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The influence of Fs-quasinormality of subgroups
on the structure of finite groups

By XIAOLONG YU (Hefei), XIAOYU CHEN (Hefei) and WENBIN GUO (Hefei)

Abstract. Let F be a class of finite groups. A subgroup H of a finite group G is

said to be Fs-quasinormal in G if there exists a normal subgroup T of G such that HT

is s-permutable in G and (H ∩T )HG/HG is contained in the F-hypercenter ZF
∞(G/HG)

of G/HG. In this paper, we investigate further the influence of Fs-quasinormality of

some subgroups on the structure of finite groups. New characterization of some classes

of finite groups are obtained.

1. Introduction

Recall that a subgroup H of G is said to be s-quasinormal (or s-permutable)

in G if H is permutable with every Sylow subgroup P of G (that is, HP = PH).

The s-permutability of a subgroup of a finite group G often yields a wealth of

information about the group G itself. In the past, it has been studied by many

scholars (such as [1]–[2], [7]–[9], [13], [17]). Recently, Huang [10] introduced the

following concept:

Definition 1.1. Let F be a non-empty class of groups and H a subgroup of a

group G. H is said to be Fs-quasinormal in G if there exists a normal subgroup

T of G such that HT is s-permutable in G and (H ∩ T )HG/HG ≤ ZF
∞(G/HG),

where HG is the maximal normal subgroup of G contained in H.
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Note that, for a class F of groups, a chief factor H/K of a group G is called F-

central (see [16] or [4, Definition 2.4.3]) if [H/K](G/CG(H/K)) ∈ F. The symbol

ZF
∞(G) denotes the F-hypercenter of a group G, that is, the product of all such

normal subgroups H of G whose G-chief factors are F-central. A subgroup H of G

is said to be F-hypercenter in G if H ≤ ZF
∞(G).

By using this new concept, Huang [10] has given some conditions under

which a finite group belongs to some formations. In this paper, we will go to

further into the influence of Fs-quasinormal subgroups on the structure of finite

groups. New characterizations of some classes of finite groups are obtained.

All groups considered in the paper are finite and G denotes a finite group.

The notations and terminology in this paper are standard, as in [4] and [14].

2. Preliminaries

Let F be a class of finite groups. Then F is called a formation if it is closed

under homomorphic image and every group G has a smallest normal subgroup

(called F-residual and denoted by GF) with quotient is in F. F is said to be

saturated if it contains every group G with G/Φ(G) ∈ F. F is said to be S-closed

(Sn-closed) if it contains all subgroups (all normal subgroups, respectively) of all

its groups.

We use N, U, and S to denote the formations of all nilpotent groups, supers-

oluble groups and soluble groups, respectively.

The following known results are useful in our proof.

Lemma 2.1 ([8, Lemma 2.2]). Let G be a group and H ≤ K ≤ G.

(1) If H is s-permutable in G, then H is s-permutable in K;

(2) Suppose that H is normal in G. Then K/H is s-permutable in G/H if and

only if K is s-permutable in G;

(3) If H is s-permutable in G, then H is subnormal in G;

(4) If H and F are s-permutable in G, the H ∩ F is s-permutable in G;

(5) If H is s-permutable in G and M ≤ G, then H ∩M is s-permutable in M .

Lemma 2.2 ([10, Lemma 2.3]). Let G be a group and H ≤ K ≤ G.

(1) H is Fs-quasinormal in G if and only if there exists a normal subgroup T

of G such that HT is s-permutable in G, HG ≤ T and H/HG ∩ T/HG ≤
ZF
∞(G/HG);
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(2) Suppose that H is normal in G. Then K/H is Fs-quasinormal in G/H if and

only if K is Fs-quasinormal in G;

(3) Suppose that H is normal in G. Then, for every Fs-quasinormal subgroup E

of G satisfying (|H|,|E|)=1, HE/H is Fs-quasinormal in G/H;

(4) If H is Fs-quasinormal in G and F is S-closed, then H is Fs-quasinormal in K;

(5) If H is Fs-quasinormal in G, K is normal in G and F is Sn-closed, then H is

Fs-quasinormal in K;

(6) If G ∈ F, then every subgroup of G is Fs-quasinormal in G.

Lemma 2.3 ([6, Lemma 2.2]). If H is a p-subgroup of G for some prime p

and H is s-permutable in G, then:

(1) H ≤ Op(G);

(2) Op(G) ≤ NG(H).

Lemma 2.4 ([18]). If A is a subnormal subgroup of a group G and A is a

π-group, then A ≤ Oπ(G).

Lemma 2.5 ([15, II, Lemma 7.9]). Let N be a nilpotent normal subgroup

of G. If N 6= 1 and N ∩ Φ(G) = 1, then N is a direct product of some minimal

normal subgroups of G.

Lemma 2.6 ([5, Lemma 2.3]). Let F be a saturated formation containing

U and G a group with a normal subgroup E such that G/E ∈ F. If E is cyclic,

then G ∈ F.

Recall that a subgroup H of G is said to be F-supplemented in G if there

exists a subgroup T of G such that G = HT and T ∈ F, where F is some class of

groups. The following Lemma is clear.

Lemma 2.7. Let F be a formation and H a subgroup of G. If H has an

F-supplement in G, then:

(1) If N EG, then HN/N has an F-supplement in G/N .

(2) If H ≤ K ≤ G, then H has an F-supplement in K.

Lemma 2.8 ([10, Theorem 3.1]). Let F be an S-closed saturated formation

containing U and G a group. Then G ∈ F if and only if G has a normal subg-

roup E such that G/E ∈ F and every maximal subgroup of every non-cyclic Sylow

subgroup of E not having a supersoluble supplement in G is Us-quasinormal in G.

