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Metric properties and exceptional sets of beta-continued
fractions of Laurent series

By MEI-YING LÜ (Chongqing)

Abstract. In 2010, M. Jellali et al. [10] introduced a new kind of continued

fractions algorithm of Laurent series, called β-continued fractions. In this paper, we

discuss metric properties of the partial quotients {en(x), n ≥ 1} occurring in β-continued

fractions, and for the β-continued fractions with sequences of partial quotients and the

β-continued fractions whose sum of degrees of partial quotients tends to infinity with

generally functional growth rate, we give their Hausdorff dimensions.

1. Introduction

Let Fq be the finite field of q elements and Fq((z−1)) denotes the field of all

formal Laurent series with coefficients in Fq. Recall that Fq[z] denotes the ring

of polynomials in z with coefficients in Fq.
For each x =

∑∞
n=ν cnz

−n ∈ Fq((z−1)), call [x] =
∑

ν≤n≤0 cnz
−n ∈ Fq[z]

the integral part of x and deg x = − inf{n ∈ Z : cn 6= 0} the degree of x, with

the convention that deg 0 = −∞. Define the absolute value on Fq((z−1)) as

|x| = qdeg x which is a non-Archimedean absolute value, the field Fq((z−1)) is

locally compact and complete under the metric ρ(x, y) = |x− y|.
The regular continued fraction over the field of formal Laurent series is intro-

duced by E. Artin [1], and the metric and ergodic properties of this dynamical

system have been studied in [2], [5], [6], [13], [14], [15], [16], [17].

In 2010, M. Jellali et al. [10] introduced the β-continued fractions of Lau-

rent series, they studied the metric and ergodic properties of this new continued
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fraction of Laurent series and gave the Hausdorff dimensions of bounded-type set

and the set of series having a given rate of convergence. In this paper, we discuss

metric properties of the partial quotients {en(x) : n ≥ 1} occurring in β-continued

fraction expansions, obtain the so-called ‘0-1’ law and limits results on the partial

quotients. Furthermore, for the β-continued fractions with sequences of partial

quotients and the β-continued fractions whose sum of degrees of partial quotients

tends to infinity with generally functional growth rate, we give their Hausdorff

dimensions. Our results are inspired by works [3], [8], [11], [12], [18].

2. Preliminary

Let β = {βi}i∈Z with βi ∈ Fq((z−1))\{0} such that {deg βi}i∈Z is a strictly

increasing sequence of integers, and

S = {{si}−∞<i≤k : k ∈ Z, si ∈ Fq[z], deg si < deg βi+1 − deg βi} .

Then each x ∈ Fq((z−1)) admits a unique representation x =
∑

−∞<i≤k siβi,

{si}−∞<i≤k ∈ S. Conversely, for any given string {si}−∞<i≤k ∈ S, there exists a
unique x ∈ Fq((z−1)) such that x =

∑
−∞<i≤k siβi. For any x =

∑
−∞<i≤k siβi ∈

Fq((z−1)), we define the β-integer part by [x]β =
∑

0≤i≤k siβi. Let

H0(β) := {dβ0 : d ∈ Fq[z], 0 < deg d < deg β1 − deg β0} ,
Hn(β) := {d0β0 + · · ·+ dnβn : di ∈ Fq[z], deg di < deg βi+1 − deg βi, dn 6= 0}

and

H(β) := H0(β) ∪
⋃

n≥1

Hn(β).

Let I :=
{
x =

∑
−∞<i≤−1 siβi, {si}−∞<i≤−1 ∈ S}. For r > 0, denote by

D(x, r) = {y ∈ Fq((z−1)) : |y − x| < r} the disc with center x and radius r. It is

easy to see that I = D(0, |β0|) and isomorphic to F∞q . A natural measure on I is

the normalized Haar measure µ given by µ(D(x, q−n)) = q−n

|β0| .
Now we recall the β-continued fraction of Laurent series. Consider the trans-

formation Tβ : I → I defined by

Tβx :=
β2
0

x
−
[
β2
0

x

]

β

, Tβ0 := 0.
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Then each x ∈ I have the following unique continued fraction expansion:

x =
β2
0

e1(x) +
· · ·

· · ·+ β2
0

en(x) + · · ·

= [0; e1(x), e2(x), . . . ]β ,

where en(x) ∈ H(β) and en(x) =
[ β2

0

Tn−1
β (x)

]
β
is called the β-partial quotient.

Similarly, denote {pn(x)/qn(x), n ≥ 0} the (β, n)-th convergent of x, i.e.

pn(x)

qn(x)
=

β2
0

e1(x) +
· · ·

· · ·+ β2
0

en(x)

= [0; e1(x), e2(x), . . . , en(x)]β .

Next we collect some known results which we will use frequently.

