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Practical pretenders

By PAUL POLLACK (Athens) and LOLA THOMPSON (Athens)

Abstract. Following Srinivasan, an integer n ≥ 1 is called practical if every natural

number in [1, n] can be written as a sum of distinct divisors of n. This motivates us to

define f(n) as the largest integer with the property that all of 1, 2, 3, . . . , f(n) can be

written as a sum of distinct divisors of n. (Thus, n is practical precisely when f(n) ≥ n.)

We think of f(n) as measuring the “practicality” of n; large values of f correspond

to numbers n which we term practical pretenders. Our first theorem describes the

distribution of these impostors: Uniformly for 4 ≤ y ≤ x,

#{n ≤ x : f(n) ≥ y} ³ x

log y
.

This generalizes Saias’s result that the count of practical numbers in [1, x] is ³ x
log x

.

Next, we investigate the maximal order of f when restricted to non-practical inputs.

Strengthening a theorem of Hausman and Shapiro, we show that every n > 3 for which

f(n) ≥
√

eγn log log n

is a practical number.

Finally, we study the range of f . Call a number m belonging to the range of f an

additive endpoint. We show that for each fixed A > 0 and ε > 0, the number of additive

endpoints in [1, x] is eventually smaller than x/(log x)A but larger than x1−ε.

1. Introduction

In 1948, Srinivasan [15] initiated the study of practical numbers, natural

numbers n with the property that each of 1, 2, 3, . . . , n− 1 admits an expression
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as a sum of distinct divisors of n. For example, every power of 2 is practical (since

every natural number admits a binary expansion), but there are many unrelated

examples, such as n = 6 or n = 150. Srinivasan posed two problems: Classify all

practical numbers and say something interesting about their distribution.

The first of these tasks was carried to completion by Stewart [16] in 1954.

The same classification was discovered independently, and almost concurrently, by

Sierpiński [14]. Given a natural number n, write its canonical prime factorization

in the form

n := pe11 pe22 · · · perr , where p1 < p2 < · · · < pr. (1.1)

Put n0 = 1, and for 1 ≤ j ≤ r, put nj :=
∏j

i=1 p
ei
i . Using σ for the usual sum-of-

divisors function (so that σ(m) :=
∑

d|m d), the number n is practical if and only

if

pj+1 ≤ σ(nj) + 1 for all 0 ≤ j < r. (1.2)

Below, we refer to this as the Stewart–Sierpiński classification of practical num-

bers. This criterion implies, in particular, that all practical numbers n > 1 are

even. Stewart and Sierpiński also showed that if all of the inequalities (1.2) hold,

then not only are all integers in [1, n− 1] expressible as a sum of distinct divisors

of n, but the same holds for all integers in the longer interval [1, σ(n)]. Note that

[1, σ(n)] is the largest interval one could hope to represent, since the sum of all

distinct divisors of n is σ(n).

The distribution of practical numbers has proved more recalcitrant. Let P (x)

denote the count of practical numbers not exceeding x. Already in 1950, Erdős

[2] claimed he could show that the practical numbers have asymptotic density

zero, i.e., that P (x) = o(x) as x → ∞, but he gave no details. In 1984, Hausman

and Shapiro [6] made the more precise assertion that P (x) ≤ x/(log x)β+o(1),

with β = 1
2 (1 − 1/ log 2)2 ≈ 0.0979 . . .. Their proof has an error (specifically,

[6, Lemma 3.2] is incorrect); one should replace β with the smaller exponent

1 − 1+log log 2
log 2 ≈ 0.0860713. Much sharper results on P (x) were soon established

by Tenenbaum [17], [19], who proved that P (x) = x
log x (log log x)

O(1). By a

refinement of Tenenbaum’s methods, Saias [13] established in 1997 what is still

the sharpest known result: There are absolute constants c1 and c2 with

c1
x

log x
≤ P (x) ≤ c2

x

log x
for all x ≥ 2. (1.3)

On the basis of the numerical data, Margenstern [9] has conjectured that
P (x)

x/ log x tends to a limit ≈ 1.341.

In this paper, we are concerned with what we term near-practical numbers

or practical pretenders. Define f(n) as the largest integer with the property that
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all of the numbers 1, 2, 3, . . . , f(n) can be written as a sum of distinct divisors

of n. By definition, n is practical precisely when f(n) ≥ n− 1. We define a near-

practical number as one for which f(n) is “large”. This definition is purposely

vague; its nebulous nature suggests that we investigate the behavior of the two-

parameter function

N(x, y) := #{n ≤ x : f(n) ≥ y}
for all x and y. Our first result gives the order of magnitude of the near-practical

numbers for essentially all interesting choices of x and y.

