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Gamma-mixed Ornstein–Uhlenbeck sheet

By CIPRIAN A. TUDOR (Villeneuve d’Ascq) and MARIA TUDOR (Bucharest)

Dedicated to the memory of Professor Constantin Tudor

Abstract. We construct a two-parameter variant of the Gamma-mixed Ornstein–

Uhlenbeck process introduced in [8]. This process is constructed as a limit of aggregated

Ornstein–Uhlenbeck sheet with common input and random coefficient. We will show

that the Gamma-mixed Ornstein–Uhlenbeck sheet has various interesting properties. In

particular, it approximates the Brownian sheet and its integral process approximates

the Liouville fractional Brownian sheet.

1. Introduction

In [8] an interesting stochastic process has been introduced. It is called

Gamma-mixed Ornstein–Uhlenbeck process. Let us briefly recall its construction.

Consider a sequence of stationary Ornstein–Uhlenbeck processes (Xk)k≥1 with

random coefficients, that is, for every k ≥ 1, Xk is the solution of the Langevin

equation

dXk(t) = αkXk(t)dt+ dB(t)

whereXk(0) = 0, B = (B(t))t∈R is a standardWiener process with time interval R
defined on the probability space (ΩB ,FB , PB) and αk are independent random

Mathematics Subject Classification: 60F05, 60H05, 91G70.
Key words and phrases: Ornstein–Uhlenbeck process, self-similarity, fractional Brownian sheet,

weak convergence, stochastic differential equation.
The first author was partially supported by the ANR grant “Masterie” BLAN 012103. Associate

member of the team Samos, Université de Panthéon-Sorbonne Paris 1.
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variables, also independent by B, defined on the probability space (Ωα,Fα, Pα). It

is assumed that for every k ∈ N, the random variable αk has Gamma distribution

Γ(1− h, λ) with λ > 0 and h ∈ (
0, 1

2

)
. Denote by

Yn(t) =
1

n

n∑

k=1

Xk(t), t ∈ R

the so-called aggregated process. Then Y n converges as n → ∞ (in L2(ΩB) for

fixed time and in the weak sense) to the stochastic process Y λ = (Y λ(t))t∈R which

can be represented as a Wiener integral with respect to the Brownian motion B

in the following way

Y λ(t) =

∫ t

−∞

(
λ

λ+ t− s

)1−h

dB(s). (1)

The stochastic process Y λ is called Gamma-mixed Ornstein–Uhlenbeck process.

It has various interesting properties. First, as λ → ∞ it converges (again in

L2(ΩB) for fixed time and in the weak sense) to the Wiener process while its

integrated renormalized process

Zλ(t) = λ
3
2−H

∫ t

0

Y λ(s)ds (2)

converges to (modulo a constant) the fractional Brownian motion with Hurst pa-

rameter H = h + 1
2 ∈ (

1
2 , 1

)
. It is stationary, it exhibits long-range dependence,

it is asymptotically self-similar and it is a semimartingale. As explained in [8], it

is a good candidate to be a model for various applications, such as heart rate va-

riability. Other results related to the Gamma-mixed Ornstein–Uhlenbeck process

can be found in [13]. Also we mention some related works on fractional sheets

and mixed Ornstein–Uhlenbeck processes: [2], [7], [6], [10].

The purpose of this paper is to study the two-parameter counterpart of the

Gamma-mixed Ornstein–Uhlenbeck process (1). We will define it as a limit of an

aggregated process involving the solution of the two-parameter Langevin equa-

tion (3) (this solution will be called Ornstein–Uhlenbeck sheet). But in the two-

parameter case, the situation is different given the more complex structure of

the solution of the Langevin equation. We will prove that, in order to find after

“aggregation” and limit a process that approximate the Wiener sheet and the

fractional Brownian sheet, the two-parameter Ornstein–Uhlenbeck sheet has to

be “mixed” by a different law, which is a product of a random variable with
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Gamma distribution and of an independent random variable with exponential

distribution.