Lemma 2.9 ([10, Theorem 3.2]). Let F be a saturated formation containing

U and G a group. Then G ∈ F if and only if G has a soluble normal subgroup E
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such that G/E ∈ F and every maximal subgroup of every non-cyclic Sylow subg-

roup of F (E) not having a supersoluble supplement in G is Us-quasinormal in G.

Lemma 2.10 ([3, Main Theorem]). Suppose G has a Hall π-subgroup and

2 /∈ π. Then all the Hall π-subgroups are conjugate in G.

Lemma 2.11 ([6, Lemma 2.5]). Let G be a group and p a prime such that

pn+1 - |G| for some integer n ≥ 1. If (|G|, (p− 1)(p2 − 1) · · · (pn − 1)) = 1, then G

is p-nilpotent.

The generalized Fitting subgroup F ∗(G) of a group G is the product of all

normal quasinilpotent subgroups of G. We also need in our proofs the following

well-known facts about this subgroups (see [12, Chapter X]).

Lemma 2.12. Let G be a group and N a subgroup of G.

(1) If N is normal in G, then F ∗(N) ≤ F ∗(G).

(2) If N is normal in G and N ≤ F ∗(G), then F ∗(G)/N ≤ F ∗(G/N).

(3) F (G) ≤ F ∗(G) = F ∗(F ∗(G)). If F ∗(G) is soluble, then F ∗(G) = F (G).

(4) CG(F
∗(G)) ≤ F (G).

(5) F ∗(G) = F (G)E(G), F (G) ∩ E(G) = Z(E(G)) and E(G)/Z(E(G)) is the

direct product of simple non-abelian groups, where E(G) is the layer of G.

Lemma 2.13 ([8, Lemma 2.15–2.16]). (1) If H is a normal soluble subg-

roup of a group G, then F ∗(G/Φ(H)) = F ∗(G)/Φ(H).

(2) IfK is a normal p-subgroup of a groupG contained in Z(G), then F ∗(G/K) =

F ∗(G)/K.

3. New characterization of supersoluble groups

Lemma 3.1. Let p be the smallest prime dividing |G| and P some Sylow

p-subgroup of G. Then G is soluble if and only if every maximal subgroup of P

is Ss-quasinormal in G.

Proof. The necessity is obvious since ZS
∞(G) = G whenever G ∈ S. Hence

we only need to prove the sufficiency. Suppose that the assertion is false and

let G be a counterexample of minimal order. Then p = 2 by the well known

Feit-Thompson Theorem of groups of odd order. We proceed the proof via the

following steps:

(1) O2(G) = 1.
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Assume that N = O2(G) 6= 1. Then P/N is a Sylow 2-subgroup of G/N .

Let M/N be a maximal subgroup of P/N . Then M is a maximal subgroup

of P . By the hypothesis and Lemma 2.2(2), M/N is Ss-quasinormal in G/N .

The minimal choice of G implies that G/N is soluble. It follows that G is soluble,

a contradiction. Hence (1) holds.

(2) O2′ (G) = 1.

Assume that D = O2′ (G) 6= 1. Then PD/D is a Sylow 2-subgroup of G/D.

Suppose thatM/D is a maximal subgroup of PD/D. Then there exists a maximal

subgroup P1 of P such that M = P1D. By the hypothesis and Lemma 2.2(3),

M/D = P1D/D is Ss-quasinormal in G/D. Hence G/D is soluble by the choice

of G. It follows that G is soluble, a contradiction.

(3) Final contradiction.

Let P1 be a maximal subgroup of P . By the hypothesis, there exists a normal

subroup K of G such that P1K is s-permutable in G and (P1∩K)(P1)G/(P1)G ≤
ZS
∞(G/(P1)G). Note that ZS

∞(G) is a soluble normal subgroup of G. By (1) and

(2), we have (P1)G = 1 and ZS
∞(G) = 1. This induces that P1 ∩K = 1. If K = 1,

then P1 is s-permutable in G and so P1 = 1 by (1) (2) and Lemma 2.3(1). This

means that |P | = 2. Then by [14, (10.1.9)], G is 2-nilpotent and so G is soluble,

a contradiction. We may, therefore, assume that K 6= 1. If 2 | |K|, then |K2| = 2,

where K2 is a Sylow 2-subgroup of K. By [14, (10.1.9)] again, we see that K is

2-nilpotent, and so K has a normal 2-complement K2′ . Since K2′ char K E G,

K2′ EG. Hence by (2), K2′ = 1. Consequently |K| = 2, which contradicts (1). If

2 - |K|, then K is a 2
′
-group. Hence by (2), K ≤ O2′ (G) = 1, also a contradiction.

This completes the proof. ¤

Theorem 3.2. LetG = AB, where A is a subnormal subgroup ofG, and B is

a supersoluble Hall subgroup of G in which all Sylow subgroups are cyclic. If every

maximal subgroup of every non-cyclic Sylow subgroup of A is Us-quasinormal

in G, then G is supersoluble.

Proof. Suppose that the assertion is false and let G be a counterexample

of minimal order. Then:

(1) Each proper subgroup of G containing A is supersoluble.

Let A ≤ M < G. Then M = M ∩ AB = A(M ∩ B). Obviously, M ∩ B is

a Hall subgroup of M and every Sylow subgroup of M ∩ B is cyclic. By Lem-

ma 2.2(4), every maximal subgroup of every non-cyclic Sylow subgroup of A is

Us-quasinormal in M . The minimal choice of G implies that M is supersoluble.

(2) Let H be a non-trivial normal p-subgroup of G for some prime p. If H
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contains some Sylow p-subgroup of A or a Sylow p-subgroup of A is cyclic or

H ≤ A, then G/H is supersoluble.

