Title: The shuffle variant of Terai's conjecture on exponential Diophantine equations

Author(s): Takafumi Miyazaki

Let p, q and r be positive integers with $p, q, r \geq 2$, and let a, b and c be pair-wise relatively prime positive integers such that $a^{p}+b^{q}=c^{r}$. Terai's conjecture states that apart from a handful of exceptions, the exponential Diophantine equation $a^{x}+b^{y}=c^{z}$ in positive integers x, y and z, has the unique solution $(x, y, z)=(p, q, r)$. In this paper we consider a similar problem (which we call the shuffle variant of Terai's problem). Our problem states that apart from a handful of exceptions, the exponential Diophantine equation $c^{x}+b^{y}=a^{z}$ in positive integers x, y and z, has the unique solution $(x, y, z)=(1,1, p)$ if $q=r=2$ and $c=b+1$, and no solutions otherwise. We establish several results on our problem by the theory of linear forms in two archimedean and non-archimedean logarithms with various elementary techniques. In particular we prove that the shuffle variant of Terai's problem is true if $q=r=2$ and $c=b+1$.

Address:

Takafumi Miyazaki
Department of Mathematics
College of Science and Technology
Nihon University
Suruga-Dai Kanda
Chiyoda, Tokyo 101-8308
Japan

