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On an S-unit variant of Diophantine m-tuples

By LASZLO SZALAY (Sopron) and VOLKER ZIEGLER (Graz)

Abstract. Let S be a fixed set of primes and let a1, ..., an be positive distinct
integers. We call the m-tuple (a1,...,an) S-Diophantine, if for all 4 # j the integers
aja; +1 = s;; are S-integers. In this paper we show that if |S| = 2, then under some
technical restrictions no S-Diophantine quadruple exists.

1. Introduction

An m-tuple (aq, ..., a,) of positive distinct integers is called Diophantine if
a;Q; +1= O (1)

for i # j. Diophantine m-tuples have been studied since ancient times by several
authors. Most notable is DUJELLA’s result [8] that no Diophantine six-tuple exists
and that there are only finitely many quintuples. It is widely believed that there
exist no quintuples at all.

Not only Diophantine m-tuples have been considered, but also various vari-
ants. For instance, BUGEAUD and DUJELLA [3] examined m-tuples, where O in
(1) is replaced by k-th power, DUJELLA and FUCHS [9] investigated a polynomial
version, and FucHs, LucA and SzArLAY [11] replaced O by terms of given binary
recurrence sequences. For a complete overview we suggest DUJELLA’s web page
on Diophantine tuples [7].

In this paper we mean to consider an S-unit version of Diophantine m-tuples.
Let S be a fixed set of primes. Then we call an m-tuple (a1, ..., @), with positive
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integers 0 < a; < -+ < a,, an S-Diophantine m-tuple, if for all 1 <17 < j < n we
have a;a; +1 = s;; to be an S-unit. A closely related problem was studied by
GYORY, SARKOzY and TIIDEMAN [12], who considered the largest prime factor

I[ (ab+1),

acA,beEB

of the products

where A and B are fixed sets. This problem goes back to ERDOS and TURAN
[10], who considered the number of prime factors in the product

H (a+0).

acAbeB

In particular, GYORY, SARKOzY and TIJDEMAN conjectured that for positive
integers a < b < ¢ the greatest prime factor of

(ab+1)(ac+1)(bc+1)

tends to infinity as ¢ — oco. Effective but only partial results have been proved
by BUGEAUD [2] and STEWART and T1IJDEMAN [20]. Finally this conjecture has
been proved by CORVAJA and ZANNIER [6] and independently by HERNANDEZ
and Luca [13], which means in our context that there exist only finitely many
S-Diophantine triples for a fixed set of primes S. Since both proofs depend on
Schmidt’s subspace theorem (see e.g. [19][Theorem 1E, p. 178]), this result is
ineffective. A third proof that for a fixed set of primes S there are only finitely
many S-Diophantine triples is given by BUGEAUD and LucA [4] who proved that
the greatest prime factor of

H (ab+ 1)(ac+ 1)(bc+ 1),

a,b,ce A
a<b<c

where A is a finite set of positive integers, is larger than
klog|A|loglog | Al,

with x a constant effectively computable. Again this result does not yield an
effective upper bound for c.

On the other hand STEWART and TIJDEMAN [20] proved an effective result,
i.e. they showed that for a fixed set of primes there are only finitely many S-
Diophantine quadruples which are effectively computable.
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In this paper we consider the following problem. Fix the size of S, but not .S
itself. Does there exist an integer m such that no Diophantine m-tuple exists? In
the case of |S| = 2 we conjecture that one can choose m = 4. Unfortunately, we
were able to proof this conjecture only under some technical restrictions. Using
the notation ord,(¢) for the multiplicative order of ¢ modulo p, the main theorem
in this paper is the following.

Theorem 1. Let S = {p,q} be a set of two primes with p < q and assume
that p? t ¢ %@ — 1, ¢2 f porda(®) — 1 further that ¢ < p¢ holds with some
& > 1. Then there exists a constant C' = C(§) such that for all such p,q > C no
S-Diophantine quadruple exists. In particular we can choose

C = C(€) = U(9;2.142 - 10%2¢3),
where W (k;x) denotes the largest solution y > 0 to the equation z = m.

Remark 1. In case of £ = 2 we obtain C' = C(2) = 1.023 - 10%L.

Let p be a large prime. Then there exists some b € Z, 1 < b < p such that
g = b+ pis also prime. Put g = ord,(¢) and ¢’ = ord,(p). Then we have

¢ =b% +gpb? ' mod p? and pY = :I:(bQ, - g’qbglfl) mod ¢>.

Let us assume that ¢ = 1 mod p? or pgl = 1 mod ¢?, then we replace ¢ by
¢’ = ap + b and obtain

¢ =b + gaph?' mod p* and p?Y = :i:(bg/ — g’aqbg/_l) mod ¢°.

Since b9 = 1+ Ap mod p? for some A or b9 =1+ Bg mod ¢% and p { g with
q 1 g we deduce that if ¢’ satisfies the assumptions of Theorem 1 then we have
a #Zs1 mod pand a # sy mod ¢ for some s1, so. Hence, a = r mod pq for some
r € (Zpq)*. For technical reasons we also exclude the case ¢ =1 mod ¢ and we
therefore assume that (p —1)(g — 2) possiblities for choosing a are left. Le. a pair
of primes (p, q’) with

¢ =b+ap=>b+(r+kpg)p=>b+rp+kp’q

satisfies the assumptions of Theorem 1. Furthermore b+ pr and p2q are coprime
provided » # 1 mod ¢ and we may apply Dirichlet’s prime number theorem. We
have

g €P:p?{ W@ — 1, 2 fpord® 1 ¢ <o}

z (p—1)(¢g—2) z
log = »(p%q) > plogx
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primes ¢’ < z such that the pair (p,q’) satisfies the assumptions of Theorem 1.
Now, we choose z = p' ™ for some § > 0 and we deduce that there exists a prime
q/ < p1+6
In particular, we obtain

such that the assumptions of Theorem 1 are fulfilled provided p is large.