If A ≤ H, then G/H = BH/H ∼= B/(B ∩ H) is supersoluble. Now we

can assume that A � H. Clearly, G/H = (AH/H)(BH/H), where AH/H is

subnormal in G/H and BH/H is supersoluble. Let Q/H be any non-cyclic Sylow

q-subgroup of AH/H and Q1/H a maximal subgroup of Q/H. Then there exists

a non-cyclic Sylow q-subgroup Aq of A such that Q = AqH and a maximal

subgroup A1 of Aq such that Q1 = A1H. If H ≤ A, then the assertion holds

by the choice of G and Lemma 2.2(2). We may, therefore, assume that H � A.

Let P be a Sylow p-subgroup of A. Assume that P is cyclic or P ≤ H. Then

p 6= q. Clearly, Q1 ∩ Aq = A1 is a maximal subgroup of Aq. By the hypothesis,

A1 is Us-quasinormal in G. Therefore, Q1/H = A1H/H is Us-quasinormal in

G/H by Lemma 2.2(3). This shows that the conditions of the theorem are true

for G/H and so G/H is supersoluble by the minimal choice of G.

(3) There exists at least one Sylow subgroup of A which is non-cyclic.

It follows from the well known fact that a group G is supersoluble if all its

Sylow subgroups are cyclic.

(4) G is soluble.

If A 6= G, then A is supersoluble by (1). Let p be the largest prime divisor of

|A|. Then ApEA. By Lemma 2.4, Ap ≤ Op(G). By (2), G/Op(G) is supersoluble.

It follows that G is soluble.

We now only need to consider the case that A = G. If G is not soluble

and let p be the minimal prime divisor of |G|. Then p = 2 by the well-known

Feit-Thompson Theorem. Hence by Lemma 3.1, G is soluble.

(5) G has a unique minimal normal subgroup N such that N = Op(G) =

CG(N) is a non-cyclic p-subgroup of G for some prime p and G = [N ]M , where

M is a supersoluble maximal subgroup of G.

Let N be an arbitrary minimal normal subgroup of G. By (4), N is a p-

group. If p ∈ π(B), then the Sylow p-subgroups of G are cyclic and so the Sylow

p-subgroups of A are cyclic. If p /∈ π(B), then clearly, N ⊆ A. Hence by (2),

G/N is supersoluble. If N is cyclic, then by Lemma 2.6, G is supersoluble, a

contradiction. Since the class of all supersoluble groups is a saturated formation,

N is the only minimal normal subgroup N of G and Φ(G) = 1. This implies that

(5) holds.

(6) N is not a Sylow subgroup of G and ZU
∞(G) = 1.

By (5), clearly, ZU
∞(G) = 1. Assume that N is a Sylow p-subgroup of G. Let

N1 be a maximal subgroup of N . Then by hypothesis, N1 is Us-quasinormal in G.
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Hence there exists a normal subgroup K of G such that N1K is s-permutable in

G and N1 ∩K ≤ ZU
∞(G) = 1 since (N1)G = 1. It follows that N1 ≤ N1 ∩ N ≤

N1 ∩ K = 1. Hence |N | = p. This contradiction shows that N is not a Sylow

p-subgroup of G.

(7) A is supersoluble.

If A is not supersoluble, then G = A by (1). Let q be the largest prime

divisor of |G| and Q is a Sylow q-subgroup of G. Then QN/N is a Sylow q-

subgroup of G/N . Since G/N is supersoluble, QN/N E G/N . It follows that

QN E G. Let P be a non-cycli Sylow p-subgroup of G = A. If p = q, then

P = Q = QN E G. Therefore N = Op(G) = P is the Sylow p-subgroup of G, a

contradiction. Assume that q > p. Then clearly QP = QNP is a subgroup of G.

Since N � Φ(G), N � Φ(P ) by [11, III, Lemma 3.3(a)]. Let P1 be a maximal

subgroup of P such that N � P1. Then (P1)G = 1. By the hypothesis, P1 is

Us-quasinormal in G. Hence, there exists a normal subgroup T of G such that

P1T is s-permutable in G and P1 ∩ T ≤ ZU
∞(G) = 1. Obviously, T 6= 1 (In fact,

if T = 1, then P1 ≤ Op(G) = N by Lemma 2.3(1). Hence P1 = N or P = N .

This is impossible). Thus N ≤ T , and so P1∩N ≤ P1∩T = 1. This induces that

|N | = |P : P1| = p, which contradicts (5). Thus (7) holds.

(8) The final contradiction.

Let q be the largest prime divisor of |A| and Aq a Sylow p-subgroup of A.

Since A is supersoluble by (7), Aq E A. Hence Aq ≤ Oq(G). If q | |B|, then
Oq(G) ≤ Gq, where Gq is a cyclic Sylow q-subgroup of B and so Oq(G) is cyclic.

In view of (2), G/Oq(G) is supersoluble. It follows that G is supersoluble, a

contradiction. Hence q - |B|. Then, Aq is a Sylow q-subgroup of G and so

Aq = Oq(G) 6= 1. This means that q = p and so N = Ap = Gp, which contradicts

(6). The final contradiction completes the proof. ¤

Theorem 3.3. Let F be an S-closed saturated formation containing U and

H a normal subgroup of G such that G/H ∈ F. Suppose that every maximal

subgroup of every non-cyclic Sylow subgroup of F ∗(H) having no supersoluble

supplement in G is Us-quasinormal in G. Then G ∈ F.

Proof. We first prove that the theorem is true if F = U. Suppose that

the assertion is false and consider a counterexample for which |G||H| is minimal.

Then:

(1) H = G and F ∗(G) = F (G).