Proposition 1 ([10]). For any x ∈ I, let pn(x)/qn(x) denote the (β, n)-th

convergent of x. Then we have

(1) |qn(x)| ≥ |β0||qn−1(x)|;
(2) |qn(x)| = |e1(x) · · · en(x)|;
(3) deg qn(x) =

∑n
k=1 deg en(x);

(4)
∣∣x− pn(x)

qn(x)

∣∣ = |β0|2n+2

|qn(x)·qn+1(x)| <
|β0|2n+1

|qn(x)|2 .

Proposition 2 ([10]). Let e1, . . . , en ∈ H(β), pn/qn = [0; e1, . . . , en]β and

put

∆(e1, . . . , en) :=
{
[0; e1, . . . , en + θ]β , θ ∈ I}.

Then

∆(e1, . . . , en) = D

(
pn
qn

,
|β0|2n+1

|qn|2
)

with

|∆(e1, . . . , en)| = |β0|2n+1

q|e1|2 · · · |en|2 =
|β0|
q

q−2
∑n

j=1(deg ej−deg β0),

where |∆(e1, . . . , en)| denotes the diameter of ∆(e1, . . . , en).

Remark 2.1. We call ∆(e1, . . . , en) a (β, n)-th order cylinder. Since the va-

luation | · | is non-Archimedean, it follows that if two cylinders intersect, then one

contains the other.

Theorem 2.1 ([10]). The transformation Tβ is invariant and ergodic with

respect to the Haar measure µ.
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3. Metric properties of the partial quotients

In this section, we give the metric properties of the partial quotients {en(·)}
occurring in the β-continued fraction expansions.

Theorem 3.1. The random variable sequence {en(·)} is independent and

identically distributed with respect to the Haar measure µ.

Proof. For any n ≥ 1, b ∈ H(β), since the transformation Tβ converse the

Haar measure and en(x) = e1(T
(n−1)
β (x)), then

µ{x ∈ I : en(x) = b} = µ{T−(n−1)
β {x ∈ I : e1(x) = b}} = µ{∆(b)} =

|β0|2
|b|2 ,

So, the random variable sequence {en(·)} is identically distributed. Next we prove

that the sequence {en(·)} is independent, In fact

µ{x ∈ I : e1(x) = b1, . . . , en(x) = bn} = µ{∆(b1, . . . , bn)} =
|β0|2n

|b1 · · · bn|2 .

We know, for all 1 ≤ j ≤ n, µ{x ∈ I : ej(x) = bj} = |β0|2
|bj |2 , so

µ{x ∈ I : e1(x) = b1, . . . , en(x) = bn}
= µ{x ∈ I : e1(x) = b1} · · ·µ{x ∈ I : en(x) = bn}.

Thus, the random variable sequence {en(·)} is independent. ¤

Corollary 3.2. The random variable sequence {deg en(·)} is independent

and identically distributed, moreover

µ{x ∈ I : deg e1(x) = k} =
(q − 1)|β0|

qk
, for all k > deg β0.

Proof. We only need prove the second part, we first recall the equation∑
deg b=k
b∈H(β)

1
|b|2 = (q−1)

qk|β0| , see [10]. Therefore

µ{x ∈ I : deg e1(x) = k} =
∑

deg b=k
b∈H(β)

µ{x ∈ I : e1(x) = b}

=
∑

deg b=k
b∈H(β)

|β0|2
|b|2 =

(q − 1)|β0|
qk

. ¤
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Now we consider the random variables sequence {|en(·)|}, we have

Corollary 3.3. The random variable sequence {|en(·)|} is independent and

identically distributed.

Theorem 3.4. Let ϕ : N→ R+, then

(1) If
∑∞

n=1
1

ϕ(n) < ∞, then µ{x ∈ I : |en(x)| ≥ ϕ(n), i.o. n} = 0;

(2) If
∑∞

n=1
1

ϕ(n) = ∞, then µ{x ∈ I : |en(x)| ≥ ϕ(n), i.o. n} = 1.

Proof. Notice that

µ{x ∈ I : |en(x)| ≥ ϕ(n)} =
∑

e1,...,en−1,|en|≥ϕ(n)

|β0|2n
|e1|2 · · · |en|2

=
∑

e1,...,en−1

µ

{
∆(e1, . . . , en−1)

} ∑

|en|≥ϕ(n)

|β0|2
|en|2

=
∑

|en|≥ϕ(n)

|β0|2
|en|2 .

Moreover, we have

∑

|en|≥ϕ(n)

|β0|2
|en|2 ≥

∞∑

k=blogq ϕ(n)c+1

∑

deg en=k
en∈H(β)

|β0|2
|en|2 ≥ |β0|

ϕ(n)
,

and ∑

|en|≥ϕ(n)

|β0|2
|en|2 ≤

∞∑

k=blogq ϕ(n)c

∑

deg en=k
en∈H(β)

|β0|2
|en|2 ≤ q2|β0|

ϕ(n)
.

So,
|β0|
ϕ(n)

≤ µ{x ∈ I : |en(x)| ≥ ϕ(n)} ≤ q2|β0|
ϕ(n)

.