Corollary 1. There are infinitely many pairs p,q such that no non-trivial
S-Diophantine quadruples exist.

As mentioned above we conjecture that even more is true:

Conjecture 1. There exist at most finitely many (respectively no) pairs of
primes (p, q) such that {p, q}-Diophantine quadruples exist.

2. Plan of the paper

In the next section we provide some useful lemmas that will be used frequ-
ently through the rest of the paper. These lemmas contain divisibility properties
for the possible solutions in an explicit version of STEWART’s and TIJDEMAN’S
result [20]. In our case we only have two primes to consider and we can there-
fore sharpen their result by using lower bounds for linear forms of logarithms in
two variables due to LAURENT, MIGNOTTE and NESTERENKO [15]. Moreover,
we show that, assuming (a, b, c,d) is an S-Diophantine quadruple, yields three
S-unit equations. In two subsequent sections we will consider two of these S-unit
equations and will obtain restrictions for the exponents appearing in the S-units
according to the assumptions of Theorem 1. These restrictions are in many cases
contradictory and only finally 3 cases remain to handle. In Section 6 we consider
the third S-unit equation and show that its possible solutions are not consistent
with the restrictions found in the previous sections. In the last section we discuss
open problems and questions. In particular, we discuss the case |S| = 3.

3. Preliminaries

At the beginning of this section we introduce and fix the following notations
and assumptions for the rest of the paper. Let (a, b, c,d) € Z* be an S-Diophantine
quadruple with S = {p, ¢} and p < ¢. We assume 0 < a < b < ¢ < d and write

ab+1 = sy, ac+ 1 = s9,
ad+ 1 = s3, be+ 1 = sy,
bd+ 1 = ss, cd + 1 = sg,
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where s; = p*¢® are S-units for i = 1,...,6. Moreover, we note that

abced = s9s5 —ac —bd — 1 = 8985 — 89 — s5 + 1

=5384 —ad —bc—1=5384 —S3 — 84+ 1
and therefore we obtain the unit equation
$985 — 8384 = S9 + S5 — 83 — S4. (2)
Similarly we also get the unit equations

8186 — 8384 = S1 + Sg — S3 — S4 (3)
and

8985 — 8186 = S2 + S5 — S1 — Sg- (4)

The solution of these unit equations, under some conditions, plays a crucial role
in the proof. Since our proof heavily depends on computing p-adic and g¢-adic
valuations, therefore the following lemma provides a useful tool.

Lemma 1. Let p and q be odd primes and assume that qc||p0rdq(p) — 1 and

¢*|p® — 1. Then x > ord,(p)q*—¢. Moreover, if ¢°||p°™%a() — 1 and ¢*|p” + 1 then
> ordg(p) 2—c
x> =Ll

PROOF. The lemma is elementary and some related versions can be found
in [5, Section 2.1.4]. For completeness we give a sketch of the proof.
First, note that by the assumption above we have

pordq(p) =14 aqc mod qc+1

holds for some a relatively prime to q. Now let us assume p* = 14+a¢™ mod ¢™ 12

with ¢t a and m > ¢ > 1. Taking the ¢-th power we obtain

pfcq 1_|_aqm+1 +q2m+lB =1 +aqm+1 HlOd qm,—i-Q7

since m > 1. Clearly, B denotes some appropriate integer. Similarly, we see that
g™t { p** —1 follows if ¢ { k. Now, by induction, the first statement of the lemma

is obvious.
Note that the smallest positive solution to p* = —1 mod p° is at least %AP).
Therefore p°da()/2 = —144¢¢ mod ¢t holds for some a. Indeed, squaring both

sides, it shows that ¢¢||p°*4a(P) — 1. Now the proof runs along similar lines as in
the case above. O
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Next we consider the case when the S-units on the right side fulfill some
divisibility properties.

Lemma 2. Assume that {a,b,c} is an S-Diophantine triple with a < b < c.
Ifac+1=s and bc+ 1 =1 then s {t.

PROOF. Let us assume s|t. Then

bc+1 b a—>b b 0
Z3m= =—+ =+
ac+1 a a?c+a a a?

with |0] < 1. Therefore m is an integer if and only if # = 0. Thus a = b leads to
a contradiction. (]

Corollary 2. If |S| =1, then there does not exist an S-Diophantine triple.

PRrROOF. Apply Lemma 2 and note that in case of |S| = 1 we immediately
have s|t using the notation of the lemma. (]

We can immediately see that s 1 s4, S31 85, S51 6 and s3 1 sg, in particular
none of the equations as = a4, ag = a5, a5 = ag, ag = ag, B2 = B, B3 = P,
Bs = Bs and B3 = [ hold.