Theorem 1.1. There are absolute positive constants c3 and c4 so that for

4 ≤ y ≤ x, we have

c3
x

log y
≤ N(x, y) ≤ c4

x

log y
.

Remark. To see why the technical restriction y ≥ 4 is necessary, note that

N(x, x) = 0 for all 3 < x < 4.

Theorem 1.1 has the following easy corollary, proved in §3.
Corollary 1.2. For each m, the set of natural numbers n with f(n) = m

possesses an asymptotic density, say ρm. The constant ρm is positive whenever

there is at least one n with f(n) = m. Moreover,

∞∑
m=1

ρm = 1.

We call a natural number m for which ρm is nonvanishing (equivalently, an

m in the image of f) an additive endpoint. Thus, Corollary 1.2 shows that ρm is

the probability mass function for additive endpoints. The first several additive

endpoints are

1, 3, 7, 12, 15, 28, 31, 39, 42, 56, 60, 63, 73, 90, 91, 96, 100, 104, 108, 112, 120, . . . .

Just from this limited data, one might conjecture that ρm is usually zero, i.e., zero

apart from of a set of m of vanishing asymptotic density. This guess is confirmed,

in a much sharper form, in our next theorem.

Theorem 1.3. For each fixed A > 0 and all x ≥ 3, the number of integers

in [1, x] which occur as additive endpoints is ¿A x/(log x)A. In the opposite

direction, the number of additive endpoints up to x exceeds

x/ exp(c5(log log x)
3)

for all large x, for some absolute constant c5 > 0.
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Above, we noted Stewart’s result that if f(n) ≥ n − 1, then f(n) = σ(n).

In this statement, a weak lower estimate on f(n) implies that f(n) is as large

as possible. Hausman and Shapiro [6] proposed investigating the extent of

this curious phenomenon. More specifically, they asked for the slowest-growing

monotone function g(n) for which f(n) ≥ g(n) implies (at least for n large) that n

is practical. Set

H(n) :=
√
eγn log log n,

where γ is the Euler–Mascheroni constant. The next proposition appears as [6,

Theorems 2.1, 2.2].

Proposition 1.4. Let ε > 0. Apart from finitely many exceptional n, all

solutions to f(n) ≥ (1 + ε)H(n) are practical. On the other hand, there are

infinitely many non-practical n with f(n) ≥ (1− ε)H(n).

Our final theorem removes the factor 1 + ε from the first half of Proposit-

ion 1.4.

Theorem 1.5. If n > 3 and f(n) ≥ H(n), then n is practical.

Notation. We use the Landau–Bachmann o and O symbols, as well as Vinog-

radov’s ¿ notation, with their usual meanings; subscripts indicate dependence

of implied constants. We write ω(n) :=
∑

p|n 1 for the number of distinct prime

factors of n and Ω(n) :=
∑

pk|n 1 for the number of prime factors of n counted

with multiplicity; Ω(n; y) :=
∑

pk|n, p≤y 1 denotes the number of prime divisors

of n not exceeding y, again counted with multiplicity. The number of divisors

of n is denoted d(n). We use P−(m) for the smallest prime factor of m, with the

convention that P−(1) is infinite. Absolute positive constants are denoted by c1,

c2, c3, etc., and have the same meaning each time they appear.

2. Proofs of Theorem 1.1 and Corollary 1.2

We begin by recording some useful lemmas. Our first gives a formula for

f(n) in terms of the prime factorization of n.

We assume that the factorization of n has been given in the form (1.1). We

define n0 := 1 and nj :=
∏

1≤i≤j p
ei
i . Let 0 ≤ j < r be the first index for which

pj+1 > σ(nj) + 1, putting j = r if no such index exists (i.e., if n is practical).

Then nj is a practical number, by the Stewart–Sierpiński classification, and we

call nj the practical component of n.
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Lemma 2.1. We have f(n) = σ(nj), where nj is the practical component

of n.

