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Mixed-type reverse order laws for generalized inverses
in rings with involution

By DIJANA MOSIC (Nig) and DRAGAN S. DJORDJEVIC (Nis)

Abstract. We investigate mixed-type reverse order laws for the Moore—Penrose
inverse in rings with involution. We extend some well-known results to more general
settings, and also prove some new results.

1. Introduction

Many authors have studied the equivalent conditions for the reverse order
law (ab)t = bfa! to hold in setting of matrices, operators, C*-algebras or rings
[2], [9], [3], [5], [8], [10], [12], [16], [17]. This formula cannot trivially be extended
to the other generalized inverses of the product ab. Since the reverse order law
(ab)t = bla’ does not always holds, it is not easy to simplify various expressions
that involve the Moore-Penrose inverse of a product. In addition to (ab)’ = bfal,
(ab)t may be expressed as (ab)t = bf(aabb?)fal, (ab)t = b*(a*abb*)Ta*, (ab)f =
bfal —bf[(1—0bb")(1—a'a)]Tat, etc. These equalities are called mixed-type reverse
order laws for the Moore—Penrose inverse of a product and some of them are in
fact equivalent (see [4], [12], [14]). In this paper we study necessary and sufficient
conditions for mixed-type reverse order laws of the form: (ab)! = (afab)tal,
(ab)t = bT(abb®)T, (ab)T = b (aTabb)Tal, (ab)T = (a*ab)Ta*, (ab)" = b*(abb*)" and
(ab)t = b*(a*abb*)a* in rings with involution.

Let R be an associative ring with the unit 1. An involution a — a* in a ring
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R is an anti-isomorphism of degree 2, that is,
(@) =a, (a+b)*=a"+b", (ab)* =b"a".
An element a € R is selfadjoint if a* = a.
The Moore—Penrose inverse (or MP-inverse) of a € R is the element b € R,
such that the following equations hold [13]:
(1) aba =a, (2)bab=10b, (3) (ab)* =ab, (4) (ba)* = ba.

There is at most one b such that above conditions hold (see [13]), and such b is
denoted by af. The set of all MoorePenrose invertible elements of R will be
denoted by RT. If a is invertible, then a' coincides with the ordinary inverse of a.
If § C {1,2,3,4} and b satisfies the equations (i) for all ¢ € 4, then b is
an d-inverse of a. The set of all §-inverse of a is denote by a{d}. Notice that
a{1,2,3,4} = {a'}. If a{1} # 0, then a is regular.
Now, we state the following useful result.

Theorem 1.1 ([6], [11]). For any a € R, the following is satisfied:

The following result is well-known for complex matrices [1] and linear boun-
ded Hilbert space operators [18], and it is equally true in rings with involution.
Lemma 1.1. Ifa,b € R such that a is regular, then
(a) bea{l,3} < a*ab=a";
(b) b€ a{l,4} < baa* = a*.
PRrROOF. (a) Let b € a{1,3}, then we get a*ab = a*(ab)* = (aba)* = a*.
Conversely, the equality a*ab = a* implies
(ab)* =b*a™ = b*a*ab = (ab)*abis selfadjoint
and
aba = (ab)*a = (a*ab)* = (a*)* = a.
Hence, b € a{1, 3}.
Similarly, we can verify the second statement. O



Mixed-type reverse order laws for generalized inverses. .. 643

The reverse-order law (ab)’ = bf(aTabb")a’ was first studied by GALPERIN
and WAKSMAN [7]. A Hilbert space version of their result was given by ISu-
MINO [9]. Many results concerning the reverse order law (ab)! = bf(aTabb?)Tal for
complex matrices appeared in TIAN’s papers [14] and [15], where the author used
mostly properties of the rank of a complex matrices. In [12], a set of equivalent
conditions for this reverse order rule for the Moore—Penrose inverse in the setting
of C*-algebra is studied.

X10oNG and QIN [18] investigated the following mixed-type reverse order laws
for the Moore-Penrose inverse of a product of Hilbert space operators: (ab)f =
(atab)tat, (ab)t = b (abb?)T, (ab)T = bf(aabb?)Tal. They used the technique of
block operator matrices. We extend results from [18] to more general settings.

This paper is organized as follows. In Section 2, we extend the results
from [18] to settings of rings with involution without the hypothesis corres-
ponding to R(A*AB) C R(B). In Section 3, we consider the following mixed-
type reverse order laws for the Moore—Penrose inverse in rings with involution:
(ab)t = (a*ab)ta*, (ab)T = b*(abb*)" and (ab)! = b*(a*abb*)Ta*. In this paper we
apply a purely algebraic technique.