Our paper is organized as follows. In Section 2 we analyze the solution of

the two-parameter Langevin equation with random coefficient and we investigate

the limit behavior of its aggregated process. Section 3 is devoted to the study of

the properties of the Gamma-mixed Ornstein–Uhlenbeck sheet.

2. Aggregated Ornstein–Uhlenbeck sheet with random coefficient

Let us consider a Brownian sheet (Wt,s)t,s≥0 on a probability space

(ΩW ,FW , PW ). Recall that W is a defined as a centered Gaussian process, null

on the axis, such that

EWs,tWu,v = (t ∧ u)(s ∧ v), for every s, t, u, v ≥ 0.

Also consider a sequence of independent identically distributed random variables

(αk)k≥1 defined on another probability space (Ωα,Fα, Pα). We will assume that

W is independent by the sequence (αk)k≥1 and we will consider W and αk as ex-

tended versions on the product space. We will denote by EW ,Eα the expectation

with respect to PW , Pα respectively. The expectation with respect to the product

probability measure with be denoted by E. Consider the following two-parameter

stochastic differential equation with additive noise W and with random coefficient

αk

dXk
t,s = −αkX

k
t,sdtds+ dWt,s (3)

with initial condition Xk
0,0 = Xk

0,s = Xk
t,0 = 0 for every t, s ≥ 0, where W is a

standard Brownian sheet and k ≥ 1. The equation has the integral form

Xk
t,s =

∫ t

0

∫ s

0

−αkX
k
u,vdudv +Wt,s, t, s ≥ 0.

The first step is to express the solution to (3) as a Wiener integral with

respect to the Brownian sheet W .

Proposition 1. For every k ≥ 1 and t, s, t0, s0 ≥ 0 define

fk(t, s, t0, s0)) = 1(0,t)(t0)1(0,s)(s0)
∑

n≥0

(−1)nαn
k

(n!)2
(t− t0)

n(s− s0)
n. (4)

Assume that for every k ≥ 1 and for every t, s ≥ 0

fk(t, s, ·, ·) ∈ L2([0,∞)2) (5)
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and ∫ t

0

du

∫ s

0

dv

∫ ∞

0

dt0

∫ ∞

0

ds0
(
fk(u, v, t0, s0)

)2
< ∞. (6)

Then the unique solution to (3) can be written as follows:

Xk
t,s =

∫

R

∫

R
fk(t, s, t0, s0)dWt0,s0 . (7)

Proof. It is standard to show that (3) admits an unique solution (it suffices

for example to identify the chaos expansion of each side, see e.g. [11]). We will

show that this unique solution is given by (7). For every k ≥ 1, using Fubini’s

theorem (note that assumption (5), (6) and Exercise 3.2.7 in [12] imply that the

hypothesis of the stochastic Fubini theorem are satisfied) we can write

− αk

∫ t

0

∫ s

0

Xk
u,vdvdu

= −αk

∫ t

0

du

∫ s

0

dv

∫ u

0

∫ v

0

∑

n≥0

(−1)nαn
k

(n!)2
(u− t0)

n(s− s0)
ndWt0,s0

=
∑

n≥0

(−1)n+1αn+1
k

(n!)2

∫ t

0

∫ s

0

dWt0,s0

∫ t

t0

du

∫ s

s0

dv(u− t0)
n(v − s0)

n

=
∑

n≥0

(−1)n+1αn+1
k

((n+ 1)!)2

∫ t

0

∫ s

0

dWt0,s0(t− t0)
n+1(s− s0)

n+1

=
∑

n≥1

(−1)nαn
k

(n!)2

∫ t

0

∫ s

0

dWt0,s0(t− t0)
n(s− s0)

n

=
∑

n≥0

(−1)nαn
k

(n!)2

∫ t

0

∫ s

0

dWt0,s0(t− t0)
n(s− s0)

n −Wt,s

= Xk
t,s −Wt,s. ¤

Remark 1. The stochastic integral in (7) is a Wiener integral with respect to

the Brownian sheet W . Since the Brownian sheet is a Gaussian process we can

define Wiener integrals with respect to it. This Wiener integral is an isometry

between L2([0,∞)2) and the Gaussian space generated by W .