Proof. Since nj is practical, f(n) ≥ f(nj) = σ(nj). On the other hand,

σ(nj) + 1 is not representable as a sum of proper divisors of n. Indeed, if d

is a divisor of n involved in an additive representation of σ(nj) + 1, then d ≤
σ(nj) + 1 < pj+1 < pj+2 < · · · < pr. It follows that the only primes dividing d

are p1, . . . , pj , so that d is a divisor of nj . But the largest number which can be

formed as a sum of distinct divisors of nj is σ(nj), which is smaller than σ(nj)+1.

So σ(nj) + 1 is not representable as a sum of distinct divisors of n, and hence

f(n) = σ(nj), as claimed. ¤

The following lemma was observed by Margenstern [9, Corollaire 1] to

follow from the Stewart–Sierpiński classification.

Lemma 2.2. If n is practical and m ≤ σ(n) + 1, then mn is practical.

We now employ Lemma 2.2 to show that reasonably short intervals contain

a positive proportion of practical numbers.

Lemma 2.3. Let ε > 0. For x > x0(ε), the number of practical numbers in

((1− ε)x, x] is Àε x/ log x.

Proof. We can assume that 0 < ε < 1. With c1 and c2 as defined in

(1.3), we set r := d2c2/c1e and s := d1/εe. From (1.3), we have that for large x

(depending on ε), the number of practical numbers in the interval (x/rs, x/s] is

at least

c1
x/s

log (x/s)
− c2

x/rs

log (x/rs)
>

c1
3s

x

log x
≥ c1

6
ε

x

log x
.

By the pigeonhole principle, one of the intervals
(

x
s+1 ,

x
s

]
,
(

x
s+2 ,

x
s+1

]
, . . . ,

(
x
rs ,

x
rs−1

]

contains > c1
6rsεx/ log x À ε2x/ log x practical numbers. Suppose this interval is(

x
j+1 ,

x
j

]
, where s ≤ j < rs, and let n be a practical number contained within. If

x > (rs)2, then j < x
j+1 < n, and so jn is practical by Lemma 2.2. (Note that

the lower bound on x assumed here depends only on ε.) Letting n run through

the practical numbers in
(

x
j+1 ,

x
j

]
, we obtain À ε2x/ log x practical numbers

jn ∈ (
x j
j+1 , x

]
. But

(
x j
j+1 , x

] ⊂ (
(1 − ε)x, x

]
, by our choice of s. This proves

Lemma 2.3. Moreover, we have shown that the implied constant in the lemma

statement may be taken proportional to ε2. ¤

The next result, due to Hausman and Shapiro [6, Theorem 4.1], shows that

substantially shorter intervals than those considered in Lemma 2.3 always contain

at least one practical number.
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Lemma 2.4. For all real x ≥ 1, there is a practical number x < n <

x+ 2x1/2.

Let Φ(x, y) denote the number of natural numbers n ≤ x divisible by no

primes ≤ y. The following lemma is a consequence of Brun’s sieve. Variants can

be found, e.g., as [3, Theorem 1, p. 201] or [18, Theorem 3, p. 400].

Lemma 2.5. Uniformly for 2 ≤ y ≤ x, we have Φ(x, y) ¿ x/ log y. If

we assume also that x > c6y for a suitable large absolute constant c6, then

Φ(x, y) À x/ log y.

We now prove Theorem 1.1, treating the upper and lower estimates sepa-

rately.

Proof of the upper bound in Theorem 1.1. Suppose that n ≤ x and

f(n) ≥ y. By the upper bound in (1.3), we may restrict our attention to non-

practical n. Let d be the practical component of n and write n = dq. By Lem-

ma 2.1, σ(d) = f(n). In particular, since we are assuming that f(n) ≥ y ≥ 4, we

must have that d > 1. Moreover, since n is not practical, d < n. Thus, q > 1 and

P−(q) > σ(d) + 1 > d.

Hence,

d2 < d · P−(q) ≤ dq = n ≤ x,

and so d ≤ √
x.

Given d, the number of possibilities for n is bounded above by the number

of q ≤ x/d with P−(q) > d. Since 2 ≤ d ≤ x/d, we may apply Lemma 2.5 to

find that the number of possibilities for q is ¿ x
d log d . Since σ(d) = f(n) ≥ y and

(crudely) σ(d) < d2, it follows that d >
√
y. Hence, using partial summation and

(1.3), we see that the number of possibilities for n is

¿ x
∑

√
y<d≤√

x
d practical

1

d log d
≤ x

P (
√
x )√

x log
√
x
+ x

∫ √
x

√
y

P (t)
1 + log t

(t log t)2
dt

¿ x

(log x)2
+ x

∫ √
x

√
y

dt

t(log t)2
¿ x

(log x)2
+

x

log y
¿ x

log y
.