2. Reverse order laws (afab)fal = (ab)’, bt (abb?)t = (ab)T
and bf(atabb’)at = (ab)?

In this section, we consider necessary and sufficient conditions for reverse
order laws (afab)Tal = (ab)T, bT(abb?)T = (ab)! and b (alabb?)Tat = (ab)T to be
satisfied in rings with involution. The results in [18] for linear bounded Hilbert
space operators are generalized, since we do not use any e hypothesis correspond-
ing to the condition R(A*AB) C R(B) from [18].

Theorem 2.1. Ifa,b,a’ab € RY, then the following statements are equiva-
lent:
(1) a*abR C atabR;
(2) (atab)tal € (ab){1,3};
(3) (afab)tal = (ad)';
(4) (aTab){1,3} -a{1,3} C (ab){1,3}.

PROOF. (2) = (1): Since (a'ab)Ta’ € (ab){1,3}, then ab = ab(a'ab)talab
and

ab(atab)Ta® = (ab(aab)ial)* = (aa’ab(atab)Tat)* = (a")*a'ab(alab)Ta*,
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which gives
a*ab = a*(ab(atab)Taab = a* (a")*alab(atab)Ta*ab
= ataatab(a’ab)ta*ab = afab(atab)Ta*ab.

Therefore, a*abR = a'ab(atab)Ta*abR C alabR.
(1) = (4): The assumption a*abR C alabR implies that a*ab = aabzx, for
some = € R. Now, for any (afab)™3) € (afab){1,3} and o) € a{1,3},

a*ab = a'abz = afab(atab) V) (atabz) = afab(atab) B3 a*ab. (1)
Applying the involution to (1), we obtain
b*a*a = b*a*aatab(atab) ) = b*a*ab(a’ab) . (2)
Multiplying the equality (2) by a(X3) from the right side, we get
b*a* = b*a*ab(atab) a3 (3)

by a*aa’? = a*(aa™?)* = (aa¥a)* = a*. From the equality (3) and
Lemma 1.1, we deduce that (afab)*®a(*3) € (ab){1,3}, for any (afab)*3) €
(atab){1,3} and a** € a{1,3}. So, (afab){1,3} - a{1,3} C (ab){1,3}.

(4) = (2): Obviously, because (afab)! € (a'ab){1,3} and a' € a{1,3}.

(2) <= (3): It is easy to check this equivalence. O

Using Lemma 1.1(b), we can prove the following theorem in the same way
as Theorem 2.1.

Theorem 2.2. If a,b,abb’ € RT, then the following statements are equiva-
lent:

(1) bb*a*R C bbTa*R;
(2) bf(abb)) € (ab){1,4};
(3) bf(abb")" = (ab)';
(4) b{1,4} - (abb"){1,4} C (ab){1,4}.
In the following result, we consider some equivalent conditions for mixed-type
reverse order law (ab)’ = bf(a’abb?)Tat to hold.

Theorem 2.3. If a,b,atabb’ € RY, then the following statements are equi-
valent:

(1) a*abR C alabR and bb*a*R C bbla*R;
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(2) bi(aTabb?)Tal € (ab){1,3,4};
(3) bf(atabb?)Tal = (ab)’;
(4) b{1,3} - (a'abd"){1,3} - a{1,3} C (ab){1,3} and b{1,4} - (atabb’){1,4} -

a{l,4} C (ab){1,4}.

PROOF. (2) = (1): The condition bf(aabb?)Tal € (ab){3} gives

abb’(a'abb)Ta® = (abb'(atabb?)Ta")* = (aalabbl (aTabb’)Tal)*
= (a")*a’abdb' (a'abb?)Ta*.
Using this equality and the hypothesis b'(aTabb")Ta’ € (ab){1}, we have
a*ab = a*(abb' (aTabb’)Ta")ab = a*(a')*atabb! (aTabb’)Ta*ab
= a'aatabbi (aTabb?)Ta*ab = aTabb' (aTabb’)Ta*ab,
which yields a*abR C atabR.

Similarly, we can prove that bf(afabbf)al € (ab){1,4} implies bb*a*R C
bbta*R.