By Lemma 2.8, F ∗(H) is supersoluble. Hence F ∗(H) = F (H) by Lem-

ma 2.12(3). Since (H,H) satisfies the hypothesis, the minimal choice of (G,H)
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implies that H is supersoluble if H < G. Then G ∈ U by Lemma 2.9, a contra-

diction.

(2) Every proper normal subgroup N of G containing F ∗(G) is supersoluble.

Let N be a proper normal subgroup of G containing F ∗(G). By Lemma 2.12,

F ∗(G) = F ∗(F ∗(G)) ≤ F ∗(N) ≤ F ∗(G). Hence F ∗(N) = F ∗(G). Let M be a

maximal subgroup of any non-cyclic Sylow subgroup of F ∗(N). If there exists a

supersoluble subgroup T such that G = MT , then N = M(N∩T ) and N∩T ∈ U.

This means that M has a supersoluble supplement in N . Now assume that M

has no supersoluble supplement in G. Then by hypothesis and Lemma 2.2(4), M

is Us-quasinormal in N . This shows that (N,N) satisfies the hypothesis. Hence

N is supersoluble by the minimal choice of (G,H).

(3) If p ∈ π(F (G)), then Φ(Op(G)) = 1 and so Op(G) is elementary abelian.

In particular, F ∗(G) = F (G) is abelian and CG(F (G)) = F (G).

Suppose that Φ(Op(G)) 6= 1 for some p ∈ π(F (G)). By Lemma 2.13(1), we

have F ∗(G/Φ(Op(G))) = F ∗(G)/Φ(Op(G)). By using Lemma 2.2, we see that

the pair (G/Φ(Op (G)), F ∗(G)/Φ(Op(G))) satisfies the hypothesis. The minimal

choice of (G,H) implies G/Φ(Op(G)) ∈ U. Since U is a saturated formation,

we obtain that G ∈ U, a contradiction. This means that Φ(Op(G)) = 1 and

so Op(G) is elementary abelian. Hence F ∗(G) = F (G) is abelian and F (G) ≤
CG(F (G)). Put N = CG(F (G)). Then, clearly, F (N) = F (G). If N = G,

then F (G) ≤ Z(G). Let P1 be a maximal subgroup of some Sylow p-subgroup of

F (G). Then F (G/P1) = F (G)/P1 by Lemma 2.13(2). Hence (G/P1, F (G)/P1)

satisfies the hypothesis and so G/P1 ∈ F. Then since P ≤ Z(G), we obtain

G ∈ F. This contradiction shows that N < G. Hence by (2), N is soluble and so

CN (F (N)) ⊆ F (N). It follows that N = CG(F (G)) = F (G).

(4) G has no normal subgroup of prime order contained in F (G).

Suppose that L is a normal subgroup of G contained in F (G) and |L| = p.

Put C = CG(L). Clearly, F (G) ≤ C E G. If C < G, then C is soluble by

(2). Since G/C is cyclic, G is soluble. Then by the hypothesis and Lemma 2.9,

G ∈ U, a contradiction. Hence C = G and so L ≤ Z(G). By Lemma 2.13(2)

F ∗(G/L) = F ∗(G)/L = F (G)/L. Hence G/L satisfies the hypothesis by Lem-

ma 2.2. The minimal choice of (G,H) implies that G/L ∈ U and consequently G

is supersoluble, a contradiction.

(5) For some p ∈ π(F (G)), Op(G) is a non-cyclic Sylow p-subgroup of F (G).

Clearly, F (G) = Op1(G) × Op2(G) × · · · × Opr (G) for some primes pi, i =

1, 2, . . . , r. If all Sylow subgroups of F (G) are cyclic, then G/CG(Opi(G)) is

abelian for any i ∈ {1 · · · r} and so G/ ∩r
i=1 CG(Opi(G)) = G/CG(F (G)) =
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G/F (G) is abelian. Therefore G is soluble. It follows from Lemma 2.9 and the

hypothesis that G ∈ U, a contradiction.

(6) Every maximal subgroup of every non-cyclic Sylow subgroup of F (G) has

no supersoluble supplement in G.

Let P be a non-cyclic Sylow subgroup of F (G) and P1 a maximal subg-

roup of P . Then P = Op(G) for some p ∈ π(F (G)). If P1 has a supersoluble

supplement in G, that is, there exists a supersoluble subgroup K of G such that

G = P1K = Op(G)K, then G/Op(G) ' K/K ∩ Op(G) is supersoluble and so G

is soluble. Hence as above, G ∈ U, a contradiction.

(7) P ∩ Φ(G) 6= 1, for some non-cyclic Sylow subgroup P of F (G).

Assume that P ∩ Φ(G) = 1. Then P = R1 × R2 × · · · × Rm, where Ri(i ∈
{1, · · ·m}) is a minimal normal subgroup of G by Lemma 2.5. We claim that Ri

are of order p for all i ∈ {1, · · ·m}. Assume that |Ri| > p, for some i. Without loss

of generality, we let |R1| > p. Let R∗
1 be a maximal subgroup of R1. Obviously,

R∗
1 6= 1. Then R∗

1×R2×· · ·×Rm = P1 is a maximal subgroup of P . Put T = R2×
· · · × Rm, Clearly (P1)G = T . By (6) and the hyperthesis, P1 is Us-quasinormal

in G. Hence by Lemma 2.2(1), there exists a normal subgroup N of G such that

(P1)G ≤ N , P1N is s-permutable in G and P1/(P1)G∩N/(P1)G ≤ ZU
∞(G/(P1)G).

Assume that P1/(P1)G ∩N/(P1)G 6=1. Let ZU
∞(G/(P1)G) = V/(P1)G = V/T .