Remark 2. The kernel (4) can be also expressed in terms of the Bessel function

(see [6]).

As mentioned in the introduction, we are interested in finding the limit of

the “aggregated” sequence

YN (t, s) =
1

N

N∑

k=1

Xk
t,s. (8)
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More precisely, we want to find the suitable law of the random variables αk which

will imply the convergence of YN (in some sense that will be explicated later) as

N → ∞ to a two-parameter version of the Gamma-mixed Ornstein–Uhlenbeck

process. At this point, let us make some heuristic considerations in order to find

the candidate for the limit of YN . We have, for every t, s ≥ 0

YN (t, s) =
1

N

N∑

k=1

∑

n≥0

(−1)nαn
k

(n!)2

∫ t

0

∫ s

0

dWt0,s0(t− t0)
n(s− s0)

n

=

∫ t

0

∫ s

0

∑

n≥0

(−1)n

(n!)2
(t− t0)

n(s− s0)
n

(
1

N

N∑

k=1

αn
k

)
dWt0,s0 .

By the law of large numbers, for every n,

1

N

N∑

k=1

αn
k →N→∞ Eαα

n
1 (9)

almost surely with respect to Pα. Therefore, for every s, t

YN (t, s) →N→∞

∫ t

0

∫ s

0

dWt0,s0

∑

n≥0

(−1)n

(n!)2
(t− t0)

n(s− s0)
nEαn

1

(at this point, the symbol “→” is only heuristic and we can use either the notation

E or Eα). Now, we will introduce the common distributions of αk. Take H ∈(
1
2 , 1

)
and λ > 0. We assume that for every k ≥ 1 we have

αk = akbk (10)

where ak, bk are independent random variables defined on the space Ωα such that

ak ∼ Γ

(
3

2
−H,λ

)
and bk ∼ Exp (1) (11)

(the notation above means that ak has Gamma distribution with parameters 3
2−H

and λ > 0 and bk has exponential law with parameter 1). Then, with h = H − 1
2



612 Ciprian A. Tudor and Maria Tudor

(this notation will be used often throughout the paper)

E(bn1 ) = Γ(n+ 1) = n! and

E(an1 ) =
λ1−h

Γ(1− h)

∫ ∞

0

e−λxx−h+ndx =
λ−n

Γ(1− h)
Γ(n− h+ 1).

This implies that

Eαn
1 =

λ−nΓ(n− h+ 1)n!

Γ(1− h)
. (12)

Consequently, the natural limit of the aggregated sequence YN as N → ∞ would

be

Y λ(t, s) =

∫ t

0

∫ s

0

dWt0,s0

∑

n≥0

(−1)n

n!

(t− t0)
n(s− s0)

n

λn

Γ(n− h+ 1)

Γ(1− h)
. (13)

Recall that the power series expansion of the function (1− x)b−1 with b > 0 is

(1− x)b−1 =
∑

n≥0

Γ(n− b+ 1)

Γ(1− b)n!
xn, x ∈ (−1, 1). (14)

Using this fact, we get that for λ large enough, (13) equals

Y λ(t, s) =

∫ t

0

∫ s

0

(
1 +

(t− t0)(s− s0)

λ

)H− 3
2

dWt0,s0

=

∫ t

0

∫ s

0

(
λ

λ+ (t− t0)(s− s0)

) 3
2−H

dWt0,s0 . (15)

Definition 1. The process (Y λ(t, s))t,s≥0 given by (15) will be called Gamma-

mixed Ornstein–Uhlenbeck sheet with parameter H and λ. Note that the process

Y λ is well-defined for every λ > 0 as a Wiener integral in L2(Ω), although the

expansion (14) is valid only for x ∈ (−1, 1).

We now prove the convergence of YN (8) to Y λ (15). We start with the

following lemma.