By Borel–Cantelli Lemma and Corollary 3.3, we have that

µ{x ∈ I : |en(x)| ≥ ϕ(n), i.o. n}

equal to 0 or 1 according as
∑∞

n=1
1

ϕ(n) converges or diverges. This complete the

proof. ¤

Theorem 3.5. For almost all x ∈ I,

lim sup
n→∞

log q deg en(x)− logn

log log n
= 1, lim inf

n→∞
log q deg en(x)− log n

log log n
= −∞.
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Proof. Let ϕ(n) = n log n and ϕ(n) = n(log n)1+ε(ε > 0). By Theorem 3.4,

we get the first equality, we only need prove the second one.

For all α > 0, let Aα = {x ∈ I : |en(x)| < n(logn)−α, i.o. n}, we have that

µ(Aα) = µ{lim sup
n→∞

{x ∈ I : |en(x)| < n(log n)−α}}

≥ lim sup
n→∞

µ{x ∈ I : |en(x)| < n(log n)−α}

= 1− lim inf
n→∞

µ{x ∈ I : |en(x)| ≥ n(logn)−α}

≥ 1− lim inf
n→∞

q2|β0|
n(logn)−α

= 1.

This implies µ(Aα) = 1. Hence for almost all x ∈ I, |en(x)| < n(log n)−α holds

for infinitely times. Notice α > 0 is arbitrary, we proves the second equality. ¤

Now we consider

|Ln(x)| = max
1≤j≤n

|ej(x)|,

therefore

degLn(x) = max
1≤j≤n

deg ej(x),

we have the following two similar results.

Theorem 3.6. For almost all x ∈ I,

lim sup
n→∞

log q degLn(x)− logn

log log n
= 1, lim inf

n→∞
log q degLn(x)− logn

log log n
= 0.

Proof. We only establish the second equality, the first one is similar to the

above theorem.

I. First, we consider the set {x ∈ I : |Ln(x)| < n(log n)α}, (α > 0). Notice

that {|en(x)|} is independent and identically distributed, following the same line

as in the proof of Theorem 3.4, we have

µ{x ∈ I : |Ln(x)| < n(log n)α} = µ{x ∈ I : |ej(x)| < n(log n)α, 1 ≤ j ≤ n}
= µ{x ∈ I : |e1(x)| < n(log n)α} · · ·µ{x ∈ I : |en(x)| < n(log n)α}

≥
(
1− q2|β0|

n(log n)α

)n

.

By Fatou Lemma, we have

µ{lim sup
n→∞

{x ∈ I : |Ln(x)| < n(logn)α}} ≥ lim sup
n→∞

µ{x ∈ I : |Ln(x)| < n(log n)α}

≥ lim sup
n→∞

(
1− q2|β0|

n(logn)α

)n

= 1.



Metric properties and exceptional sets of beta-continued fractions. . . 7

Hence for almost all x ∈ I, |Ln(x)| < n(log n)α holds for infinitely times, because

α > 0 is arbitrary, we have

lim inf
n→∞

log q degLn(x)− logn

log log n
≤ 0.

II: Conversely, it suffices to show that for any 0 < α < 1, for almost all x ∈ I,

|Ln(x)| < n(log n)−α := ϕ(n)

holds for only finite times. But by Theorem 3.4, for almost all x ∈ I, there are

infinitely many n such that |Ln(x)| ≥ ϕ(n), it follows that “for almost all x ∈ I,
|Ln(x)| < ϕ(n) holds for only finite times” is equivalent to “for almost all x ∈ I,
|Ln(x)| < ϕ(n) but |Ln+1(x)| ≥ ϕ(n+ 1) holds for only finite times”.

In fact

µ{x ∈ I : |Ln(x)| < n(log n)−α, |Ln+1(x)| ≥ (n+ 1)(log(n+ 1))−α}
= µ{x ∈ I : |Ln(x)| < n(log n)−α, |en+1(x)| ≥ (n+ 1)(log(n+ 1))−α}

≤
(
1− |β0|

n(logn)−α

)n
q2|β0|

(n+ 1)(log(n+ 1))−α
¿ 1

n(log n)1+α
.

The last Vinogradov symbol (¿) holds, because

q2|β0|
(n+ 1)(log(n+ 1))−α

¿ (log(n+ 1))α

n+ 1
¿ (2 log n)α

n
. (3.1)

and notice that (1− 1
x )

x is decreasing and for any x > 0, ex > xk/k!, then

(
1− |β0|

n(log n)−α

)n

=
(
1− |β0|

n(log n)−α

)(−n(log n)−α

|β0| )(− |β0|
(log n)−α )

≤ e−|β0|(logn)α <
k!

|β0|k(log n)αk . (3.2)

Together (3.1) and (3.2), and take k satisfying αk > 1 + 2α, we have

(
1− |β0|

n(log n)−α

)n q2|β0|
(n+ 1)(log(n+ 1))−α

≤ 2α(log n)αk!

n|β0|k(log n)αk

¿ 1

n(log n)αk−α
≤ 1

n(logn)1+α
.
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Then
∞∑

n=1

µ{x ∈ I : |Ln(x)| < n(log n)−α, |Ln+1(x)| ≥ (n+ 1)(log(n+ 1))−α}

¿
∞∑

n=1

1

n(log n)1+α
< +∞,

by Borel–Cantelli Lemma, we have

lim inf
n→∞

log q degLn(x)− logn

log log n
≥ −α.