Then P/T ∩ V/T EG/T . Since P ∩ V ≥ P1 ∩N ∩ V ≥ P1 ∩N > (P1)G = T , we

have P/T ∩ V/T 6= 1. Because P/T ' R1 and R1 is a minimal normal subgroup

of G, P/T ⊆ V/T . This implies that |R1| = |P/T | = p. This contradiction shows

that P1 ∩N = (P1)G = T . Consequently P1N = R∗
1TN = R∗

1N and R∗
1 ∩N = 1.

Since R1∩NEG, R1∩N = 1 or R1∩N = R1. But since R
∗
1∩N = 1, we have that

R1∩N = 1. Thus R∗
1 = R∗

1(R1∩N) = R1∩R∗
1N is s-permutable in G. It follows

from Lemma 2.3(2) that Op(G) ≤ NG(R
∗
1). Thus |G : NG(R

∗
1)| is a power of p for

every maximal subgroup R∗
1 of R1. This induces that p divides the number of all

maximal subgroups of R1. This contradicts [11, III, Theorem 8.5(d)]. Therefore

|Ri| = p, which contradicts (4). Thus (7) holds.

(8) F (G) = P is a p-group, P contains a unique minimal normal subgroup L

of G and L ⊆ Φ(G).

Suppose that 1 6= Q is a Sylow q-subgroup of F (G) for some prime q 6= p

and let L be a minimal normal subgroup of G contained in P ∩ Φ(G). By (3),

Q is elementary abelian. By Lemma 2.12, F ∗(G/L) = F (G/L)E(G/L) and

[F (G/L), E(G/L)] = 1, where E(G/L) is the layer of G/L. Since L ≤ Φ(G),

F (G/L) = F (G)/L. Now let E/L = E(G/L). Since Q is normal in G and

[F (G)/L,E/L] = 1, we have [Q,E] ≤ Q ∩ L = 1. It follows from (3) that
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F (G)E ≤ CG(Q) E G. If CG(Q) < G, then CG(Q) is supersoluble by (1) and

(2). Thus E(G/L) = E/L is supersoluble and consequently F ∗(G/L) = F (G)/L

by Lemma 2.12(5). Now, by Lemma 2.2, we see that (G/L,F (G)/L) satisfies

the hypothesis. The minimal choice of (G,H) implies that G/L is supersoluble

and so is G. This contradiction shows that CG(Q) = G, i.e. Q ≤ Z(G), which

contradicts (4). Thus F (G) = P .

Let X be a minimal normal subgroup of G contained in P with X 6= L.

Let E/L = E(G/L) is the layer of G/L. As above, we see that F ∗(G/L) =

F (G/L)E(G/L) and [F (G)/L,E/L] = 1. Hence [X,E] ≤ X ∩ L = 1, i.e.,

[X,E] = 1. It follows from (3) that F (G)E ≤ CG(X) E G. If CG(X) < G,

then CG(X) is supersoluble by (1) and (2). Thus E(G/L) = E/L is supersoluble

and consequently F ∗(G/L) = F (G)/L. Obviously, G/L satisfies the hypothesis.

By the choice of (G,H), we have that G/L is supersoluble and so is G, a contra-

diction. Hence CG(X) = G, i.e. X ≤ Z(G), which also contradicts (4). Thus L

is the unique minimal normal subgroup of G contained in P . Finally, L ⊆ Φ(G)

by (7).

(9) L < P .

Suppose L = P . Let P1 be a maximal subgroup of P such that P1 is normal

in some Sylow subgroup of G. Then (P1)G = 1. By the hypothesis and (8),

P1 is Us-quasinormal in G. Hence there exists a normal subgroup K of G such

that P1K is s-permutable in G and P1 ∩ K ≤ ZU
∞(G). If P1 ∩ K 6= 1, then

1 < P1 ∩K ≤ P ∩ ZU
∞(G), which implies that P = P ∩ ZU

∞(G) and |P | = p since

P is a minimal normal subgroup of G. This contradicts (4). So we may assume

P1 ∩ K = 1. Since P is a minimal normal subgroup of G, P ∩ K = P or 1. If

P ∩K = P , then P ⊆ K, and so |P | = p, which contradicts (4). If P ∩K = 1,

then P ∩ P1K = P1(P ∩ K) = P1. Hence P1 is s-permutable in G. Then by

Lemma 2.3(2), Op(G) ≤ NG(P1). This induces that P1 E G. This means that

P1 = (P1)G = 1 and |P | = p, also a contradiction.

(10) Final contradiction (for F = U).

By (3) and (8), P is an elementary abelian group, and so L has a complement

in P , T say. Let P1 = TL1, where L1 is a maximal subgroup of L. Then 1 6= P1

and clearly P1 is a maximal subgroup of P such that P1 is normal in some Sylow

subgroup of G. Hence by (6), P1 is Us-quasinormal in G and (P1)G = 1 since L is

the unique minimal normal subgroup of G contained in P . Hence there exists a

normal subgroup S of G such that P1S is s-permutable in G and P1∩S ≤ ZU
∞(G).

If P1 ∩ S 6= 1, then 1 < P1 ∩ S ≤ P ∩ ZU
∞(G) and so G has a minimal normal

subgroup N of order p contained in P , which is contrary to (4). Hence P1∩S = 1.

If P ∩ S 6= 1, then L ≤ P ∩ S and so L1 ≤ S, which contradicts P1 ∩ S = 1.
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If P ∩ S = 1, then P1 = P1(P ∩ S) = P ∩ P1S is s-permutable in G. Hence

Op(G) ≤ NG(P1) by Lemma 2.3(2). It follows that P1 E G, which contradicts

(P1)G = 1. The final contradiction shows that the theorem holds when F = U.

Now we prove that the theorem holds for F.