Lemma 1. Assume (10) and (11). Then for every t, s ≥ 0, λ > 0 such that

λ > 4ts and for every k ≥ 1

E
(
Xk

t,s

)2 ≤ ts.
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Proof. Fix t, s ≥ 0, λ > 0, k ≥ 1 with λ > 4ts. Using the isometry of the

Wiener integral and relation (12)

E
(
Xk

t,s

)2
= Eα

∫ t

0

dt0

∫ s

0

ds0


∑

n≥0

(−1)nαn
k

(n!)2
(t− t0)

n(s− s0)
n




2

=

∫ t

0

dt0

∫ s

0

ds0
∑

n,m≥0

(−1)n+mEαα
n+m
k

(n!)2(m!)2
(t− t0)

n+m(s− s0)
n+m

=

∫ t

0

dt0

∫ s

0

ds0
∑

n,m≥0

(−1)n+mλ−(n+m)(m+ n)!

(n!)2(m!)2

× (t− t0)
n+m(s− s0)

n+mΓ(n+m+ 3
2 −H)

Γ( 32 −H)

=
∑

n,m≥0

(−1)n+mλ−(n+m)(m+ n)!

(n!)2(m!)2
Γ(n+m+ 3

2 −H)

Γ( 32 −H)

1

(m+ n+ 1)2
(ts)n+m+1

=
∑

n,m≥0

(−1)n+mλ−(n+m)Cn
m+n

n!m!(m+ n+ 1)2
Γ(n+m+ 3

2 −H)

Γ( 32 −H)
(ts)n+m+1

=
∑

q≥0

(−1)qλ−q

(q + 1)2
Γ(q + 3

2 −H)

Γ( 32 −H)
(ts)q+1

q∑
n=0

Cn
q

1

n!(q − n)!

where we used the change of summation m+ n = q. Thus

E
(
Xk

t,s

)2
=

∑

q≥0

(−1)qλ−q

(q + 1)2q!

Γ(q + 3
2 −H)

Γ( 32 −H)
(ts)q+1

q∑
n=0

(Cn
q )

2

=
∑

q≥0

(−1)qλ−q

(q + 1)2q!

Γ(q + 3
2 −H)

Γ( 32 −H)
(ts)q+1Cq

2q

because
∑q

n=0(C
n
q )

2 = Cq
2q (this identity is well-known: it can be proven by

developing (1+x)2n = (1+x)n(1+x)n and identifying the coefficient of xn). The

above series converges absolutely if λ > 4ts. Indeed, denoting by

Aq :=

∣∣∣∣
(−1)qλ−q

(q + 1)2q!

Γ(q + 3
2 −H)

Γ( 32 −H)
(ts)q+1Cq

2q

∣∣∣∣

we have
Aq+1

Aq
=

(2q + 1)(2q + 2)(q + 3
2 −H)ts

(q + 1)(q + 2)2λ
→q→∞

4ts

λ
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and this is strictly less than 1 if λ > 4ts. Moreover, denoting by Bq =
(
4ts
λ

)q
we

can see that
Aq+1

Aq
≤ Bq+1

Bq
for every q ≥ 0 and a classical argument implies that

Aq ≤ A0

B0
= ts. ¤

Theorem 1. Let YN be given by (8) and assume (10) and (11). Then for

every s, t ∈ [0, T ] such that 4ts < λ

YN (t, s) →N→∞ Y λ(t, s) in L2(Ω).

Also, as N → ∞, the family of stochastic processes (YN )N≥1 converges weakly in

the space C([a, b]× [c, d]) (with a < b, c < d, a, b, c, d ≥ 0) to the process Y λ.

Proof. Throughout this proof, we will use the following notation:

fλ(t, s, t0, s0) = 1(0,t)(t0)1(0,s)(s0)
∑

n≥0

(−1)n

n!

(t− t0)
n(s− s0)

n

λn

Γ(n− h+ 1)

Γ(1− h)

and

fN (t, s, t0, s0) = 1(0,t)(t0)1(0,s)(s0)
∑

n≥0

(−1)n

(n!)2
(t− t0)

n(s− s0)
n

(
1

N

N∑

k=1

αn
k

)

First, note that

EαEB

∣∣YN (t, s)− Y λ(t, s)
∣∣2 =Eα

∫ t

0

∫ s

0

(
fN (t, s, t0, s0)− fλ(t, s, t0, s0)

)2
dt0ds0.