Because 1 > α > 0 is arbitrary, therefore

lim inf
n→∞

log q degLn(x)− logn

log log n
≥ 0. ¤

4. β−continued fractions with sequences of partial quotients

Let B = {b1, b2, . . . , bn, . . . } be a non-empty infinite set of elements of H(β),

and
FB = {x ∈ I : en(x) ∈ B, for n ≥ 1},

F (B) = {x ∈ I : en(x) ∈ B, for all n ≥ 1 and deg en(x) → ∞}.
We calculate the Hausdorff dimension of these two sets:

Theorem 4.1. dimH FB = t, where t = inf
{
s :

∑
b∈B

∣∣β0

b

∣∣2s ≤ 1
}
.

Theorem 4.2. dimH F (B) = α, where α = inf
{
s :

∑
b∈B

∣∣β0

b

∣∣2s < ∞}
.

Now we prove Theorem 4.1. First we give the following lemma.

Lemma 4.3 ([10]). Let S be a non-empty finite set of elements of H(β), say

S = {e1, e2, . . . em}. Write

FS = {x ∈ I : en(x) ∈ S, for n ≥ 1} .
Then dimH FS = t, where t is given by

∑m
k=1

∣∣β0

ek

∣∣2t = 1.

Recall that B = {b1, b2, . . . , bn, . . . } and write Bn = {b1, b2, . . . , bn} for any

n ≥ 1. Let

FBn = {x ∈ I : ei(x) ∈ Bn, for i ≥ 1} and tn = dimH FBn .

Lemma 4.4. limn→∞ tn = t, where t is given in Theorem 4.1

Proof. It is clear that tn is increasing and tn ≤ t for any n ≥ 1. Sup-

pose limn→∞ tn = s, then s ≤ t. For any n ≥ 1, we have
∑n

k=1

∣∣β0

bk

∣∣2s ≤
∑n

k=1

∣∣β0

bk

∣∣2tn = 1, thus
∑∞

k=1

∣∣β0

bk

∣∣2s ≤ 1, by definition of t, we have s ≥ t. ¤
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4.1. upper bound. It is clear that

FB =

∞⋂
n=1

⋃

(e1,...,en)∈Bn

∆(e1, . . . , en).

For any s > t, write s = (s+ t)/2 + (s− t)/2, we have

∞∑

k=1

∣∣∣∣
β0

bk

∣∣∣∣
2s

=

∞∑

k=1

∣∣∣∣
β0

bk

∣∣∣∣
(s+t)+(s−t)

≤ q−(s−t)
∞∑

k=1

∣∣∣∣
β0

bk

∣∣∣∣
(s+t)

≤ q−(s−t).

Therefore

Hs(FB) ≤ lim inf
n→∞

∑

(e1,...,en)∈Bn

|∆(e1, . . . , en)|s

≤ lim inf
n→∞

q−(s−t)
∑

(e1,...,en−1)∈Bn−1

|∆(e1, . . . , en−1)|s

¿ lim inf
n→∞

q−n(s−t) = 0

Thus dimH FB ≤ s. Since s > t is arbitrary, we have dimH FB ≤ t.

4.2. Lower bound. It is clear that FBn ⊂ FB for any n ≥ 1. So for any n ≥ 1,

dimH FB ≥ tn. By Lemma 4.4, we have dimH FB ≥ limn→∞ tn = t. ¤
In the following, we are devoted to prove Theorem 4.2. For any n ≥ 1, let

Cn be a set of elements of H(β) and denote:

C = {x ∈ I : en(x) ∈ Cn, for n ≥ 1},
CN = {x ∈ I : en(x) ∈ Cn, for all n ≥ N}, N ∈ N.

We give the following lemma which is essentially due to I. J. Good [7], or see [9].

Lemma 4.5. For any N ∈ N, dimH C = dimH CN .

Lemma 4.6. For any n ≥ 1, let Dn = ] {b ∈ B : deg b = n+ deg β0}. Then

α = lim sup
n→∞

logDn

2n log q
,

where α is given in Theorem 4.2.

Proof. For any η < α, since
∑

b∈B

∣∣β0

b

∣∣2η =
∑∞

n=1 Dnq
−2nη diverges, there

exists infinitely many n, say {nk : k ≥ 1}, such that Dnk
q−2nkη ≥ 1

n2
k
, which

implies lim supn→∞
logDn

2n log q ≥ η.