Lemma 3. We have

a|gcd S2 — 81 83 — 81 S3 — S2
ng(527 81) ’ ng(S?n 31 ng 53, 82

b|ng S4 — 81 S5 — 81 S5 — 84
ged(sq, s1)” ged(ss, s1) " ged(ss, s4)

| d Sq4 — S2 S — S2 S — S4
c| egc
& ged(sg, s2) " ged(se, s2)” ged(sg, 54)

d cd( 55 — 53 56 — 53 56 — S5 )
8 ged(ss, s3)” ged(se, s3)” ged(sg, s5) )

PRrROOF. We prove only the divisibility property for a since the other cases run
completely analogously. First note that ala(c —b) = s3 — s1. Since ged(a, s1) =1
and ged(a, s2) = 1 we deduce a|gcf{"’(%;). Similarly we get the other relations

a|% and a|gcg397;292), hence the proof of the lemma is complete. O

The next lemma is a useful consequence of Lemma 3.

Lemma 4. Let (a,b,c,d) € Z* be an S-Diophantine quadruple. Then
ged(sq, s2) ged(sq, $1) < S4.
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PrROOF. By the lemma above we have b < land ¢ <

It yields

mm

2

54
ged(sy, s1) ged(sy, s2)°
Now we prove a lemma which is very helpful in the last two sections of

84:b6+1<

the paper, after collecting enough information on the exponents «; and f3;, ¢ =
1,2...,6.

Lemma 5. Let the notations be as above and assume that ¢ > p > 5. Put
§ = max{0,a4 — a1 — as} and e = max{0, 84 — B1 — B2}. Then we have

p6q6a2 _ pa1+a2+57a4qﬁ1+ﬁ2+6*54 —r,

with 0 < r < 2p°q¢ and r € Z. If we additionally assume that

praTe2gPiB 5 p0ue or f=e=0
then

pa4qﬂ4 _ 2pa1+a2+25*&4q51+ﬂ2+267ﬂ4 < pa2+5qﬁ2+6 < pa4q54

The essential part in the proof of the Lemma is the computation of a good

approximation of the quantity a2.

To quantify our approximations we will use
the so called L-notation (cf. [14]). This allows us to keep track of how large the
constants of the usual O-terms get. The L-notation is defined as follows. For two
functions g(t) and h(|t|) we write g(t) = L(h(|t])) if |g(t)] < h(]t|). In view of

applications the estimate

1 1 1.25 1 1 1.25
gy TR S ik
z—1 + <x2) $+:c2+ <x3)
for |z| > 5 becomes useful. We obtain it by a formal Laurent expansion of 1+
at infinity.

PrOOF OF LEMMA 5. We compute

2o Bi=Dls2—1)

Sq4 — 1
_S182 _ s1+ 82 o + 8182 ) <1.2581 + 52+ 12+ 5152/54)
Sa Sa 4 Sy

and therefore we obtain

p5qéa2 _ pal+a2+5—a4qﬁl+ﬁ2+€—ﬁ4 _ pal+5—0¢4qﬁ1+€—ﬁ4 _ pa2+5—a4qﬁ2+6—ﬁ4

3.93
5— - 2+0— -
pd—aage Ba +pa1+az+ 2044q51+52+€ 2[4 4+ L (p2a4a25qzﬁ4526) . (5)
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It implies

p5q6a2 _ pa1+a2+5*0¢4qﬁ1+52+6*54 —r

with 0 < 7 < 2p%¢¢ and 7 € Z. Note that the Diophantine problems

s1+s 3.93s 1 sis
L 2 4 22777%>27 81> 9,84 > 35
S4 S3 S4 Sy

and
S1 + 8o 3.93s9 1 5182

S4 53 s4 s%

<0, 8125,84235
have no integer solutions. On the other hand, if » > 1 we deduce that

1< pa1+5—a4q31+6—ﬁ4 +pa2+5—a4q52+6—ﬂ4

since 1/s4 + s182/5%7 > 3.93s2/s3. In the case of § = ¢ = 0 we obtain

1 _pal—a4qﬁl—ﬁ4 < poé2—0¢4q52—ﬁ4 <1
and

o1td—aq fite—fa pa2+5—044 Bate—e—B2 _ 1

1—p q Bo+e—p4 < pa2+5—5—042

q q

otherwise. Some simple computations yield now the second part of the lemma. [

Next, we mean to find appropriate lower bounds for b and ¢. When ac + 1
and bc + 1 are perfect powers of p we may apply Lemma 2. Therefore ¢ divides
either ac 4+ 1 or be + 1, and we have (¢ — 1)c+1 > bc+ 1 > ¢q. Hence ¢ > /q.
Knowing that p < ab+ 1 < b? we derive b > /P and therefore we established

Lemma 6. We have b > /D and ¢ > NGE

The rest of this section is devoted to bring the result due to STEWART and
T1IDEMAN [20] in a more accurate form according to our intentions. In particular,
we need suitable upper bounds for d.

Lemma 7. Let S = {p, q}, and suppose that (a,b,c,d) is an S-Diophantine
quadruple with a < b < ¢ < d. Assuming that 10'° < p < ¢ we have

logd

21 3

PROOF. In order to keep the constants as small as possible we use the the-
orems on linear forms of logarithms due to MATVEEV [16] and LAURENT, MIG-
NOTTE and NESTERENKO [15]. First recall Matveev’s result.
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Theorem 2 (MATVEEV 2000). Denote by ~i,...,7v, algebraic numbers,
nor 0 neither 1, by log~i,..., logy, determinations of their logarithms, by D
the degree over Q of the number field K = Q(y1,...,7s), and by by, ..., b, rati-
onal integers. Furthermore let k =1 if K is real and k = 2 otherwise. Choose

A; = max{Dh(y), | log vil} (1 <i <n),
where h(y) denotes the absolute logarithmic Weil height of v and
B = max{1,max{|b;|A4,;/A, : 1 <j <n}}
Assume that b, # 0 and log 1, ...,log~y, are linearly independent over Z. Then

log b1 log 1 + - - - + by log 7, | > —C(n)CoWoD?Q,
with

Q:Al"'Ana
16 n n+1 1 "
C(n)=C(n,k) = € 2n+1+2k)(n+2)(4(n+1)) zen)

Co = log (e**"*™n®5D?log(eD)), Wy = log(1.5e BD log(eD)).