Lemma 1 (which allows to interchange the order of integration before (9)) and

relation (9) show that, under the assumptions in the statement, for fixed t, s, t0, s0
the difference fN (t, s, t0, s0)− fλ(t, s, t0, s0) converges to zero almost surely with

respect to Pα. In order to apply the dominated convergence theorem, we need to

show that for every t, s, t0, s0,

Eα

(
fN (t, s, t0, s0)− fλ(t, s, t0, s0)

)2 ≤ g(t, s, t0, s0)

where the function g that not depend on N (it may depend on λ) and satisfies

for every t, s ∫ t

0

dt0

∫ s

0

ds0g(t, s, t0, s0) ≤ C

with C a strictly positive constant.
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First obviously
∣∣fλ(t, s, t0, s0)

∣∣ ≤ 1 and for every t, s

Eαf
N (t, s, t0, s0)

2 = Eα

(
fN (t, s, t0, s0)

)2

= Eα


∑

n≥0

(−1)n

(n!)2
(t− t0)

n(s− s0)
n 1

N

N∑

k=1

αn
k




2

.

We follow the lines of the proof of Lemma 1. We have

Eαf
N (t, s, t0, s0)

2

=
∑

n,m≥0

(−1)n+m

(n!)2(m!)2
(t− t0)

n+m(s− s0)
n+m 1

N2

N∑

k,l=1

Eαα
n
kα

m
l

=
∑

n,m≥0

(−1)n+m

(n!)2(m!)2
(t− t0)

n+m(s− s0)
n+m 1

N2




N∑

k=1

Eαα
m+n
k +

N∑

k 6==l;k,l=1

Eαα
n
kEαα

n
l


.

By (12), using again the notation h = H − 1
2

Eαf
N (t, s, t0, s0) =

∑

n,m≥0

(−1)n+m

n!m!
(t− t0)

n+m(s− s0)
n+m

× N(N − 1)

N2

λ−(n+m)Γ(n− h+ 1)Γ(m− h+ 1)

Γ(1− h)2

+
∑

n,m≥0

(−1)n+m

(n!)2(m!)2
(t− t0)

n+m(s− s0)
n+m 1

N

(n+m)!λ−(n+m)Γ(n+m− h+ 1)

Γ(1− h)2

:= Tnd(t, s, t0, s0) + T d(t, s, t0, s0).

The first sum correspond to the non-diagonal term while the first sum corresponds

to the diagonal term. Let us compute the non diagonal term.

Tnd =
N(N − 1)

N2


∑

n≥0

(−1)nλ−n

n!
(t− t0)

n(s− s0)
nΓ(n− h+ 1)

Γ(1− h)




2

=
N(N − 1)

N2

(
1 +

(t− t0)(s− s0)

λ

)2h−2

by (14). Obviously

∫ t

0

dt0

∫ s

0

ds0T
nd(t, s, t0, s0) ≤ ts.
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The diagonal term can be expressed as

T d(t, s, t0, s0) =
1

N

∑

n,m≥0

(−1)n+mλ−(n+m)

n!m!
Cn

n+m(t− t0)
n+m(s− s0)

n+m

× Γ(n− h+ 1)Γ(m− h+ 1)

Γ(1− h)

=
1

N

∑

n≥0

1

n!

∞∑

k=n

(−1)kλ−k

(n− k)!
(t− t0)

k(s− s0)
kCn

k

Γ(k − h+ 1)

Γ(1− h)

=
1

N

∑

k≥0

(−1)kλ−k(t− t0)
k(s− s0)

kΓ(k−h+1)

Γ(1− h)

k∑
n=0

1

n!(n−k)!
Cn

k .

and as in the proof of Lemma 1,
∫ t

0

dt0

∫ s

0

ds0T
d(t, s, t0, s0)

is less than ts.