(1) = (4): From a*abR C a'abR, by bR = bb'R, we get a*abb!R C
atabbtR. Thus, a*abb’ = afabb’z, for some z € R. Then, for any (afabd’)13) ¢
(atabb™){1,3}, a? € a{1,3} and b*) € b{1,3}, we obtain

a*abb’ = atabb’ (a’abb’) ) (atabblz) = atabb’ (afabd?) 3 a*abb!. (4)
If we apply the involution to (4), we see that
bbta*a = bb'a*aatabb’ (atabd") B3 = bbfa*abb’ (alabb’) ). (5)
Multiplying the equality (5) from the left side by b* and from the right side by
a3 it follows
b*a* = b*a*abb’ (alabb’) 3 g3
Notice that this equality and
bb13) = b3y = (b ob (13 ) = bpE3pbt = bbf (6)
imply
b*a* = b*a*abb(1’3)(aTabbT)(l’g)a(l’?’). (7)
By (7) and Lemma 1.1, we observe that b (atabb?)(1:3)a(1:3) € (ab){1, 3}, for
any (afabb)(13) € (atabd){1,3}, a*®) € a{1,3} and b3 € b{1,3}. Hence,
b{1,3} - (aTabb"){1,3} - a{1,3} C (ab){1,3}.

In the similar way, we can show that bb*a*R C bbfa*R gives b*a* =
b (afabbh)BH oY abb*a*, for any (afabb’)BD € (atabd){1,4}, aY € af1,4}
and b4 € b{1,4}, i.e. b{1,4} - (atabb’){1,4} - a{1,4} C (ab){1,4}.

(4) = (2) <= (3): Obviously. O
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3. Reverse order laws (a*ab)Ta* = (ab)t, b*(abb*)" = (ab)’
and b*(a*abb*)Ta* = (ab)?

In this section, we give the equivalent conditions related to reverse order laws
(a*ab)ta* = (ab)t, b*(abb*)" = (ab)" and b*(a*abb*)Ta* = (ab)' in settings of rings
with involution.

Theorem 3.1. Ifa,b,a*ab € RY, then the following statements are equiva-
lent:

(1) afabR C a*abR;
(2) (a*ab)Ta* € (ab){1,3};
(3) (a*ab)ta* = (ab)';
(4) (a*ab){1,3} - (a’)*{1,3} € (ab){1,3}.
PROOF. (2) = (1): Using the assumption (a*ab)’a* € (ab){1,3}, we have
ab(a*ab)Ta* = (ab(a*ab)Ta*)* = (aa'ab(a*ab)Ta*)*
= ((a")*a*ab(a*ab)Ta*)* = aa*ab(a*ab)Tal,
and

atab = a'(ab(a*ab)Ta*)ab = a'aa*ab(a*ab)Talab = a*ab(a*ab)alab.

Thus, the condition (1) is satisfied.

(1) = (4): First, by the inclusion a'abR C a*abR, we conclude that afab =
a*aby, for some y € R. Further, for any (a*ab)*® € (a*ab){1,3} and o’ €
(a®)*{1,3}, we get

afab = a*aby = a*ab(a*ab) M (a*aby) = a*ab(a*ab)**a' ab. (8)
When we apply the involution to (8), we observe that
b*ata = b*ataa*ab(a*ab) ) = b*a*ab(a*ab) ). (9)
Since a’ € (a')*{1, 3}, by the equality (6) and Theorem 1.1,
ataa’ = a*[(a")*d] = a*(a")*[(a")*]! = a'aa* = a*. (10)
If we multiply the equality (9) from the right side by a’ and use (10), we obtain
b*a* = b*a*ab(a*ab) ¥ d/,

which implies, by Lemma 1.1, (a*ab)"®a’ € (ab){1,3}, for any (a*ab)™?) €
(a*ab){1,3} and o’ € (a¥)*{1,3}, that is, the condition (4) holds.
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(4) = (2): By Theorem 1.1, a* = [((a")T]* = [((a")*]! € (a')*{1,3} and
this implication follows.

(2) < (3): Obviously. O

In the same manner as in the proof of Theorem 3.1, we can verify the following
results.

Theorem 3.2. If a,b,abb* € RY, then the following statements are equiva-
lent:
(1) bbfa*R C bb*a*R;
(2) b*(abb*)" € (ab){1,4};
(3) b*(abb*)T = (ab);
(4) (B1){1,4} - (abb*){1,4} C (ab){1,4}.

Necessary and sufficient conditions related to the reverse order law (ab)’ =
b*(a*abb*)Ta* are studied in the next result.