Proof of the lower bound in Theorem 1.1. The proof is suggested by

that offered for the upper bound, but some care is necessary to ensure uniformity

throughout the stated range of x and y.

First, we treat the range when x1/10 ≤ y ≤ x. In this domain, we use the

trivial lower bound N(x, y) ≥ N(x, x). We estimate the right-hand side from
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below by counting practical numbers n belonging to the interval [x+1
2 , x]. Note

that for such n, we have f(n) = σ(n) ≥ 2n− 1 ≥ x (using for the first inequality

that n−1 is a sum of proper divisors of n), and so n is indeed counted by N(x, x).

If 6 ≤ x ≤ 11, then n = 6 is a practical number in
[
x+1
2 , x

]
. Similarly, if

4 ≤ x ≤ 6, then n = 4 works. Finally, if x ≥ 11, then Lemma 2.4 gives a practical

number n with
x+ 1

2
< n <

x+ 1

2
+ 2

√
x+ 1

2
≤ x.

Hence, we always have N(x, x) ≥ 1. (Recall that we only consider x ≥ 4.)

Moreover, by Lemma 2.3, there are À x/ log x practical numbers in
[
x+1
2 , x

]
once

x is large. It follows that N(x, x) À x/ log x for all x ≥ 4. So if x1/10 ≤ y ≤ x,

then

N(x, y) ≥ N(x, x) À x/ log x À x/ log y,

which gives the lower bound of the theorem in this case.

Now suppose that 4 ≤ y < x1/10. We consider numbers of the form n =

dq ≤ x, where d is a practical number in (y, y3] and where P−(q) > y6. For any

such n, we have f(n) ≥ f(d) ≥ d > y. Moreover, each n constructed in this way

arises exactly once, since q is determined as the largest divisor of n supported on

primes > y6. Given d, the number of corresponding q is Φ(x/d, y6). If x is large,

then
x/d

y6
≥ x

y9
≥ x1/10 > c6,

and so Lemma 2.5 gives

Φ(x/d, y6) À x

d log y
. (2.1)

On the other hand, (2.1) is trivial for bounded x, since 1 is always counted by

Φ(x/d, y6). Thus, (2.1) holds in any case. Hence, the number of n constructed in

this way is

À x

log y

∑

y<d≤y3

d practical

1

d
.

That the sum appearing here is À 1 for large y follows from partial summa-

tion and the lower bound in (1.3). For bounded y, the sum is also À 1, since

Lemma 2.4 guarantees that there is at least one practical number between y and

y3. (Certainly y+ 2y1/2 < 3y < y3 when y ≥ 4.) This completes the proof of the

lower bound. ¤

Proof of Corollary 1.2. One can detect whether or not f(n) = m given

just the list of divisors of n not exceeding m+1. Thus, whether or not f(n) = m
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depends only on the residue class of n modulo (m+ 1)!. This gives the first two

assertions of the corollary. For the third, notice that 1 − ∑N
n=1 ρm represents

the density of the set of n with f(n) > N , which is ¿ 1/ logN by Theorem 1.1.

Letting N → ∞ completes the proof. ¤

3. Proof of Theorem 1.3

We divide the proof of Theorem 1.3 into two parts.

3.1. The upper bound in Theorem 1.3. Central to the proof of both halves

of Theorem 1.3 is the observation, immediate from Lemma 2.1, that m belongs

to the range of f precisely when m = σ(n) for some practical number n. Thus,

we are really asking in Theorem 1.3 for estimates on the range of σ restricted to

practical inputs.

Lemma 3.1. Let A ≥ 30. Suppose that x ≥ 3. If n is a practical number

with x3/4 < n ≤ x, then either

Ω(n) > 2A log log x (3.1)

or

ω(n) >
1

2 logA
log log x. (3.2)

Proof. Since n is practical, every integer in [1, n] can be written as a subset-

sum of divisors of n. Thus, 2d(n) ≥ n, so we can use the hypothesis that n > x3/4

to show

d(n) ≥ log n

log 2
>

3/4

log 2
log x > log x.

Suppose that n =
∏`

i=1 p
ei
i is the factorization of n into primes, where ` = ω(n).