Next, we will prove the weak convergence of YN to Y λ in the space of continuous

functions C([a, b]× [c, d]) where a, b, c, d are as in the statement. Clearly the L2

convergence proved above implies the convergence of finite dimensional distribu-

tions of YN to those of Y λ as N → ∞. We need to show that YN and Y λ have

continuous paths and the family (YN )N is tight. Let us notice that the process

Y λ has continuous paths. Indeed, for every u, v ≥ 0

E
∣∣Y λ(t+ u, s+ v)− Y λ(t+ u, s)− Y λ(t, s+ v) + Y λ(t, s)

∣∣2

=

∫ t+u

t

∫ s+v

s

(
λ

λ+ (t− t0)(s− s0)

)3−2H

dt0ds0 ≤ uv

and the continuity of Y λ follows from the Kolmogorov criterium for two-para-

meter processes (see e.g. [1]).

It remains to show that YN has continuous paths for every N ≥ 1 and

the family (YN )N≥1 is tight in C([a, b] × [c, d]). Both claims will follow from

the following calculations. Let x, y > 0. We will estimate the Lp norm of the

rectangular increment

YN (t+ x, s+ y)− YN (t+ x, s)− YN (t, s+ y) + YN (t, s)

=
1

N

N∑

k=1

Xk
t+x,s+y −Xk

t+x,s −Xk
t,s+x +Xk

t,s

= − 1

N

N∑

k=1

αk

∫ t+x

t

∫ s+y

s

Xk
u,vdvdu+Wt+x,s+y −Wt+x,s −Wt,s+y +Wt,s.
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Then

E |YN (t+ x, s+ y)− YN (t+ x, s)− YN (t, s+ y) + YN (t, s)|

≤ 1

N

(
Eα|αk|2

) 1
2

∫ t+x

t

∫ s+y

s

(
E|Xk

u,v|2
) 1

2 dvdu

+E|Wt+x,s+y −Wt+x,s −Wt,s+y +Wt,s| ≤ C(xy + (xy)
1
2 )

using Lemma 1 and the Hölder continuity of the Brownian sheet W , where the

constant C may depend on a, b, c, d. Since for every Gaussian random variable

X one has ‖X‖L2 =
√

π
2 ‖X‖L1 and since YN is Gaussian, we obtain that

E |YN (t+ x, s+ y)− YN (t+ x, s)− YN (t, s+ y) + YN (t, s)|p

≤ CpE|YN (t+ x, s+ y)− YN (t+ x, s)− YN (t, s+ y) + YN (t, s)| ≤ Cp(xy)
p
2 .

The above inequality, together with a tightness criterium for the two-parameter

processes (see e.g. [3]) will give the conclusion. ¤

Remark 3. We notice that, in contrast to the one-parameter case, the con-

vergence above holds in L2(Ω) = L2(ΩW × Ωα). In the one-parameter case,

EWEαYN (t)2 = ∞ for every t ≥ 0 (see Remark 2 in [8]).

3. Properties of the Gamma-mixed Ornstein–Uhlenbeck sheet

Recall (see [8]) that the (one-parameter) Gamma-mixed Ornstein–Uhlenbeck

process (1) converges to the Brownian motion as λ → ∞ and its integrated

renormalized process (2) converges to the fractional Brownian motion. Moreover,

the process (1) is stationary and almost self-similar. We will investigate these

properties in the two-parameter case. Note that the Wiener integral in (15) is

defined only on square of the positive real line while in (1) the negative line is

also included. These will lead to some new situations in the two-parameter case.

One losses the stationarity but we will have the self-similarity property. Also, the

integrated process will convergence, in the two-parameter case, to a variant of the

fractional Brownian sheet called Liouville fractional Brownian sheet.

We first remark the following.

Proposition 2. Let Y λ be given by (15). Then for every a, b > 0

(
Y λ(at, bs)

)
t,s≥0

=(d)
(
(ab)

1
2Y

λ
ab (t, s)

)
t,s≥0
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Proof. Fix a, b > 0 and recall that the Wiener sheet W satisfies the follo-

wing self-similarity property: (Wat,bs)t,s =(d) ((ab)
1
2Wt,s≥0)t,s≥0 (“=(d)” means

the equivalence of finite dimensional distributions). Then

Y λ(at, bs) = λ
3
2−H

∫ at

−∞

∫ bs

−∞
dWt0,s0 (λ+ (at− t0)(bs− s0))