In the case of linear forms in two logarithms we can use a sharper bound due
to LAURENT et al. [15]:

Theorem 3 (LAURENT, MIGNOTTE, NESTERNKO 1995). Let v, and 7
be two positive, real, multiplicatively independent elements in a number field of
degree D over Q. For i = 1,2, let log~; be any determination of the logarithm
of a;, and let A; > 1 be a real number satisfying

Further, let by and by be two positive integers. Define

_h n bo
" DlogAs Dlog A,

1
b and logb:max{logb’+0.14721/D,2}.

Then
|b2 log y2 — by logy1| > exp (—24.34D4(10g b)?log A log As).
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We use the same linear forms as in [20] and consider

c bd+1 c
T, == . i
YU edt1 b

Oés—asqﬁs—ﬁfs .

Similarly we find (see also STEWART and TIJDEMAN [20])

c—b 1 1
= = )< il )
log(T1) = log (1 + d b) <log (1 + 2d> < ]

On the other hand, Matveev’s result (Theorem 2) yields a lower bound. We bring
up this lower bound now. First, choose A; = logp, Ay = logq and A3 = logc >

log(d?—d+1) 2logd 2logd
log p < log p and 0 S 65aﬁ6 S logq °

10%. Obviously we have 0 < a5, ag <

Therefore we obtain B < 2&)‘?5, hence we have
log d
1.690182 - 10 log ¢ log plog g (2.1 + log (1226)) > log d. (6)

In the case of
(bd+ 1)(ac+1)

T =
2 (cd+1)ab

we compute

db+ac—ab+1 2 4
log(T») =1 1+ — 1 1+ — -
og(T2) 0g< T abed + ab > < og< i ac) S

and therefore by Theorem 2

log d
1.690182 - 10'% log(ab) log plog q (2.8 + log ( o8 )) >loge—logd  (7)

log(ab)
follows.
In case of
_ (ab+1)(cd +1)
~ (ac+1)(bd +1)
we find

B (d—a)(c—Db) 1 2
10g(T3)_10g<1+abcd—|—db—|—ac+1 <log 1+ab <ab'

Assume for a moment that ' +0.14 > 21. Thus we may apply Theorem 3. First,

b < 8logd 7
~ logplogq
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therefore we have

logd \\?
24.341logplogq <2.08 + log (logiﬁogq)) > log(ab) — log 2. (8)

If we even suppose that p,q are large, say 10'° < p < ¢, by combining the
inequalities (6), (7) and (8), and using the lower bounds for b and ¢ derived in
Lemma 6, we obtain

7.969 - 102! (log plog q)®(log log d)* > log d. (9)
Since the bound %1 logplogq > logd is much sharper than (9), we proved

the lemma completely. O

The previous result gives us upper bounds for d. On the other hand, we will
find by Lemma 1 lower bounds for d. In particular, the following lemma provides
bounds for p under some restrictions.

Lemma 8. Assume max;—1,. ¢{o; + i} > p. Then we deduce p < C(£)
with
C(&) = U(9;2.142 - 10?2¢3),

where W (k; x) denotes the largest solution y > 0 to the equation x = m.

ProoF. Note that C(§) is increasing with £ > 1 and note that C(1) =
1.02 - 1040, Therefore we may assume p,q > 10%°. By

A2 > cd + 1 > pmaxi=t.ofatBi} 5 pp
Lemma 7 and the conditions of the lemma we get
3 6 4 }
c§ (logp) (log log d) > logd > 2p10gp,

where ¢ = 8.478 - 102!. Therefore

logd S plogp S D
loglogd)* = 2(loglogp + logp)* = 2.687842(logp)3’

&3 (logp)® > (

since (10;1%95)4 is increasing if z > 5.15 - 1023. Solving the last inequality for p, it
gives the required result. O

The following proposition will be frequently used.
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Proposition 1. Assume that one of the equations (2), (3) and (4) is written
in the form

p61qf1 _ p62qf2 — pesqfs +p€4qf4 _ pesqfs _ peﬁqf(S’

further let e be the difference of the third to least exponent and the least exponent
of the e;, withi=1,...,6, and let f be defined in the obvious similar way. Then
we deduce e, f < 1, provided that p > C(£). Moreover, the two least exponents
are equal.

PROOF. Let us consider, say, unit equation (2). We obtain

pa2+a5 q52+55 _ pa3+044q53+54 = p*s qﬁs + pa2qB2 — pae qﬁs _ pa4q54.

Suppose that all exponents «; with ¢ = 2,3,4,5 are distinct. Computing the
p-adic valuations on the left and right hand sides we see that

vp (07047 + p*2¢” — p**¢™ —p*¢™) = minfa;}.

Say, the minimum is ais. But, in this case we have ay < as+as and as < az+ay,
i.e. the p-adic valuation on the left side does not fit to the p-adic valuation on
the right. Therefore in any case the two least exponents are equal. Observe, that
all other cases can be deduced by the same method.