Since H/H ∈ U, by the assertion proved above and Lemma 2.2, we see that

H is supersoluble. In particular, H is soluble and hence F ∗(H) = F (H). Now

by using Lemma 2.9, we obtain that G ∈ F. This completes the proof of the

theorem. ¤

4. New characterization of p-nilpotent groups

Lemma 4.1. Let G be a group and p a prime divisor of |G| with
(|G|, (p−1)(p2−1) · · · (pn−1)) = 1 for some integer n ≥ 1. Suppose P is a Sylow

p-subgroup of G and every n-maximal subgroup of P (if exists) has a p-nilpotent

supplement in G. Then G is p-nilpotent.

Proof. Assume that pn+1 | |G|. Let Pn1 be an n-maximal subgroup of P .

By hypothesis, Pn1 has a p-nilpotent supplement T1 in G. LetK1 be a normal Hall

p′-subgroup of T1. Obviously, K1 is a Hall p′-subgroup of G. Hence G = Pn1T1 =

Pn1NG(K1). We claim thatK1EG. Indeed, ifK1 5 G, thenNP (K1) = NG(K1)∩
P 6= P since T1 ⊆ NG(K1). Therefore, there exists a maximal subgroup P2 of

P such that NP (K1) ≤ P2. Let Pn2 be an n-maximal subgroup of P contained

in P2. Since P = P ∩ G = P ∩ Pn1NG(K1) = Pn1(P ∩NG(K1)) = Pn1NP (K1),

we have Pn1 6= Pn2. By hypothesis, Pn2 has a p-nilpotent supplement in G.

With the same discussion as above, we can find a Hall p′-subgroup K2 of G

such that G = Pn2NG(K2) = P2NG(K2). If p = 2, then by Lemma 2.10, K1

conjugates with K2 in G. If p > 2, then G is soluble by Feit–Thompson theorem.

Hence, K1 also conjugates with K2 in G. This means that there exists an element

g ∈ P2, such that (K2)
g = K1. Then G = (P2NG(K2))

g = P2NG(K1). Hence,

P = P ∩ G = P ∩ P2NG(K1) = P2(P ∩ NG(K1)) = P2NP (K1) = P2. This

contradiction shows that pn+1 - |G|. Thus G is p-nilpotent by Lemma 2.11. ¤

Lemma 4.2. Let G be a group and p a prime divisor of |G| with
(|G|, (p− 1)(p2 − 1) · · · (pn − 1)) = 1 for some integer n ≥ 1. Suppose that G has

a Sylow p-subgroup P such that every n-maximal subgroup of P (if exists) either

has a p-nilpotent supplement or is Us-quasinormal in G, then G is p-nilpotent.

Proof. Suppose the Lemma is false and let G be a counterexample of mi-

nimal order. By Lemma 2.11, we have pn+1 | |G|. Hence P has a non-trivial
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n-maximal subgroup. We proceed via the following steps:

(1) Op′(G) = 1.

If Op′(G) 6= 1. Then we may choose a minimal normal subgroup N of G such

that N ≤ Op′(G). Clearly, (|G/N |, (p − 1)(p2 − 1) · · · (pn − 1)) = 1 and PN/N

is a Sylow p-subgroup of G/N . Assume that L/N is an n-maximal subgroup

of PN/N . Then, clearly, L/N = MpN/N , where Mp is an n-maximal subgroup

of P . By hypothesis, Mp either has a p-nilpotent supplement or is Us-quasinormal

in G. By Lemma 2.7(1) and Lemma 2.2(3), we see that G/N (with respect to

PN/N) satisfies the hypothesis. The minimal choice of G implies that G/N is

p-nilpotent and consequently G is p-nilpotent, a contradiction.

(2) P has a maximal subgroup P1 such that P1 has no p-nilpotent supplement

in G (This follows from Lemma 4.1).

(3) G is soluble.

Suppose that G is not soluble. Then p = 2 by the well known Feit-Thompson

Theorem. Assume that O2(G) 6= 1. By Lemma 2.7 and Lemma 2.2(2), G/O2(G)

satisfies the hypothesis. Hence G/O2(G) is 2-nilpotent. It follow that G is soluble,

a contradiction. Now assume that O2(G) = 1. Then (Pn)G = 1, where Pn is an

n-maximal subgroup of P . Since Pn has no p-nilpotent supplement in G, Pn is

Us-quasinormal in G by the hypothesis. Hence there exists KEG such that PnK

is s-permutable in G and Pn ∩ K ≤ ZU
∞(G). If K = 1, then Pn ≤ O2(G) = 1

by Lemma 2.3(1), a contradiction. Thus, K 6= 1. If ZU
∞(G) 6= 1, then there

exists a minimal normal subgroup H of G contained in ZU
∞(G). Hence H is of

prime power order. This is impossible since O2′(G) = 1 and O2(G) = 1. Hence

Pn ∩ K = 1 and so 2n+1 - |K|. Then by Lemma 2.11, K has a normal Hall

2′-subgroup T . Since T char K E G, T E G. It follows from (1) that T = 1.

Consequently, K ≤ O2(G) = 1, a contradiction again. Hence (3) holds.

(4) N = Op(G) is the only minimal normal subgroup of G and G = [N ]M ,

where M is a maximal subgroup of G and M is p-nilpotent.

Let N be a minimal normal subgroup of G. By (1) and (3), N is an ele-

mentary abelian p-group and N ≤ Op(G). By Lemma 2.7(1) and Lemma 2.2(2),

G/N satisfies the hypothesis and so G/N is p-nilpotent. Since the class of all

p-nilpotent groups is a saturated formation, N is the unique minimal normal

subgroup of G and Φ(G) = 1. Hence Op(G) = N = CG(N), and consequently

G = [N ]M , where M is a p-nilpotent maximal subgroup of G. Thus (4) holds.