On the other hand, for any ζ > α, since
∑

b∈B

∣∣β0

b

∣∣2ζ =
∑∞

n=1 Dnq
−2nζ < ∞,

we have Dnq
−2nζ ≤ 1 when n is large enough. Thus lim supn→∞

logDn

2n log q ≤ ζ. ¤
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4.3. upper bound. For any η > α, since
∑

b∈B

∣∣β0

b

∣∣2η<∞, there exists Mη∈N
such that

∑
b∈B

deg b≥Mη

∣∣β0

b

∣∣2η < 1. Denote

F (B)N,m = {x ∈ I : en(x) ∈ B for all n ≥ 1 and deg en(x) ≥ m for all n ≥ N},

then F (B) =
⋂∞

m=1

⋃∞
N=1 F (B)N,m.

From Lemma 4.5, we have

dimH F (B) ≤ inf
m≥1

dimH F (B)1,m ≤ dimH F (B)1,Mη .

Since

F (B)1,Mη = {x ∈ I : en(x) ∈ B and deg en(x) ≥ Mη for all n ≥ 1}

=

∞⋂
n=1

⋃

(e1,...,en)∈Bn

deg ei≥Mη,i=1,...,n

∆(e1, . . . , en),

we have

Hη(F (B)1,Mη ) ≤ lim inf
n→∞

∑

(e1,...,en)∈Bn

deg ei≥Mη,i=1,...,n

∣∣∆(e1, . . . , en)
∣∣η

≤ lim inf
n→∞

( ∑

b∈B
deg b≥Mη

∣∣∣∣
β0

b

∣∣∣∣
2η

) ∑

(e1,...,en−1)∈Bn−1

deg ei≥Mη,i=1,...,n−1

∣∣∆(e1, . . . , en−1)
∣∣η

¿ lim inf
n→∞

( ∑

b∈B
deg b≥Mη

∣∣∣∣
β0

b

∣∣∣∣
2η

)n

= 0.

Thus

dimH F (B) ≤ dimH F (B)1,Mη ≤ η.

Since η > α is arbitrary, we have dimH F (B) ≤ α.

4.4. Lower bound. Now we prove dimH F (B) ≥ α. If α = 0 we have the

desired result, we assume α > 0. Let n0 = min{deg b : b ∈ B}.
For any ε > 0 satisfying α − ε > 0, from Lemma 4.6, there exist n0 < n1 <

n2 < · · · such that for any k ≥ 1,

Dnk
≥ q2nk(α−ε). (4.1)
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Choose an integer sequence {tk : k ≥ 0} satisfying

t0 = 0, and tk = n2
k+1 for any k ≥ 1. (4.2)

Let

F ∗(B) =

{
x ∈ I : en(x) ∈ B for all n ≥ 1 and nk ≤ deg en(x)−deg β0 < nk+1

if

k∑

i=0

ti ≤ n <

k+1∑

i=0

ti for some k ≥ 0

}
.

Then F ∗(B) is compact and F ∗(B) ⊂ F (B), we only need to prove that

dimH F ∗(B) ≥ α.

For any δ > 0 satisfying α − ε − δ > 0, by (4.2), there exists K0 ∈ N such

that for any k ≥ K0,
(α− ε)nk+1∑k

i=1 tini−1

< δ. (4.3)

Let U = {u1, u2, . . . } be any disc covering system of F ∗(B) satisfying

|ui| < |β0|
q

q−2
∑K0

j=1 tjnj for any i ≥ 1. (4.4)

For any s > 0, write Λs(U) =
∑∞

i=1 |ui|s. Since F ∗(B) is compact, we can choose

finite subsystem V = {v1, v2, . . . } which also covers F ∗(B). It is clear that

Λα−ε−δ(U) ≥ Λα−ε−δ(V ).

For any J ∈ V , choose x ∈ F ∗(B) ∩ J . Suppose x = [e1, e2, . . . ]β , there exists

unique n = n(J) such that

∆(e1, . . . , en) ⊆ J ⊆ ∆(e1, . . . , en−1).

Suppose
∑k

i=0 ti ≤ n <
∑k+1

i=0 ti for some k ≥ 0. By the definition of F ∗(B) and

Proposition 2, we have

|J | ≥ |∆(e1, . . . , en)| = |β0|
q

q−2
∑n

i=1(deg ei−deg β0) ≥ |β0|
q

q−2
∑k+1

i=1 tini .

From (4.4), we have

k ≥ K0. (4.5)
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Write IJ = ∆(e1, . . . , en−1). Since

|J |α−ε ≥ |∆(e1, . . . , en)|α−ε

=

∣∣∣∣
β0

en

∣∣∣∣
2(α−ε)

|∆(e1, . . . , en−1)|α−ε =

∣∣∣∣
β0

en

∣∣∣∣
2(α−ε)

|IJ |α−ε,

by (4.3) and (4.5), we have

|IJ |α−ε ≤
∣∣∣∣
en
β0

∣∣∣∣
2(α−ε)

|J |α−ε

≤
( |β0|

q

)δ

q(deg en−deg β0)2(α−ε)−2δ
∑n−1

i=1 (deg ei−deg β0)|J |α−ε−δ

≤
( |β0|

q

)δ

q2(α−ε)nk+1−2δ
∑k

i=1 tini−1 |J |α−ε−δ ≤
( |β0|

q

)δ

|J |α−ε−δ. (4.6)

Let W̃ = {IJ : J ∈ V }, we select all those discs in W̃ which are maximal

(IJ is maximal if there is no J ′ ∈ V such that IJ ⊆ IJ′ and J 6= J ′). Let W be

the set consisting of all maximal discs in W̃ . It is obvious that W is a covering

system of F ∗(B) by fundamental cylinders. By (4.6), we have

Λα−ε−δ(U) ≥ Λα−ε−δ(V ) ≥
(

q

|β0|
)δ

Λα−ε(W ).