Theorem 3.3. If a,b,a*abb* € R, then the following statements are equi-
valent:

(1) afabR C a*abR and bbTa*R C bb*a*R;

(2) b*(a*abb*)Ta* € (ab){1,3,4};

(3) b*(a*abb*)Ta* = (ab)';

(4) (bM)*{1,3} - (a*abb*){1,3} - (a')*{1,3} C (ab){1,3} and
(b1)*{1,4} - (a*abb*){1,4} - (a")*{1,4} C (ab){1,4}.

PROOF. (2) = (1): From b*(a*abb*)Ta* € (ab){3},
abb* (a*abb*) a* = (abb*(a*abb*)a*)* = ((a")*a*abb* (a*abb*)ta*)*
= aa*abb*(a*abb*)al.
Now, by b*(a*abb*)Ta* € (ab){1},
atab = af (abb*(a*abb*) a*)ab = a'aa* abb* (a*abb*)alab
= a*abb*(a*abb*)Ta’ab

implying atabR C a*abR.

Analogously, we can prove the implication b*(a*abb*)Ta* € (ab){1,4} =
bbfa*R C bb*a*R.



648 Dijana Mosi¢ and Dragan S. Djordjevié

(1) = (4): If a'abR C a*abR, by bR = bb*R, we see alabb*R C a*abb*R
and alabb* = a*abb*y, for some y € R. For any (a*ab)"® € (a*ab){1,3},
a’ € (a")*{1,3} and ¥’ € (b7)*{1,3}, then

atabb* = a*abb*(a*abb*) ) (a*abb*y) = a*abb*(a*abb*) > alabb*. (11)
Applying the involution to (11), it follows
bb*ata = bb*ataa*abb* (a*abb* )13 = bb*a* abb* (a* abb*) 3. (12)
From the condition b’ € (b)*{1,3} and the equality (10), we obtain
bb' = b(bTbd') = bb*.

Now, multiplying (12) from the left side by b' and from the right side by a’, we
get, by (10) and the last equality,

b*a* = b*a*abb (a*abb*) 3 d/.

Thus, by Lemma 1.1, b’ (a*abb*) "3 a’€(ab){1, 3}, for any (a*ab) ¥ €(a*ab){1, 3},
a’€(a’)*{1,3} and b'€(b")*{1, 3}, which is equivalent to (b")*{1, 3}-(a*abb*){1, 3}
(a)*{1,3} C (ab){1,3}.

Similarly, we show that bbfa*R C bb*a*R gives (b1)*{1,4} - (a*abb*){1,4} -
(a)*{1,4} C (ab){1,4}.

(4) = (2) < (3): These parts can be check easy. O

If we state in the proved results the elements a*, (af)*, af, b*, (b")* or bf
instead a or b, we obtain various mixed-type reverse order laws for the Moore—
Penrose inverses in rings with involution.

By the results presenting in Section 2 and Section 3, we can get the following
consequence.

Corollary 3.1. If a,b,ab,atab, abb’, atabbt, a*ab, abb*, a*abb* € RT. Then
the following statements are equivalent:

(1) (ab)t = b'(aTabbl)a';

(2) (ab)t = (afab)tal = bT(abbT)

(3) (ab)t = b*(a*abb*)ta

(4) (ab)t = (a*ab)Ta* = b*(abb*)

(5) a*abR C a'abR and bb*a*R C bbia*R;
(6) bf(atabbl)tal € (ab){1,3,4};
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(7) b{1,3} - (aTabb'){1,3} - a{1,3} C (ab){1,3} and b{1,4} - (alabbl){1,4} -

a{l,4} C (ab){1,4};
(atab)tal € (ab){1,3} and b (abb")' € (ab){1,4};
(atab){1,3} - a{1,3} C (ab){1,3} and b{1,4} - (abb"){1,4} C (ab){1,4};

b*(a*abb*)Ta* € (ab){1,3,4};

(b1)*{1,3} - (a%abb*){1,3} - (a")*{1,3} C (ab){1,3} and
(b1)*{1,4} - (a*abb*){1,4} - (a")*{1,4} € (ab){1,4};

)
)
) atabR C a*abR and bbfa*R C bb*a*R;
)
)

(13) (a*ab)ta* € (ab){1,3} and b*(abb*)' € (ab){1,4};
(14) (a*ab){1,3}-(a")*{1,3} C (ab){1,3} and (b")*{1,4}-(abb*){1,4} C (ab){1,4}.

PRrROOF. The equivalences of conditions (1)—(4) follow as in [12, Theorem 2.6]

for elements of C*-algebras. The rest follows from these equivalences and theor-
ems in Section 2 and Section 3. ]
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