Since d(n) =
∏`

i=1(ei + 1) > log x, the inequality between the arithmetic and

geometric means gives that

1

``

(∑̀

i=1

(ei + 1)

)`

≥
∏̀

i=1

(ei + 1) > log x. (3.3)

Now assume that (3.1) fails. Then
∑`

i=1(ei + 1) ≤ 2
∑`

i=1 ei ≤ 4A log log x,

and (3.3) gives
(
4A log log x

`

)`
> log x. Writing ` = λ log log x, we deduce that

(
4A

λ

)λ log log x

> log x, and so λ log
4A

λ
> 1.
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This latter inequality, along with the condition A ≥ 30, implies that λ > 1
2 logA

(by a short exercise in calculus). Since ω(n) = λ log log x, we have (3.2). ¤

The next lemma, which belongs to the study of the anatomy of integers,

bounds from above the number of n with an abnormally large number of small

prime factors.

Lemma 3.2. Let x, y ≥ 2, and let k ≥ 1. The number of n ≤ x with

Ω(n; y) ≥ k is ¿ k
2k
x log y.

Remark. As a special case (when y = x), the number of n ≤ x with Ω(n) ≥ k

is ¿ k
2k
x log x.

Proof. The proof is almost identical to that suggested in Exercise 05 of [4,

p. 12], details of which can be found in [8, Lemmas 12, 13]. Thus, we only sketch

it. Let v := 2 − 1/k. Let g be the arithmetic function determined through the

convolution identity vΩ(n;y) =
∑

d|n g(d). Then g is multiplicative. For e ≥ 1, we

have g(pe) = ve − ve−1 if p ≤ y, and g(pe) = 0 if p > y. Hence,

∑

n≤x

vΩ(n;y) =
∑

d≤x

g(d)
⌊x
d

⌋
≤ x

∑

d≤x

g(d)

d

≤ x
∏

p≤y

(
1 +

v − 1

p
+

v2 − v

p2
+ . . .

)
=

x

2− v

∏

3≤p≤y

(
1 +

v − 1

p− v

)
.

Now 2− v = 1/k, and the rightmost product is at most

exp

( ∑

3≤p≤y

v − 1

p− v

)
≤ exp

( ∑

3≤p≤y

1

p− 2

)
≤ exp

(∑

p≤y

1

p
+O(1)

)
¿ log y.

Collecting our estimates, we have shown that

∑

n≤x

vΩ(n;y) ¿ kx log y.

But each term with Ω(n; y) ≥ k makes a contribution to the left-hand side that

is ≥ vk = (2 − 1/k)k = 2k(1 − 1
2k )

k À 2k. Thus, the number of such terms is

¿ k
2k
x log y. ¤

The next lemma is a partial shifted-primes analogue of the Hardy–Ramanujan

inequalities. A proof can be found in the text of Prachar [11, Lemma 7.1, p. 166]

(cf. Erdős [1]). There a slightly stronger assertion is shown for shifted primes

p− 1; only trivial changes are required to replace p− 1 with p+ 1.
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Lemma 3.3. Let t ≥ 3, and let k ≥ 1. The number of primes p ≤ t with

ω(p+ 1) = k is

¿ t

(log t)2

(
(log log t+ c7)

k+2

(k − 1)!
+ 1

)
.

Proof of the upper bound in Theorem 1.3. It is enough to prove the

result for large values of A. Suppose that m ≤ x is an additive endpoint, and

write m = σ(n) with n practical. Put Z := 2A log log x. The number of values of

m corresponding to an integer n ≤ x3/4 or an n with Ω(n) > Z is, by Lemma 3.2,

¿ x3/4 +
Z

2Z
x log x ¿A

x

(log x)A
.

Thus, with

Z ′ :=
1

2 logA
log log x,

Lemma 3.1 allows us to assume that

ω(n) ≥ Z ′. (3.4)

We now show that most of the primes dividing n make a large contribution

to Ω(σ(n)) = Ω(m). We claim we can assume that both of the following hold:

(i) There are fewer than Z ′/4 primes p for which p2 | n.
(ii) There are fewer than Z ′/4 primes p dividing n for which

Ω(p+ 1) ≤ 8A logA. (3.5)

With K := dZ ′/4e, the number of n ≤ x which are exceptions to (i) is, by the

multinomial theorem, at most

x
∑

d≤x, squarefree
ω(d)=K

1

d2
≤ x

K!