Suppose the largest order of the fundamental cylinders in W is ι. Then there

exists ∆(e1, . . . , eι) ∈ W . Suppose
∑k

i=0 ti ≤ ι <
∑k+1

i=0 ti for some k ≥ 0. If

ι > 0, since each fundamental cylinder ∆(e1, . . . , eι−1, b), where b ∈ B and nk ≤
deg b−deg β0 < nk+1, contains infinitely many points in F ∗(B), the fundamental

cylinders ∆(e1, . . . , eι−1, b) with b ∈ B and nk ≤ deg b − deg β0 < nk+1 must all

be elements of W . By (4.1) we have
∑

b∈B,nk≤deg b−deg β0<nk+1

|∆(e1, . . . , eι−1, b)|α−ε

=
∑

b∈B,nk≤deg b−deg β0<nk+1

∣∣∣∣
β0

b

∣∣∣∣
2(α−ε)

|∆(e1, . . . , eι−1)|α−ε

≥ Dnk
q−2nk(α−ε)|∆(e1, . . . , eι−1)|α−ε ≥ |∆(e1, . . . , eι−1)|α−ε

Denote by R the new covering system of F ∗(B) obtained by just replacing

all fundamental cylinders ∆(e1, . . . , eι−1, eι) ∈ W by the fundamental cylinders

∆(e1, . . . , eι−1). Then

Λα−ε(W ) ≥ Λα−ε(R).
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Proceeding in this manner, after a finite number of steps we reach a system whose

largest order is zero, thus

Λα−ε(W ) ≥ Λα−ε(R) ≥ · · · ≥ |I|α−ε = |β0|α−ε.

Therefore

Λα−ε−δ(U) ≥ qδ|β0|α−ε−δ

By the definition of Hausdorff dimension, we have dimH F ∗(B) ≥ α−ε−δ. Since

ε > 0 and δ > 0 are arbitrary, we have dimH F ∗(B) ≥ α. ¤

5. On the sums of degrees of partial quotients occurring

in β-continued fractions

Let φ : N→ R+ be a function satisfying φ(n)/n → ∞ as n → ∞. and

E(φ) :=

{
x ∈ I : lim

n→∞
deg e1(x) + · · ·+ deg en(x)

φ(n)
= 1

}
.

We determine the Hausdorff dimension of E(φ).

Theorem 5.1. If E(φ) 6= ∅, then

dimH E(φ) =
1

1 + b
, where b = lim sup

n→∞
φ(n+ 1)

φ(n)
.

We first give a remark on φ. For any given positive function φ(n), if E(φ) 6= ∅,
then there exists an x0 ∈ E(φ), define φ̄(n) =

∑n
k=1 deg ek(x0)− n deg β0 for all

n ≥ 1. Obviously, we have φ(n)/φ̄(n) → 1 as n → ∞, so E(φ) = E(φ̄). Hence,

in what follows, we can always assume that φ : N → N and φ(n + 1) − φ(n) ≥ 1

once E(φ) is non-empty.

5.1. Lower bound. The lower bound is obtained by estimating the Hausdorff

dimension of a homogeneous Moran subset of E(φ). We recall the definition and

a basic dimensional result of the homogeneous Moran set at first, see [4], [9] for

details.

Let {nk}k≥1 be a sequence of positive integers and {ck}k≥1 be a sequence of

positive numbers satisfying nk ≥ 2, 0 < ck < 1, n1c1 ≤ δ and nkck ≤ 1(k ≥ 2),

where δ is some positive number.

Let

D0 = {∅}, Dk = {(i1, . . . , ik) : 1 ≤ ij ≤ nj , 1 ≤ j ≤ k} .
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and D =
⋃

k≥0 Dk. If σ = (σ1, . . . , σk) ∈ Dk, τ = (τ1, . . . , τm) ∈ Dm, we define

the concatenation of σ and τ as σ ∗ τ = (σ1, . . . , σk, τ1, . . . , τm). Let (X, d) be a

metric space. Suppose that J ⊂ X is a closed subset with positive diameter. A

collection F = {Jσ : σ ∈ D} of closed subsets of J is said to have a homogeneous

Moran structure if it satisfies:

(1) J∅ = J ;

(2) For any k ≥ 1 and σ ∈ Dk−1, Jσ∗1, Jσ∗2, . . . , Jσ∗nk
are subsets of Jσ and

satisfying int(Jσ∗i)
⋂
int(Jσ∗j) = ∅ (i 6= j). where int(A) denotes the interior

of A;

(3) For any k ≥ 1 and σ ∈ Dk−1, 1 ≤ j ≤ nk, we have
|Jσ∗j |
|Jσ| = ck.