(5) The final contradiction.

Let Pn be an n-maximal subgroup of P such that Pn ≤ P1. Then Pn has also

no p-nilpotent supplement in G. Hence there exists a normal subgroup K of G
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such that PnK is s-permutable in G and (Pn∩K)(Pn)G/(Pn)G ≤ ZF
∞(G/(Pn)G).

We claim that (Pn)G = 1. Indeed, if (Pn)G 6= 1, then by (2), Op(G) = N = (Pn)G.

Hence G = NM = (Pn)GM = PnM , which contradicts (2). Therefore, Pn ∩K ≤
ZU
∞(G). If K = 1, then Pn is s-permutable in G, and so Pn ≤ Op(G) = N and

Op(G) ≤ NG(Pn) by Lemma 2.3. Hence 1 6= Pn ≤ PG
n = P

Op(G)P
n = PP

n =

(Pn ∩N)P ≤ (P1 ∩N)P = P1 ∩N ≤ N . On the other hand, obviously, N ≤ PG
n .

Thus N = PG
n = P1 ∩N . It follows that N ≤ P1, and so G = NM = P1M . This

means that P1 has a p-nilpotent supplement in G. This contradiction shows that

K 6= 1. If Pn ∩ K = 1, then pn+1 - |K|. By Lemma 2.11, K is p-nilpotent and

Kp′ ≤ Op′(G) = 1 by (1). Hence K = N = Op(G). It follows from Lemma 2.3(1)

that PnK = K and so Pn ∩ K 6= 1, a contradiction. Hence Pn ∩ K 6= 1. This

means that ZU
∞(G) 6= 1 and so N ≤ ZU

∞(G). Consequently, |N | = |Op(G)| = p.

Therefore, G/N ∼= G/CG(N) is isomorphic with some subgroup of Aut(N) of

order p− 1. Since (|G|, (p− 1)(p2 − 1) · · · (pn − 1)) = 1, G/N = 1. Consequently,

G = N is an elementary abelian p-group. The final contradiction completes the

proof. ¤

Theorem 4.3. Let p be a prime, F a saturated formation containing all p-

nilpotent groups and G a group. Suppose that (|G|, (p−1)(p2−1) · · · (pn−1)) = 1

for some integer n ≥ 1. Then G ∈ F if and only if G has a normal subgroup E such

that G/E is p-nilpotent and every n-maximal subgroup of P (if exists) either has a

p-nilpotent supplement or is Us-quasinormal in G, where P is a Sylow p-subgroup

of E.

Proof. The necessity is obvious. We only need to prove the sufficiency.

Suppose it is false and let G be a counterexample of minimal order. By Lem-

ma 2.7(2) and Lemma 2.2(4), every n-maximal subgroup of P either has a p-

nilpotent supplement or is Us-quasinormal in E. Hence E is p-nilpotent by Lem-

ma 4.2. Then, E 6= G. Let T be a normal Hall p′-subgroup of E. Clearly, T EG.

We proceed the proof via the following steps:

(1) T = 1, and so P = E EG.

Suppose that T 6= 1. Since T is a normal Hall p′-subgroup of E and E EG,

then T E G. We show that G/T (with respect to E/T ) satisfies the hypothesis.

Indeed, (G/T )/(E/T ) ' G/E is p-nilpotent and E/T = PT/T is a p-group.

Suppose that Mn/T is an n-maximal subgroup of PT/T and Pn = Mn∩P . Then

Pn is an n-maximal subgroup of P and Mn = PnT . By the hypothesis, Pn either

has a p-nilpotent supplement or is Us-quasinormal in G. By Lemma 2.7(1) and

Lemma 2.2(3), Mn/T = PnT/T either has a p-nilpotent supplement or is Us-

quasinormal in G/T . The minimal choice of G implies that G/T is p-nilpotent.
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This implies that G is p-nilpotent. This contradiction shows T = 1. Hence

P = E EG.

(2) Let Q be a Sylow q-subgroup of G, where q is a prime divisor of |G| with
q 6= p. Then PQ = P ×Q.

By (1), P = E E G, PQ is a subgroup of G. By Lemma 2.7(2) and Lem-

ma 2.2(4), every n-maximal subgroup of P either has a p-nilpotent supplement or

is Us-quasinormal in PQ. By using Lemma 4.2, we have that PQ is p-nilpotent.

Hence QE PQ and thereby PQ = P ×Q.

(3) The final contradiction.

From (2), we have Op(G) ≤ CG(P ). This induces that E = P ≤ Z∞(G) ≤
ZF
∞(G). Therefore G ∈ F. The final contradiction completes the proof. ¤

Theorem 4.4. Let G be a finite group and p a prime divisor of |G| with
(|G|, p − 1) = 1. Then G is p-nilpotent if and only if G has a soluble normal

subgroup H of G such that G/H is p-nilpotent and every maximal subgroup of

every Sylow subgroup of F (H) is Us-quasinormal in G.

Proof. The necessity is obvious. We only need to prove the sufficiency.

Suppose that it is false and let G be a counterexample with |G||H| is minimal.

Let P be an arbitrary given Sylow p-subgroup of F (H). Clearly, P E G. We

proceed the proof as follows.

(1) Φ(G) ∩ P = 1.