(∑

p≤x

1

p2

)K

≤ x(e/K)K < x/(log x)A,

once x is large. (We use here that
∑

p−2 < 1 and the elementary inequality

K! ≥ (K/e)k.) To handle (ii), we observe that from Lemma 3.3 and partial

summation, the sum of the reciprocals of all p satisfying (3.5) converges. Let S

denote this sum. Then the number of exceptions to (ii) is, for large x, at most

x

K!

( ∑

p≤x
p satisfies (3.5)

1

p

)K

≤ x(eS/K)K < x/(log x)A.
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Hence, we can indeed assume (i) and (ii).

From (3.4), it now follows that there are at least Z ′ − 2Z′
4 = Z′

2 primes p for

which p ‖ n and for which Ω(p+ 1) > 8A logA. Hence,

Ω(m) = Ω(σ(n)) ≥
∑

p‖n
Ω(p+ 1) > 8A logA · Z

′

2
= 2A log log x.

But by Lemma 3.2, the number of m ≤ x with Ω(m) this large is ¿A x/(log x)A.

This completes the proof of Theorem 1.3 for large x. If x is bounded in terms

of A, then the theorem is trivial. ¤

Remark. The method given here can be pushed to yield the more explicit

result that the count of m ≤ x that occur as additive endpoints is smaller than

x/ exp

(
c8 log log x

log log log x

log log log log x

)
.

3.2. The lower bound in Theorem 1.3. The lower bound in Theorem 1.3

will be deduced from the following proposition, which may be of interest outside

of this context.

Proposition 3.4. Let A > 0. There is a constant c = c(A) so that the

following holds. If x is sufficiently large, say x > x0(A, c), then any subset

S ⊂ [1, x] with

#S ≤ x/ exp(c(log log x)3)

satisfies

#σ−1(S ) ≤ x/(log x)A.

Here σ−1(S ) denotes the set of n with σ(n) ∈ S .

Remark. It is perhaps surprising that one cannot improve the upper bound on

#σ−1(S ) very much, even if one assumes that S consists of only a single element!

Indeed, plausible conjectures about the distribution of smooth shifted primes p+1

(such as what would follow from the Elliott–Halberstam conjecture) imply that

for all large x, there is a singleton set S ⊂ [1, x] with #σ−1(S ) > x1−ε. (Here

ε > 0 is arbitrary but fixed.) For the Euler ϕ-function, this result is due to

Erdős [1] (see also the exposition of Pomerance [10]); the σ-version can be proved

similarly, replacing p− 1 with p+ 1 when necessary.

To apply Proposition 3.4 to the case of the practical numbers, it is convenient

to recall Gronwall’s determination of the maximal order of the sum-of-divisors

function σ [5, Theorem 323, p. 350].
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Lemma 3.5. We have lim supn→∞
σ(n)

n log logn = eγ .

Proof of the lower bound in Theorem 1.3. Let x be large. By Lem-

ma 3.5, if n ≤ x
2 log log x , then σ(n) ≤ x. (We use here that eγ < 2.) Thus, with

S the set of additive endpoints not exceeding x,

#σ−1(S ) ≥ PR

(
x

2 log log x

)
À x

(log x)(log log x)
,

using the lower estimate in (1.3) for the last step. The desired lower bound on

#S now follows from (the contrapositive of) Proposition 3.4, with A = 1.1. ¤

The rest of this section is devoted to the proof of Proposition 3.4. The proof

rests on a σ-analogue of a result for the Euler function appearing in a paper of

Luca and the first author [7, Lemma 2.1].

Lemma 3.6. Let x ≥ 3. Let d be a squarefree natural number with d ≤ x.

The number of n for which d | σ(n) and σ(n) ≤ x is at most

x

d
(c9 log x)

3ω(d).

Proof. If d = 1, the result is clear. Suppose that d > 1. Let n be an integer

for which σ(n) ∈ [1, x] is a multiple of d. Write the prime factorization of n in

the form n =
∏

i p
ei
i . Since d | σ(n), there is a factorization d = d1d2 · · · for

which each di | σ(peii ). Discarding those terms with di = 1 and relabeling, we can

assume that d = d1 · · · d`, where each di > 1. Clearly, ` ≤ ω(d).

We now fix the factorization d = d1 · · · d` and count the number of corres-

ponding n. This count does not exceed

x
∏̀

i=1

( ∑

pe: σ(pe)≤x
di|σ(pe)

1

pe

)
. (3.6)

We proceed to estimate the inner sum in (3.6). If di | σ(pe), then σ(pe) = dim,

with m ≤ x/di. Since σ(pe) = 1 + p+ · · ·+ pe ≤ 2pe,

∑

pe: σ(pe)≤x
di|σ(pe)

1

pe
≤ 2

di

∑

m≤x/di

1

m

∑

pe:σ(pe)=mdi

1.