If F is such a collection, E :=
⋂

k≥1

⋃
σ∈Dk

Jσ is called a homogeneous Moran set

determined by F.

Lemma 5.2 ([4], [9]). For the above defined homogeneous Moran set, we

have

dimH E ≥ lim inf
k→∞

logn1n2 · · ·nk

− log c1c2 · · · ck+1nk+1
.

Lemma 5.3. Assume that {sn}∞n=1 is a sequence of positive integers satis-

fying 1
n

∑n
k=1 sk → ∞ as n → ∞. Let E = {x ∈ I : deg en(x) − deg β0 = sn}.

Then we have

dimH E ≥ lim inf
n→∞

s1 + s2 + · · ·+ sn
2(s1 + s2 + · · ·+ sn) + sn+1

.

Proof. Let

Dn = {σ : σ = (e1, e2, . . . , en) ∈ H(β)n, deg ek − deg β0 = sk, 1 ≤ k ≤ n}.
Put

E0 = I, En =
⋃

(e1,e2,...,en)∈Dn

∆(e1, e2, . . . , en), ∀ n ≥ 1.

Then E =
⋂+∞

n=1 En.

Take nk = (q − 1)qsk , ck = q−2sk . From the above structure, it follows

that each component ∆(e1, e2, . . . , ek−1) in Ek−1 contains nk many elements

∆(e1, e2, . . . , ek) in Ek with the same ratio ck. Thus E is a standard homogeneous

Moran set. By Lemma 5.2, we have

dimH E ≥ lim inf
n→∞

n log(q − 1) + (s1 + · · ·+ sn) log q

− log(q − 1) + (2(s1 + · · ·+ sn) + sn+1) log q

≥ lim inf
n→∞

s1 + s2 + · · ·+ sn
2(s1 + s2 + · · ·+ sn) + sn+1

. ¤
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Take s1 = φ(1), sn = φ(n) − φ(n − 1) for n ≥ 2. It is easy to see that

E ⊂ E(φ). In fact, for any n ≥ 1, deg en = sn + deg β0, therefore

lim
n→∞

deg e1(x) + · · ·+ deg en(x)

φ(n)
= lim

n→∞
φ(n) + n deg β0

φ(n)
= 1,

since φ(n)/n → ∞ as n → ∞. By lemma 5.3, we have

dimH E(φ) ≥ lim inf
n→∞

φ(n)

φ(n) + φ(n+ 1)
=

1

1 + b
.

5.2. Upper bound. Set

E∗(φ) :=
{
x ∈ I : lim

n→∞
deg e1(x) + · · ·+ deg en(x)− n deg β0

φ(n)
= 1

}
.

It is easy to see that E∗(φ) = E(φ), so we only need estimate the upper bound

of dimH E∗(φ). Since φ is monotonic increasing, we have b ≥ 1. The proof is

distinguished into three cases according to 1 < b < ∞, b = 1 and b = ∞.

Case I : 1 < b < ∞.

We begin with the construction of a family of measures {µt, t > 1}. For any
t > 1 and {b1, b2, . . . , bn} ⊂ H(β) with deg bj ≥ deg β0 + 1(1 ≤ j ≤ n), set

µt(∆(b1, b2, . . . , bn)) = q−t
∑n

j=1(deg bj−deg β0)−nP (t),

where

P (t) = logq(q(q − 1))− logq(q
t − q).

By using the equalities

∑

b:deg b≥deg β0+1

q−t(deg b−deg β0) =

∞∑
n=1

∑

deg b=deg β0+n

q−tn

=

∞∑
n=1

q−tn(q − 1)qn =
q(q − 1)

qt − q
= qP (t),

it is easy to check that
∑

bn+1:deg bn+1≥deg β0+1

µt(∆(b1, b2, . . . , bn+1)) = µt(∆(b1, b2, . . . , bn)),

∑

b1,b2,...,bn

µt(∆(b1, b2, . . . , bn)) = 1,

where the sum is taken over all bj and deg bj ≥ deg β0 + 1. So the measure µt is

well defined.