If not, then 1 6= Φ(G)∩P EG. Let R = Φ(G)∩P . Clearly, (G/R)/(H/R) '
G/H ∈ F. By Gaschütz theorem (see [11, III, Theorem 3.5]), we have that

F (H/R) = F (H)/R. Assume that P/R is a Sylow p-subgroup of F (H/R) and

P1/R is a maximal subgroup of P/R. Then P is a Sylow p-subgroup of F (G)

and P1 is a maximal subgroup of P . By Lemma 2.2(2) and the hypothesis, P1/R

is Us-quasinormal in G/R. Now, let Q/R be a maximal subgroup of some Sylow

q-subgroup of F (H/R) = F (H)/R, where q 6= p. Then Q = Q1R, where Q1

is a maximal subgroup of the Sylow q-subgroup of F (H). By hypothesis, Q1 is

Us-quasinormal in G. Hence Q/R = Q1R/R is Us-quasinormal in G/R by Lem-

ma 2.2(3). This shows that (G/R,H/R) satisfies the hypothesis. The minimal

choice of (G,H) implies that G/R is p-nilpotent. It follows that G is p-nilpotent,

a contradiction. Hence (1) holds.

(2) P = 〈x1〉×〈x2〉× · · ·×〈xm〉, where every 〈xi〉 (i ∈ {1 · · ·m}) is a normal

subgroup of G with order p.

By (1) and Lemma 2.5, P = R1 × R2 × · · · × Rm, where Ri (i ∈ {1 · · ·m})
is a minimal normal subgroup of G. We now prove that Ri is of order p, for

i ∈ {1 · · ·m}.



The influence of Fs-quasinormality of subgroups on the structure. . . 723

Assume that |Ri| > p, for some i. Without loss of generality, we let |R1| > p

and R∗
1 be a maximal subgroup of R1. Then, R

∗
1 6= 1 and R∗

1×R2×· · ·×Rm = P1

is a maximal subgroup of P . Put T = R2 × · · · ×Rm. Then, clearly, (P1)G = T .

By hypothesis, P1 is Us-quasinormal in G. Hence by Lemma 2.2(1), there exists

a normal subgroup N of G such that (P1)G ≤ N , P1N is s-permutable in G and

P1/(P1)G ∩ N/(P1)G ≤ ZU
∞(G/(P1)G). Assume that P1/(P1)G ∩ N/(P1)G 6= 1.

Let ZU
∞(G/(P1)G) = V/(P1)G = V/T . Then P1 ∩N ≤ V and P/T ∩ V/T EG/T .

Since P ∩V ≥ P1∩N ∩V ≥ P1∩N > (P1)G = T , P/T ∩V/T 6= 1. As P/T ' R1

and R1 is a minimal normal subgroup of G, we have P/T ⊆ V/T . This implies

that |R1| = |P/T | = p. This contradiction shows that P1 ∩ N = (P1)G = T .

Consequently, P1N = R∗
1TN = R∗

1N and R∗
1 ∩ N = 1. Since R1 ∩ N E G,

R1∩N = 1 or R1∩N = R1. If R1∩N = R1, then R∗
1 ⊆ R1 ⊆ N , which contradicts

R∗
1 ∩N = 1. Hence R1 ∩N = 1. It follows that R∗

1 = R∗
1(R1 ∩N) = R1 ∩R∗

1N is

s-permutable in G. Thus Op(G) ≤ NG(R
∗
1) by Lemma 2.3(2). This induces that

for every maximal subgroup R∗
1 of R1, we have that |G : NG(R

∗
1)| = pα, where

α is an integer. Let {R∗
1, R

∗
2, · · · , R∗

t } be the set of all maximal subgroups of R1.

Then p divides t. This contradicts to [11, III, Theorem 8.5(d)]. Thus (2) holds.

(3) G/F (H) is p-nilpotent.

By (2), F (H) = 〈y1〉 × 〈y2〉 × · · · × 〈yn〉, where 〈yi〉 (i ∈ {1 · · ·n}) is a

normal subgroup of G of order p. Since G/CG(〈yi〉) is isomorphic with some

subgroup of Aut(〈yi〉), G/CG(〈yi〉) is cyclic. Hence, G/CG(〈yi〉) is p-nilpotent for
every i. It follows that G/ ∩n

i=1 CG(〈yi〉) is p-nilpotent. Obviously, CG(F (G)) =

∩n
i=1CG(〈yi〉). Hence G/CG(F (G)) is p-nilpotent. Consequently,

G/(H ∩ CG(F (G))) = G/CH(F (H)) is p-nilpotent. Since F (H) is abelian,

F (H) ≤ CH(F (H)). On the other hand, CH(F (H)) ≤ F (H) since H is soluble.

Thus F (H) = CH(F (H)) and so G/F (H) is p-nilpotent.

(4) If K is a minimal normal subgroup of G contained in H, then K ⊆ F (H)

and G/K is p-nilpotent.

Let K be an arbitrary minimal normal subgroup of G contained in H. Then

K is an elementary abelian p-group for some prime p since H is soluble. Hence

K ≤ F (H). By Lemma 2.2(2) and (3), we see that G/K (with respect to H/K)

satisfies the hypothesis. The minimal choice of (G,H) implies that G/K is p-

nilpotent.

(5) The final contradiction.

Since the class of all p-nilpotent groups is a saturated formation, by (2) and

(4), we see that K = F (H) = 〈x〉 is the unique minimal normal subgroup of G

contained in H, where 〈x〉 is a cyclic group of order p for some prime p. Since
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G/K is p-nilpotent, it has a normal p-complement L/K. By Schur-Zassenhaus

Theorem, L = Gp′K, where Gp′ is a Hall p′-subgroup of G. Since p is the prime

divisor of |G| with (|G|, p − 1) = 1 and NL(K)/CL(K) ' Aut(K) is a subgroup

of a cyclic group of order p− 1, we see that NL(K) = CL(K). Then, by Burnside

Theorem (see [14, (10.1.8)]), we have that L is p-nilpotent. Then Gp′charLEG, so

Gp′ EG. Hence G is p-nilpotent. The final contradiction completes the proof. ¤
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