For each fixed e ≥ 1, there is at most one prime p with σ(pe) = mdi; moreover,

since mdi ≤ x, there are no such p once e > log x/ log 2. Thus,

2

di

∑

m≤x/di

1

m

∑

pe : σ(pe)=mdi

1 ¿ log x

di

∑

m≤x/di

1

m
¿ (log x)2

di
.
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Inserted back into (3.6), we find that for a certain absolute constant C > 1, the

number of n corresponding to the given factorization is at most

x
∏̀

i=1

C(log x)2

di
=

x

d
C`(log x)2` ≤ x

d
Cω(d)(log x)2ω(d).

Finally, we sum over unordered factorizations of d into parts > 1. Since d is

squarefree, the number of such factorizations is precisely Bω(d), where Bk denotes

the kth Bell number (the number of set partitions of a k-element set). Thinking

combinatorially, we have the crude bound Bk ≤ kk, and so the total number of n

which arise is at most

ω(d)ω(d)
(x
d
Cω(d)(log x)2ω(d)

)
=

x

d
(Cω(d)(log x)2)ω(d).

By definition, we have ω(d) ≤ Ω(d) ≤ log x/ log 2, where the final inequality

follows from the simple observation that 2Ω(d) ≤ d ≤ x. This proves our lemma

with c9 = (C/ log 2)1/3. ¤

Lemma 3.7. Fix A ≥ 3. The number of n ≤ x for which

Ω(σ(n)) ≥ 8A2(log log x)2 (3.7)

is o(x/(log x)A), as x → ∞.

Proof. We may suppose that ω(n) ≤ 2A log log x. Indeed, Lemma 3.2

shows that for x ≥ 3, the number of n ≤ x not satisfying the stronger inequality

Ω(n) ≤ 2A log log x is

¿ A log log x

2A log log x
x log x ¿A

x log log x

(log x)2A log 2−1
.

Since A ≥ 3, the exponent 2A log 2 − 1 > A, and so this upper bound is

o(x/(log x)A).

Writing Ω(σ(n)) =
∑

pe‖n Ω(σ(p
e)), we thus deduce that if (3.7) holds, then

Ω(σ(pe)) ≥ 8A2(log log x)2

2A log log x
= 4A log log x (3.8)

for some prime power pe ‖ n.

Suppose first that e > 1. Then (for large x) the squarefull part of n is of size

at least

pe ≥ 1

2
σ(pe) ≥ 1

2
2Ω(σ(pe)) ≥ 1

2
24A log log x > (log x)5A/2. (3.9)
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But then the number of possibilities for n ≤ x is ¿ x/(log x)5A/4, and so in

particular is o(x/(log x)A). On the other hand, if e = 1, then (3.8) implies that

n is divisible by some prime p with Ω(p+ 1) ≥ 4A log log x. For each such p, the

number of corresponding n is ≤ x/p < 2x/(p+ 1). Summing over p, we find that

the total number of such n ≤ x is at most

2x
∑

d≤x
Ω(d)≥4A log log x

1

d
.

Put Z := 4A log log x; by partial summation, along with Lemma 3.2 and the final

inequality in (3.9), this upper bound is

¿ x
Z

2Z

∫ x

2

log t

t
dt ¿ x(log x)2

Z

2Z
¿A x

(log x)2 log log x

(log x)5A/2
,

and so is o(x/(log x)A), as x → ∞. This completes the proof. ¤

Lemma 3.8. Let x ≥ 3, and let z ≥ 1. The number of n ≤ x with σ(n)

divisible by p2 for some prime p > z is ¿ x(log x)2z−1/2.

Proof. If p2 | σ(n), then either p | σ(qe) for a proper prime power qe

exactly dividing n, or there are two distinct primes q1 and q2 exactly dividing

n with q1, q2 ≡ −1 (mod p). In the former case, n has a squarefull divisor of

size ≥ qe ≥ 1
2σ(q

e) > p/2 > z/2. The number of such n is ¿ xz−1/2, which is

acceptable for us. For a given p, the number of n arising in the second case is at

most

x

( ∑

q≤x
q≡−1 (mod p)

1

q

)2

≤ x

(∑

j≤x

1

pj − 1

)2

¿ x(log x)2p−2.