Now divide the equation by the least occurring powers of p and ¢, respectively.
Consider (2) and assume ay = a5 and 4 = [3 are the smallest exponents. Then

p2 qﬂz-‘rﬁs —Bs _paa+a4—a2 qﬂs _qBZ_BS (qﬂs—ﬁz =+ 1) — _pmiﬂ{aaﬂm}—az (p|043—014\ + 1)

holds. Clearly, in all other cases we obtain similar equations. In particular, in
any case we obtain that for some z the quantity 1 & p® is divided by ¢/. Since
x is at most max{«; + §;}, due to Lemma 8 we obtain that z < p or p < C(§).
Hence Lemma 1 yields f < 1 for large p. By similar arguments we also deduce
e<1. (]

4. Unit equation (2)

In this section we deal with equation (2), and our main result is to deduce
some relations for the exponents appearing in (2). In particular, this section is
devoted to the proof of the following proposition.
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Table 1. List of the possible solutions to equation (2)

’Case‘ @ ‘ B ‘
1 az =a5 <1 B3 =pP4 <1

2 az=a5 <1 Bz =PB1=pP2—1

3 az=ag=as—1| fo=p5=p35—-1

4 az=ag=ay—1 fa =P <1

5 az3 =ay <1 P2 =Ps=pP5—1

6 az =ay <1 Po=PB;=01—1=0
7 az =ay <1 P2=p5<1

Proposition 2. Let C(&) be defined as in Lemma 8. If p > C() then one
of the seven cases in Table 1 holds.

By Proposition 1 we may assume that a; = «; is minimal for some distinct
i,7 € {2,3,4,5}, i.e. we have to consider six cases. If o; = a; and §; = ; hold
we deduce that either s;|s; or s;|s;. Therefore we can exclude, by Lemma 2 the
cases as = a4 and a3 = a5 and also when 8y = 84 and 83 = (5. So four subcases
remain to consider.

Before we discuss them we write down again equation (2) explicitly:

p042+045 qﬁ2+ﬂs _ p043+0¢4q/33+[34 = p™2 q52 + pasqﬁs — p*3 qﬂs _ pa4q[34. (10)

4.1. The case when as = a5 is minimal. First, observe that 8y < 5 and we
also note that 84 < B otherwise ss|sy would contradict Lemma 2. Since a sole
minimum cannot exist we deduce that 83 = B4. The third smallest exponent of ¢
in equation (10) is either 235 or B2. Hence, by Proposition 1 we have 83 = 84 <1
or B3 = B4 = P2 — 1. Note that S84 = B3 would yield a contradiction by sa|sq4.

The third smallest exponent of p in equation (10) is either 2asg, as or 4.
Therefore we have either as = a5 < 1, 0 = a5 = az—1or as = a5 = ay—1. Note
that only the first case may hold since by assumption 82 > 83 = (4, consequently
So > S3 or o > sy fulfills because of p < q. Therefore we deduce that one of the
first two cases in Table 1 holds.

4.2. The case when oy = a3 is minimal. Again 8, < (5 since so { s4. Thus
we have B4 = f5 < P2 < B3. Therefore the third smallest exponent of ¢ in
equation (10) is 5, subsequently 84 = 85 = B2 — 1.

Similarly, by considering the exponents of p in equation (10), we obtain that
ag = ag = aq — 1 because a4 < a;. But together with the relations of the 8’s we
arrived at the contradiction sy > s4.
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4.3. The case when a4 = a5 is minimal. We immediately see that 82 < (4
and B4 < (5, since otherwise sa|s4 and s4 > s5, respectively. Therefore 8y = B3 is
minimal. Consider the exponents of ¢ in equation (10) to obtain 3 := s = 83 =
B4 — 1. Since we have 8y = 3 we deduce as < a3 and therefore Proposition 1 in
view of p-exponents yields o := a5 = ay = ag — 1.

In the virtue of ¢|s4 — s2 Lemma 3 yields ¢ < g. On the other hand, we have
sy = p*¢Ptt = be+ 1 < ¢ < ¢, and therefore f = 0 and p* < ¢q. Consider
now s;. We have

gp>p* Tt =sy=ac+1>ab+1=p*qg’.

Therefore we have either 51 =0 and b < p® or ab+ 1 =gq.
First suppose f; = 0. Then we have

<1

—~

Zap&;_pb 1 plb—a) pb 1 b—a
s a a ac+1 a a p*

Since the left hand side is an integer we deduce that the “braced” quantity is
zero, hence b = a, which is a contradiction.
In the case of ab+ 1 = ¢, by assumption ¢ < q¢ and ab+ 1 = g we get
<1
Sy c 1 c—a

72> —=——— .
s1 a a ab+1

But ¢ = a is again a contradiction.

4.4. The case when a3 = a4 is minimal. We have 55 < 33, 84 since otherwise
we would have s > s3,s4. Because no sole minimum exists we deduce 82 = fs.
Applying Proposition 1 we obtain either S5 = 5 < 1 or S = 5 = 3 — 1 or
B2 = B5 = B4—1. Now we may assume ay < a5 and again applying Proposition 1,
it provides either a3 = a4 = as — 1 or a3 = a4 < 1. The combination of
the relations of the a’s and (’s yields either cases listed in Table 1 or the case
a:=az3=aqs=ay—1and B := s = P5 = B4 — 1 or the case a3 = a4 < 1 and
B =P =Ps=ps— 1L

When o := a3 = a4 = ag — 1 and B := fy = fB5 = B4 — 1, similarly to
the subsection above, it leads to a contradiction. Note that only the relations
between s9 and s4 have been used there.