Fix t > 1 and ε > 0. By the given condition φ(n)/n → ∞ and the definition

of b, we have
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• There exists N(t, ε) ∈ N such that for all n ≥ N(t, ε),

nP (t) ≤ ε(1− ε)φ(n). (5.1)

• We can choose a subsequence {nk}∞k=1 of N with nk ≥ N(t, ε) for all k ≥ 1

and

φ(nk + 1) ≥ φ(nk)b(1− ε). (5.2)

Now we give a cover of the set E∗(φ). For any n ≥ 1, let

∆n(ε) =

{
(e1, . . . , en) ∈ H(β)n : (1− ε)

<
1

φ(n)

n∑

j=1

(deg ej − deg β0) < (1 + ε)

}
(5.3)

For any (e1, . . . , en) ∈ ∆n(ε), let

Dn+1(ε; (e1, . . . , en)) = {en+1 ∈ H(β) : (e1, . . . , en, en+1) ∈ ∆n+1(ε)}

and

J(e1, . . . , en) =
⋃

en+1∈Dn+1(ε;(e1,...,en))

∆(e1, . . . , en, en+1).

Then

E∗(φ) ⊂
∞⋃

N=1

∞⋂

n=N

⋃

(e1,...,en)∈∆n(ε)

J(e1, . . . , en). (5.4)

For each N ≥ 1, (e1, . . . , enk
) ∈ ∆nk

(ε) with nk ≥ N , we will estimate the

length of J(e1, . . . , enk
).

For any enk+1 ∈ Dnk+1(ε; (e1, . . . , enk
)), by the definition of ∆n(ε) and Dn+1

(ε; (e1, . . . , en)), together with (5.2), we have

nk+1∑

j=1

(deg ej − deg β0) ≥ φ(nk + 1)(1− ε) ≥ φ(nk)b(1− ε)2

≥ b(1− ε)2

1 + ε

nk∑

j=1

(deg ej − deg β0).

Thus

deg enk+1 − deg β0 ≥
(
b(1− ε)2

1 + ε
− 1

) nk∑

j=1

(deg ej − deg β0). (5.5)



Metric properties and exceptional sets of beta-continued fractions. . . 17

Write γ =
( b(1−ε)2

1+ε − 1
)
, by Proposition 2 we have

|J(e1, . . . , enk
)| ≤

∑

enk+1:deg enk+1−deg β0≥γ
∑nk

j=1(deg ej−deg β0)

|∆(e1, . . . , enk
, enk+1)|

≤
∞∑

k=γ
∑nk

j=1(deg ej−deg β0)

∑

enk+1:deg enk+1−deg β0=k

|∆(e1, . . . , enk
, enk+1)|

¿ q−2
∑nk

j=1(deg ej−deg β0)
∞∑

k=γ
∑nk

j=1(deg ej−deg β0)

q−k

¿ |∆(e1, . . . , enk
)| 2+γ

2 .

For each (e1, . . . , enk
) ∈ ∆nk

(ε), by (5.1), we have

|∆(e1, . . . , enk
)| t+ε

2 ¿ q−(t+ε)
∑nk

j=1(deg ej−deg β0)

¿ q−t
∑nk

j=1(deg ej−deg β0)−nkP (t) = µt(∆(e1, . . . , enk
)).

After these preliminaries, we estimate the t+ε
2+γ -dimensional Hausdorff measure

of E∗(φ).

H t+ε
2+γ (E∗(φ)) ≤ lim inf

k→∞

∑

(e1,...,enk
)∈∆nk

(ε)

|J(e1, . . . , enk
)| t+ε

2+γ

¿ lim inf
k→∞

∑

(e1,...,enk
)∈∆nk

(ε)

(|∆(e1, . . . , enk
)| 2+γ

2 )
t+ε
2+γ

¿ lim inf
k→∞

∑

(e1,...,enk
)∈∆nk

(ε)

µt(∆(e1, . . . , enk
)) ¿ 1.

So, we have dimH E∗(φ) ≤ t+ε
2+γ . Letting ε → 0 and t → 1, we obtain

dimH E∗(φ) ≤ 1

1 + b
.

Case II : b = 1.

In this case, it can be proved by just applying to the natural covering system

E∗(φ) ⊂
∞⋃

N=1

∞⋂

n=N

⋃

(e1,...,en)∈∆n(ε)

∆(e1, . . . , en). (5.6)
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Then, following from formula (5.1), we have

H t+ε
2 (E∗(φ)) ≤ lim inf

k→∞

∑

(e1,...,enk
)∈∆nk

(ε)

|∆(e1, . . . , enk
)| t+ε

2

¿ lim inf
k→∞

∑

(e1,...,enk
)∈∆nk

(ε)

q−(t+ε)
∑nk

j=1(deg ej−deg β0)

¿ lim inf
k→∞

∑

(e1,...,enk
)∈∆nk

(ε)

q−t
∑nk

j=1(deg ej−deg β0)−nkP (t)

¿ lim inf
k→∞

∑

(e1,...,enk
)∈∆nk

(ε)

µt(∆(e1, . . . , enk
)) ¿ 1.

It follows that dimH E∗(φ) ≤ t+ε
2 . Letting ε → 0 and t → 1, we have

dimH E∗(φ) ≤ 1

2
.

Case III : b = ∞.

In this case, we replace b in case I by arbitrary large number n. Then, we

have dimH E∗(φ) ≤ 1
1+n . Letting n → ∞, we have dimH E∗(φ) = 0. ¤
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