H− 3
2

= λ
3
2−H

∫ t

0

∫ s

0

dWat0,bs0 (λ+ (at− at0)(bs− bs0))
H− 3

2

=(d) λ
3
2−H(ab)H−1

∫ t

0

∫ s

0

dWt0,s0

(
λ

ab
+ (t− t0)(s− s0)

)H− 3
2

= (ab)
1
2Y

λ
ab (t, s). ¤

The result in Proposition 2 suggests that when λ is close to infinity the

process (15) is self-similar of order 1
2 as the Wiener sheet W . It is therefore

natural to expect the convergence of Y λ to the Brownian sheet when λ → ∞.

Proposition 3. For every a, b, c, d ∈ R+, a < b, c < d

sup
(t,s)∈[a,b]×[c,d]

E
∣∣Y λ(t, s)−Wt,s

∣∣2 →λ→∞ 0.

Proof. Indeed, for every (t, s) ∈ [a, b]× [c, d]

E
∣∣Y λ(t, s)−Wt,s

∣∣2 =

∫ t

0

∫ s

0

ds0dt0

[(
λ

λ+ (t− t0)(s− s0)

) 3
2−H

− 1

]2

and the conclusion follows since
(

λ
λ+(t−t0)(s−s0)

) → 1 as λ → ∞ (for fixed

t, s, t0, s0 and ∣∣∣∣
(

λ

λ+ (t− t0)(s− s0)

)∣∣∣∣ ≤ 1. ¤

Remark 4. Using the result in Proposition 3, the weak convergence of Y λ to

W in C([a, b]× [c, d]) can be also obtained as in the proof of Theorem 1.

Remark 5. We remark first that the process Y λ is not stationary. On the

other hand, the process given by

Y
′,λ(t, s) =

∫ t

−∞

∫ s

−∞

(
λ

λ+ (t− t0)(s− s0)

) 3
2−H

dWt0,s0
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is stationary (here we allow the integration domain to contain negative values).

Indeed, for every s, t, u, v ≥ 0, t > u, s > v and for every a, b ≥ 0 we have

EY
′,λ(t+ a, s+ b)Y

′,λ(u+ a, v + b)

=

∫ u+a

−∞

∫ v+b

−∞

(
λ

λ+ (t+ a− t0)(s+ b− s0)

) 3
2−H

×
(

λ

λ+ (u+ a− t0)(v + b− s0)

) 3
2−H

dt0ds0

=

∫ u

−∞

∫ v

−∞

(
λ

λ+ (t− t0)(s− s0)

) 3
2−H (

λ

λ+ (u− t0)(v − s0)

) 3
2−H

dt0ds0

= EY
′,λ(t, s)Y

′,λ(u, v)

Next we will prove that the integrated process of Y λ converges to a variant of

the fractional Brownian sheet called Liouville fractional Brownian sheet. Several

extensions of the fractional Brownian motion have been proposed in the literature.

This includes for example the fractional Brownian field ([4]), the Lévy’s fractional

Brownian field ([5]) and the anisotropic fractional Brownian sheet ([9], [1]), which

we consider in this paper.

We begin with the definition of the anisotropic Liouville fractional Brownian

sheet.

Definition 2. Let α, β ∈ (0, 1). The Liouville fractional Brownian sheet with

Hurst parameters α, β is defined by

Wα,β(t, s) =

∫ t

0

∫ s

0

(t− t0)
α− 1

2 (s− s0)
β− 1

2 dWt0,s0 , t, s ≥ 0. (16)

Let us also consider the integrated process

Zλ(t, s) = λH− 3
2

∫ t

0

∫ s

0

Y λ(u, v)dvdu, t, s ≥ 0. (17)