Therefore it remains to prove § = S5 = 0 in the last case. By c|sq4 — s2 and
Lemma 3 we have ¢ < ¢ and therefore ¢> > bc+ 1 = s,. Hence 84 < 1. But
B4 = 0 would lead to a negative B2, hence 84 = B2 +1 = 1.
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5. Unit equation (4)

In this section we consider the unit equation (4) more closely, in particular
we prove the following proposition.

Proposition 3. Let C(&) be defined as in Lemma 8. If p > C(§) then one
of the three cases in Table 2 holds.

Table 2. List of the possible solutions to the system of equations (2)

and (4)

’Case‘ « ‘ I5) ‘
I az=ay <101 =05 <1 B2 =P <1

II ag =a5 <1 Bs3=p04<1; 1 =0<1
111 ag =a5 <1 B3=Ps=p02—1; 81 =5 <1

Since none of the a’s take a sole minimum in Proposition 1, and as = ag
induces s5|s¢ (a contradiction to Lemma 2) we are left to five subcases. Note that
equation (4) takes the form

pOéz-‘rOés qﬁ2+55 _ pa1+a6q51 +B6 — P2 q/32 + pasqﬁs —p qﬂl _ pasqﬂe_ (11)

5.1. The case when «; = a3 is minimal. Since 55 = [ implies s5|sg and
B1 < B2 we are left to the two possibilities 51 = 85 and §; = Ss.

5.1.1. The subcase when 31 = 5 is minimal. Note that oy = as = as cannot
hold since otherwise s; = s5 is a contradiction. Therefore we deduce as < as,
but this yields by Proposition 2 8, = 85 = (1, again a contradiction.

5.1.2. The subcase when B1 = Pg is minimal. By the assumption 81 = g < S5
we deduce a5 < ag. Hence Proposition 1 yields oy = as = a5 or oy = ag = as—1
for the exponents of p. Since a5 < as + 1 we deduce 2 < 5 and Proposition 1
yields in view of exponents of ¢ that either 8, = g < 1 or 5y = B = B2 — 1.

Let us assume a; = as = a5 and 1 = B¢ < 1. Then only the first two cases
of Table 1 hold, i.e. these are cases IT and III of Table 2.

Now let us assume a; = as = a5 and 1 < 81 = B = P2 — 1. Again only the
first two cases of Table 1 hold. In the first case we have as > ag since s3 t s¢ and
obviously 83 < g and we also have ag > a5 = «a since otherwise s5|sg. Therefore
Lemma 3 in view of the pairs (sg,s3) and (sg, s2) yields d|pPs—F — p*3=26 thus
d < ¢%, and c|p® 2 — ¢ thus ¢ < p®. Therefore p®s¢’ = cd +1 < p*sqQ
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shows a contradiction. In the second case we obtain 81 = g = B2 — 1 = 3 = (4,
hence s3|sg again is a contradiction.

Assume now that oy = as = a5 — 1. Since as # a5, we may exclude the first
two cases of Table 1.

Next we consider the cases 3 and 4 in Table 1 and we may assume o := a3 =
ag =a1 —1=ay—1=a5— 2. Since fy = f5 we have

sp =p g% <prg® pr’t <ptPe7 = s,
and therefore we may suppose 8 := 8o = 5 = 3 —1 = 54— 1 and 5, < .
Now Lemma 3 yields in view of the pair (s3,s5) that d|p? — ¢ and therefore
p®t2¢# = bd + 1 < p* which is impossible unless & = 0, 3 = 1 and 5, = 0. But
the later assumption leads to ab+1 = p, hence b < p and p?q = bd+1 < p> mean
again a contradiction.

Now let us assume that either case 5 or case 6 of Table 1 holds. Write
a:=a1 =ay =as5— 1. Since azg = a4 < 1 and s9 < $3,84 < S5 = psy we deduce
B3 = B4. Therefore we have 1 < o = 5 = 83— 1 =4 — 1 =: f and Lemma 3
in view of the pairs (s4, s2) and (s5,s3) yields b < ¢ < g and d < p®T1=*4. Hence
bd + 1 < gp**t! which yields a contradiction unless 3 = 0. But 8 = 0 yields
B1 < 0.

We turn now to the case o := a1 = as = a5 — 1, @ == a3 = a4 < 1,
B1 = Bg = 0 and By = B5 = 1 which corresponds to case 7 of Table 1. Since
pYg = 89 < 83,54 < p®Tlq and a3 = a4 we deduce that 83 = 8, =: 8. Next, in
view of the pairs (s2, $1), (85, 81), (84, s2) and (sg, s5) and Lemma 3 we obtain

a<gq, b<pg, c<g’l d<prol—q

Therefore pg® > be +1 = po‘lqﬁ7 which can only hold if o/ = 0. We reconsider
now the unit equation (11) and solve it for p®¢. We get
1\ !
P = (1 - p()l) (P*"e* —alp+1) + 1) = p*T1¢® + L(2pg?). (12)

Together with the estimations above, (12) implies

22
S =
p

Furthermore, we have

4 4 2
qﬁzbc+1<d2§q4<1—|—pa+p2a)—2q3<1—|—pa>+q2+1<q5, (13)
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ie. § < 4. Since s3 > s1 and sg 1 s4 we deduce 8 > 2. In case of 8 = 2 we have
c < q,ie ¢> =bc+1 < ¢?is a contradiction. Therefore we consider the case
8 = 4 next. Note that we have p% < q% since s3 < s5. Using this estimate in
(13), it yields

2

4
q4:bc—|—1<d2<q4+4pq+q%—2q3+q2+l<q4.

