed by ρ. We write ρ|G/N for

the automorphism of G/N induced by ρ. For a fixed element x ∈ G, conj(x) is

used to denote the inner automorphism of G induced by x via conjugation, i.e.,

conj(x)(g) = gx for all g ∈ G. Denote by π(G) the set of all prime divisors of the

order of G. Other notation is mostly standard.

Definition 2.1. Let Nm be the direct product of m copies of a finite group N .

A subgroup H of Nm is said to be extensive in Nm if the intersection of H with

(1, . . . , 1, N︸︷︷︸
ith

, 1 . . . , 1) is non-trivial for any i ∈ {1, 2, . . . ,m}.

Lemma 2.2. Suppose that Nm is the direct product of m copies of a non-

trivial finite nilpotent group N . Then, for any p ∈ π(N), the following hold:

(1) any Sylow p-subgroup of Nm is extensive in Nm;

(2) the center of any Sylow p-subgroup of Nm is extensive in Nm;

(3) Nm is extensive in itself.

Proof. These assertions follow directly from Definition 2.1. ¤
Lemma 2.3 (Lemma 2 in [3]). Let p be a prime and let ϕ be a p-power order

automorphism of a finite group G. Suppose that there is a normal subgroup N

of G such that ϕ fixes all elements of N , and that ϕ induces the identity on the

quotient group G/N . Then ϕ induces the identity on G/Op(Z(N)). Further, if

ϕ fixes elementwise a Sylow p-subgroup of G, then ϕ is an inner automorphism

of G.

3. Proof of Main Theorem

In this section, we will present a proof of the Main Theorem. We begin by

proving the following result, which generalizes a result (see Proposition 2.3 in [8])

due to Li:

Proposition 3.1. Let G be a finite group and let B be a normal subgroup

of G for which the quotient group G/B has a normal Sylow 2-subgroup. Let ρ

be a Coleman automorphism of G. Then ρ is an inner automorphism of G if and

only if ρ|B∪P = conj(g)|B∪P for some g ∈ G and some Sylow 2-subgroup P of G.
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Proof. The necessity of Proposition 3.1 is evident. Conversely, let ρ be a

Coleman automorphism of G satisfying ρ|B∪P = conj(g)|B∪P for some g ∈ G

and some Sylow 2-subgroup P of G. Then we have conj(g−1)ρ|B∪P = id |B∪P .

It follows that conj(g−1)ρ|B = id |B and conj(g−1)ρ|P = id |P . Replacing ρ by

conj(g−1)ρ, we may assume that ρ|B = id |B and ρ|P = id |P . Write N := BP .

Then we have ρ|N = id |N . Since by assumption ρ2 is an inner automorphism,

it follows that ρ is inner if some odd power of ρ is inner. Thus, by taking some

suitable odd power of ρ, we may assume that ρ is of 2-power order. Note that

N/B is exactly the Sylow 2-subgroup of G/B, so by assumption N/B E G/B,

which implies that N E G. Now take the quotient G/N . Since ρ is a Coleman

automorphism of G of 2-power order, it follows that ρ|G/N is a Coleman automor-

phism of G/N of 2-power order. But note that G/N is of odd order, which forces

ρ|G/N = id |G/N . Then, by Lemma 2.3, ρ is an inner automorphism of G. ¤

Now we are in position to prove the Main Theorem. For the reader’s conve-

nience, we rewrite it here as

Theorem 3.2. Let G = AwrN be the standard wreath product of A by N ,

where A is a finite abelian group and N is a finite 2-closed group. Then every

Coleman automorphism of G is an inner automorphism, i.e., AutC(G) = Inn(G).

Proof. Let |N | = m. Then G = AwrN = Am o N . If A is trivial, then

G itself is a finite 2-closed group and it is easy to see that assertion holds in this

case. Hereafter we assume that A is non-trivial. Let ρ be an arbitrary Coleman

automorphism of G. We have to show that ρ is an inner automorphism of G. Let

P = A2oN2 be a fixed Sylow 2-subgroup of G, where A2 and N2 are the Sylow 2-

subgroups of Am and N respectively. Since ρ is a Coleman automorphism, there

exists g ∈ G such that ρ|P = conj(g)|P , or equivalently, conj(g−1)ρ|P = id |P .
Replacing ρ by conj(g−1)ρ, we may assume that

ρ|P = id |P . (3.1)

Since ρ2 ∈ Inn(G), it follows that ρ ∈ Inn(G) if some odd power of ρ is an inner

automorphism of G. Without loss of generality, we may assume that ρ is of

2-power order.