Summing over p > z, we find that the total number of n that can arise from this

case is ¿ x(log x)2z−1, which is also acceptable. ¤

Proof or Proposition 3.4. We may suppose that our fixed constant A

satisfies A ≥ 5. We will show that for such A, the proposition holds with

c(A) = 50A3.

Let S1 consist of those m ∈ S for which either

(i) m ≤ x/(log x)2A, or

(ii) Ω(m) ≥ 8A2(log log x)2, or

(iii) p2 | m for some p > (log x)3A.
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We let S2 consist of the remaining elements of S . By Lemmas 3.7 and 3.8, the

size of σ−1(S1) is o(x/(log x)
A) as x → ∞ (uniformly in the choice of S ).

We turn now to S2. To each m ∈ S2, we associate the divisor m′ of m

defined by

m′ :=
∏

pe‖m
p>(log x)3A

pe.

Then m′ is squarefree, and

ω(m′) ≤ Ω(m) < 8A2(log log x)2. (3.10)

Moreover, assuming that x is large, since m > x/(log x)2A,

m′ ≥ m/((log x)3A)Ω(m) >
x/(log x)2A

exp(24A3(log log x)3)

> x/ exp(25A3(log log x)3). (3.11)

We bound the number of σ-preimages of m from above by the number of n for

which σ(n) ∈ [1, x] is a multiple of m′. By Lemma 3.6, along with (3.10) and

(3.11), the number of such n is at most

x

m′ (c9 log x)
3ω(m′) ≤ exp(25A3(log log x)3)(c9 log x)

24A2(log log x)2

≤ exp(49A3(log log x)3),

say. Summing over the elements of S2, we find that

#σ−1(S2) ≤ exp(49A3(log log x)3) ·#S2.

So if we assume that #S ≤ x/ exp(50A3(log log x)3), then #σ−1(S2) =

o(x/(log x)A), as x → ∞. Combined with our earlier estimate on the size of

σ−1(S1), this shows that #σ−1(S ) ≤ x/(log x)A once x is sufficiently large. ¤

4. Proof of Theorem 1.5

The key to the proof of Theorem 1.5 is the following inequality of Robin [12,

Théorème 2].

Lemma 4.1. For each natural number n ≥ 3,

σ(n) ≤ eγn log log n+ 0.6483
n

log log n
.



666 Paul Pollack and Lola Thompson

Proof of Theorem 1.5. Suppose for the sake of contradiction that f(n) ≥
H(n) but that n is not practical. We assume to begin with that n > 14, treating

small n at the end of the proof. Let d be the practical component of n, and write

n = dq. Then q > 1, and

P−(q) > σ(d) + 1 = f(n) + 1 > H(n) > n1/2,

where in fact the last inequality holds for all n > 6. It follows that q is prime and

P−(q) = q. Hence, H(n) < q = n/d, and so

d <
n

H(n)
.

Also, since σ(d) = f(n) ≥ H(n), we have

q = n/d ≤ n

d

σ(d)

H(n)
.

Multiplying the last two displayed inequalities shows that

n = dq ≤ σ(d)

d

(
n

H(n)

)2

=
σ(d)

d
n(eγ log log n)−1,

and so
σ(d)

d
≥ eγ log log n. (4.1)

Since q > n1/2 and n = dq, we have that q > d, and so

log log n = log log (qd) > log log (d2) = log log d+ log 2;

thus, (4.1) gives

σ(d)

d
≥ eγ log log d+ eγ log 2 > eγ log log d+ 1.2345. (4.2)

We now derive a contradiction to Robin’s inequality. We can assume that d≥ 6;

otherwise, σ(d)/d ≤ 7/4, and (4.1) then implies that n ≤ 14, contrary to hypot-

hesis. By Lemma 4.1,

σ(d)

d
≤ eγ log log d+

0.6483

log log d
.

Combining this inequality with (4.2), we obtain 0.6483/ log log d > 1.2345. But

this fails for all d ≥ 6. This contradiction completes the proof for n > 14.

It remains to treat the cases when 3 < n ≤ 14. For odd n > 3, the hypotheses

of the theorem are never satisfied, since f(n) = 1 < H(5) ≤ H(n). So the only

possible exceptions to the theorem have n even. The non-practical even values

of n ≤ 14 are n = 10 and n = 14, and in both cases, f(n) = 3 < H(n), so the

theorem holds. ¤
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