Therefore we can restrict ourselves to the case § = 3. Since s3 < s5 we deduce
1% < q% and by the estimations for d we obtain

d<q®+2p—q<q

provided ¢ > 2p. Recall that a < ¢, hence ¢* = ad + 1 < ¢> leads to a contradic-
tion. Consequently, we may assume ¢ < 2p. In this case we have

a+1
204

q3:bc+1>ac+1>q

which is again a contradiction unless a < 2. Obviously, @ = 0 is impossible.
Thus we consider the case o = 1, which provides a contradiction by ¢ = bc+1 <
bd + 1 = p?q. So only o = 2 remains to investigate. Recall (12) to obtain

p*® =p*¢*> + L(2pq).

It gives ag = 5. Note that we assume that p < ¢ < 2p and p is large. Hence by
the estimate d < p*~>~! = p? we have p® = cd+1 < p*. This is a contradiction.

5.2. The case when «a; = a5 is minimal. Since the case a; = as has already
treated, we may suppose a1 = a5 < as. But by Proposition 2 we obtain 83 = s,
hence sy > s5 which is an obvious contradiction.

5.3. The case when a; = ag is minimal. Note that 8; < (g, therefore we
distinguish three subcases: 8y = 5, $1 = 5 and 81 = Bs.

5.3.1. The subcase when By = 5 is minimal. Here 8, < B¢ and as < as.
Applying Proposition 1, we obtain either o = 85 < 1 or f; = 5 = (1 or
B2 = Bs = 1 — 1. Meanwhile, for the o’s we have either a; = ag < 1 or
a1 = ag = as — 1. Note that the case a; = g has already been treated above.
Let us consider the case 8’ := 83 = 85 < 1 and o := a; = ag < 1 first. By

Proposition 2, we deduce that either case I holds or we have o := a3 = oy = ap—1.
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First, let us assume that 84 < 81 + 8. Applying Lemma 4 we see immediately
that no solution exists in this case.
Therefore we may suppose 84 > 81 + 8’ + 1. Now Lemma 5 yields

a2 = p1+a’q61+ﬁ’—64 oy

with 0 < r < 2, where r is not necessarily an integer. By a > 1 we deduce
. 1+a’
By =B+ B +1,ie a® = pT —r, hence o/ = 1. In order to apply the

inequality stated in Lemma 5, we have to show that

pocz +5q52 +e « pa4 q54 ,

which is in our case equivalent to

pa+1q1+ﬁ/ < paqﬁ1+ﬁ/+1.

This is true unless f; = 0. Now Lemma 5 gives

paqﬁlJrﬁ +1 _ 2]72(] < pa+1q1+,3 < paqﬁ1+5 +1
or

¢ —2 <p<q’. (14)

p—2q”
Unless B/ =0 and a < 1or f/ =1 and o = 0 we have ¢ — 2 < p < ¢ which
is a contradiction to p is an odd prime. But a = 1 leads to a3 = ag and a = 0
leads to s1 > sg, since we assume (31 > 0.

If f1 = 0 then, by the assumption 81 > B2 = 3’ we deduce 3 = 0 and
therefore 84 = 1. Since ¢ < ¢ (apply Lemma 3 to the pair (s2,54)) and b < s1 =p
(note that a1 = ag < 1) we have be + 1 < pq, i.e. @ = 0. But o = 0 entails
S92 = 81 = p, and this is a contradiction.

Now, let us consider the case By = 85 < 1 and a3 = ag = ag — 1. We
note that the cases 3 and 4 in Proposition 2 cannot hold since we would obtain
a1 = ag = as — 1 = a3 = a4 and then s3|sg is a contradiction. Therefore we may
assume a3 = ay < 1. Since sy > s1 we deduce that 81 < Py and therefore also
B1 < B3, P4. Considering the unit equation (3), we obtain 8 = S since a sole
minimum cannot exist. So s; = sg is a contradiction.

Now we treat the case By = 5 = 1. Proposition 2 shows us that 82 = 5 <
B4 and in view of our actual case 8; < B4 holds. Hence, by (3) we deduce that
either 81 = B¢ or 81 = P3, which yields either s5|sg or s3|ss.

The next case is B2 = 5 = 1 — 1. First note that oy = ag = a9 — 1 cannot
hold since s; > so would mean a contradiction. Therefore we may assume that



On an S-unit variant of Diophantine m-tuples 115

a1 = ag < 1. Since the case fs = 5 < 1 has already been treated, we deduce
from Proposition 2 that 8y = 85 = 81 — 1 = 3 — 1 and either a3 = a4y < 1 or
a3 =4 = g — 1.

When g =y =8=01—-1=p83—1, a1 =ag =0 and ag = a4 = 1,
by a|ss — s; and Lemma 3 we have a < p and since ab + 1 = ¢+ we deduce
on the one hand b < ¢°*! and on the other hand b > qﬂ% > ¢®. Moreover,
we have sy < s3 and so p®~! < ¢ and ac + 1 < pg®T!, ie. ¢ < pg®*tt. The
bounds for b and ¢ yield pg® = be 4+ 1 < pg?#12, ie. By < 28 + 1. Now we
consider the pairs (s4,$1) and (84, s2) in view of Lemma 3. From the first pair
we obtain b|pg® P! — 1, hence B4 = 23 + 1 because b > ¢°. Then the second
pair yields c|g?t! —p22~1 ie. ¢ < ¢°*1. Moreover since s4 = ad+1 = pg®*! and
d < pg®t1 we get ¢% = cd + 1 < pg?#+? which results in 85 = 28 + 2. Now the
pair (sg, s4) yields a new bound for ¢, namely ¢ < ¢ and together with a < p we
have ¢?t' = ab+1 < ac+ 1 < pg and therefore 8 = 0. Now we consider the pair
(3, s6) and obtain d|q — p. Thus ¢? = c¢d + 1 < ¢? is a contradiction finally.