Next we check the action of ρ on the base group Am. Note that Am is abelian,

so we may set that Am = P1 × · · ·×Pr, where Pi is the Sylow pi-subgroup of Am

for each i ∈ {1, 2, . . . , r}. Since ρ is a Coleman automorphism, for each Pi and

all xi ∈ Pi, there exist hi ∈ N and ai ∈ Am such that

ρ(xi) = ai
−1hi

−1xihiai = hi
−1xihi. (3.2)
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Thus, for any xi ∈ Pi and any xj ∈ Pj with i 6= j, by (3.2), we obtain that

ρ(xixj) = ρ(xi)ρ(xj) = (hi
−1xihi) (hj

−1xjhj). (3.3)

On the other hand, since ρ preserves the conjugacy classes of G, there exist

a
0
∈ Am and h ∈ N such that

ρ(xixj) = a
0

−1h−1(xixj)ha0
= (h−1xih) (h

−1xjh). (3.4)

Then, by (3.3) and (3.4), we have

hi
−1xihi = h−1xih

and

hj
−1xjhj = h−1xjh,

namely,

hhi
−1xihih

−1 = xi (3.5)

and

hhj
−1xjhjh

−1 = xj . (3.6)

By Lemma 2.2, Pi and Pj are extensive in Am, so (3.5) and (3.6) imply that

h = hi = hj . Thus we must have h = h1 = h2 = · · · = hr. Hence, for any a ∈ Am,

say a = y1y2 · · · yr with yi ∈ Pi, by (3.2), we have

ρ(a) = ρ(y1y2 · · · yr) = yh1
1 yh2

2 · · · yhr
r = ah. (3.7)

Remember that we have assumed that ρ is of 2-power order, say |ρ| = 2s with

s ∈ N. Then, on the one hand, for all a ∈ Am, we have

ρ2
s

(a) = a. (3.8)

On the other hand, by (3.7), we have

ρ2
s

(a) = ah
2s

. (3.9)

Consequently, by (3.8) and (3.9), for all a ∈ Am, we have ah
2s

= a, which implies

that h2s = 1 since by Lemma 2.2 Am is extensive in itself. This shows that h is

a 2-element of N . But by assumption N is 2-closed, it follows that h ∈ N2. Next

we will show that h is actually in Z(N2), the center of N2. In fact, for any y ∈ N2



604 Zhengxing Li and Jinke Hai

and any a ∈ Am, we have ay ∈ Am since Am is normal in G. Then, on the one

hand, by (3.7), we obtain that

ρ(ay) = (ay)h = ayh. (3.10)

On the other hand, by (3.1) and (3.7), we have

ρ(ay) = ρ(a)ρ(y) = (ah)y = ahy. (3.11)

Hence, by (3.10) and (3.11), for all a ∈ Am, we have ayh = ahy, which implies

that yh = hy since by Lemma 2.2 Am is extensive in itself. As y ∈ N2 is arbitrary,

h ∈ Z(N2). Note that N2 ≤ P . Then, by (3.1), we have

ρ|N2 = id |N2 = conj(h)|N2 . (3.12)

On the other hand, note that A2 ≤ Am, so by (3.7) one gets that

ρ|A2 = conj(h)|A2 . (3.13)

Recall that P = A2 oN2. So (3.12) and (3.13) yield that

ρ|P = conj(h)|P . (3.14)

Hence, by (3.7) and (3.14), we obtain that ρ|Am∪P = conj(h)|Am∪P . It follows

from Proposition 3.1 that ρ ∈ Inn(G). As ρ is arbitrary, we have AutC(G) ⊆
Inn(G). On the other hand, it is clear that Inn(G) ⊆ AutC(G). Hence AutC(G) =

Inn(G). This completes the proof of Theorem 3.2. ¤

As immediate consequences of Theorem 3.2, we have the following results.

Corollary 3.3. Let G = AwrN be the standard wreath product of A by N ,

where A is a finite abelian group and N is a finite 2-closed group. Then the

normalizer property holds for G.

Corollary 3.4. Let G = AwrN be the standard wreath product of A by N ,

where A is a finite abelian group and N is a finite nilpotent group. Then every

Coleman automorphism of G is an inner automorphism, i.e., AutC(G) = Inn(G).

In particular, the normalizer property holds for G.
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