Proposition 4. For every s, t ≥ 0, Zλ(t, s) converges in L2(Ω) as λ → 0 to

the random variable WH,H . Also, for every 0 ≤ a < b, 0 ≤ c < d the family of

stochastic processes (Zλ, λ > 0) converges weakly in C([a, b]× [c, d]) (a, b, c, d > 0,

a < b, c < d) to the Liouville fractional Brownian sheet WH,H multiplied by the

constant
(
H − 1

2

)−2
.
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Proof. By interchanging the order of integration (this can be argued as in

the proof of Proposition 1, since Y λ is in L2 and
∫ t

0

∫ s

0
(Y λ

u,v)
2dudv < ∞ for every

t, s, which can be seen from the below computations), we can write

Zλ(t, s) =

∫ t

0

∫ s

0

dWt0,s0

∫ t

t0

du

∫ s

s0

dv (λ+ (u− t0)(v − s0))
H− 3

2

and the L2 follows from the trivial convergence as λ → 0 (for fixed t, s, t0, s0) of

∫ t

t0

du

∫ s

s0

dv (λ+ (u− t0)(v − s0))
H− 3

2

to (H − 1
2 )

−2(t − t0)
H− 1

2 (s − s0)
H− 1

2 (then we can easily apply the dominated

convergence theorem).

The convergence of the finite dimensional distributions of Zλ to the finite

dimensional distributions of WH,H is a consequence of the L2 convergence of

Zλ(t, s) to WH,H(t, s) for every s, t. It suffices to show that the family (Zλ, λ > 0)

is tight in C([a, b]× [c, d]) and this follows since for every x, y > 0

E
∣∣Zλ(t+ x, s+ y)− Zλ(t+ x, s)− Zλ(t, s+ y) + Zλ(t, s)

∣∣2

E

∣∣∣∣
∫ t+x

t

du

∫ s+y

s

dv

∫ u

0

∫ v

0

dWt0,s0(λ+ (u− t0)(v − s0))
H− 3

2

∣∣∣∣
2

=

∫ t+x

0

dt0

∫ s+y

0

ds0

(∫ t+x

t0∨t

du

∫ s+y

s0∨s

dv(λ+ (u− t0)(u− s0))
H− 3

2

)2

≤
∫ t+x

0

dt0

∫ s+y

0

ds0

(∫ t+x

t0∨t

du

∫ s+y

s0∨s

dv((u− t0)(v − s0))
H− 3

2

)2

= K

∫ t+x

0

dt0

∫ s+y

0

ds0

×
([

(t+x− t0)
H− 1

2−(t ∨ t0−t0)
H− 1

2

][
(s+ y− s0)

H− 1
2 − (s ∨ s0 − s0)

H− 1
2

])2

≤ K(xy)2H−1

where the constant K depends on H, a, b, c, d. Thus

E
∣∣Zλ(t+ x, s+ y)− Zλ(t+ x, s)− Zλ(t, s+ y) + Zλ(t, s)

∣∣2 ≤ Cp(xy)
p(H− 1

2 )

and the conclusion is obtained by using the fact that Zλ is Gaussian, H > 1
2

and by using the criterium in [3] for the tightness of multiparameter stochastic

processes. ¤
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Remark 6. It is also possible to construct variants of the Gamma-mixed

Ornstein–Uhlenbeck sheet (15) that converges as λ → ∞ to the Wiener sheet

and as λ → 0 to the Liouville fractional Brownian sheet with Hurst parameters

H1,H2 ∈ (
1
2 , 1

)
as defined in (16) . Indeed, for t, s ≥ 0, consider

Y λ,H1,H2(t, s) =

∫ t

0

∫ s

0

(
λ

λ+ t− u

) 3
2−H1

(
λ

λ+ s− v

) 3
2−H2

dWu,v (18)

where (Wu,v)u,v∈R is a Brownian sheet.

We can show that, for every t, s the sequence Y λ,H1,H2(t, s) converges in

L2(Ω) as λ → ∞ to the Brownian sheet Wt,s and the integral process

Zλ,H1,H2(t, s) = λH1− 3
2λH2− 3

2

∫ t

0

∫ s

0

Y λ,H1,H2(u, v)dudv

converges in L2(Ω) for every t, s to
(
H1 − 1

2

)−1(
H2 − 1

2

)−1
WH1,H2(t, s) with

WH1,H2 given by (16). On the other hand, the process (18) cannot be easily

interpreted as limit of aggregated Ornstein–Uhlenbeck processes.
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