Only the case 8 = o = B35 = 1 — 1 =03—-1,a = a; = ag < 1 and
a = a3 = a4 = ay — 1 is still open. Note that o > o/. We know that

0
——
5 p(bc+ 1) _pb 1 p(b—a)

ac+1 a a ac+1
If |6] < 1 we obtain a similar contradictory argument as in Lemma 2. Therefore
c > b > p2qg® follows. From the inequlity p®¢® < b < 51 < s5 we get po‘_a/ <qg<
pot1= Using this inequality in ¢ < ac + 1 = p®*t1¢P we get ¢ < ¢°T1p>+1
d < ¢#+2p . Thus

and

pa’qﬁe —ed+1< p1+2a’q25+3

and B < 28 4+ 3 4+ e. Using the upper bound b < ab+ 1 = pa/qﬁ*‘1 we similarly
obtain
PPt =be+1< 1)1'~'2a/(12ﬂ4‘2

hence B4 < 28 + 2+ e. We apply Lemma 3 to the pair (s4, $1) and obtain
paq < b < pa_a/qﬁél_ﬁ_l < q64_6

which yields p® < ¢#26=1 Thus 4 = 28+ 2if o/ =0 and By = 28 + 2 or
Bs =28+ 3 if &/ = 1. We consider the pair (sg, s4) and obtain an upper bound
c<qifa’ =0and c< ¢?if o/ = 1. But

plfa'qﬁ+1 <pY" <b<e< qH“/
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is a contradiction unless 8 = 0, o’ = 1, g = 4 and 34 = 2. Since in any other case
we would obtain the sharper bound ¢ < q. We remind that d < qﬁ”pa/ = pq?,
thus pg* = ed + 1 < pg* is a contradiction.

5.3.2. The subcase when 1 = [5 is minimal. Since the case above we have
B2 > B5 and from Proposition 2 we deduce ay = 5. Then so > s5, which is
impossible.

5.3.3. The subcase when (1 = B2 is minimal. Now a; = ag < as implies 51 =
B2 < B5 < P, and Proposition 1 yields 8 := B2 = 1 = 5 — 1. Note that the case
B2 = [B5 was treated above. Therefore we have s = a5 = 1, a3 = ag = 0 and
B3 = B4 < P2 = B1 by Proposition 2 and our assumptions. Considering b|s5 — s1,
we obtain b|gp— 1. Similarly, by a|s; —s; we gain a|p—1. Thus ab+1 = ¢° < p?q,
hence 8 < 2. If 8 = 2 then we have blgp — 1 and b|¢®> — 1 = s; — 1, and we obtain
blg — p, ie. ¢> > b*> > ab+ 1 = ¢?, a contradiction. Therefore we have 8 = 1
leading to ¢% = cd + 1 < (ac + 1)(bd + 1) = p*¢® < ¢°, i.e Bs = 3,4. Note that
Bs < 2 would yield s5 > sg. If we suppose S = 3 we obtain, by d|sg — s5 that
d|q—p and hence ¢* = cd+1 < ¢? is a contradiction. Similarly, we obtain d|¢*> —p
in the case B¢ = 4, hence ¢* = cd + 1 < ¢* is also impossible. Note that 8 = 0
yields B3 < 0, which is again a contradiction.

5.4. The case when a; = a5 is minimal. By Proposition 2 we have ay =
as < 1. Obviously, the relations 81 < B2 < B5 hold since otherwise it would
lead to s1 < s2 < s5. Therefore we conclude 81 = fg, and by Proposition 1
b1 =08 =pP2—1or B = B <1 follows. The case 81 = B < 1, together with
Proposition 2 yields the cases II and III. On the other hand, 5, = B = 2 — 1,
together with the second case of Proposition 2 immediately yields a contradiction.
The remaining case as = a5 < 1, 1 = B = B2 — 1 and B3 = B4 < 1 provides
B3 = B4 < B1 = Pg. But this implies a3 < ag < az. Therefore we obtain, in view
of equation (3) and Proposition 1 that a; = ay4. Consequently, 81 < 4, which
contradicts B3 < Si.

5.5. The case when a; = ag is minimal. Because of s1 < s9,5¢ and oy >
g, ag we gain (1 < fBo, 8. Therefore we have 81 = 85 < B2 < g and as = ag <
a1 < ai. Now, by Proposition 1, as = ag = a3 — 1 and 1 = 5 = B2 — 1 follow.
Note that f; = 5 = P2 would imply the contradiction sy < s1. Since Py # S5
we deduce as = a5 and therefore in the actual case as = ag holds. But ss|sg is
a contradiction again.
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6. The unit equation (3)

In this section we concentrate on the equation

pa1+a6 q/31+36 _ pa3+a4q53+ﬁ4 — palqﬁl + paaqﬁﬁ —p q53 _ pa4q,34. (15)

As earlier, we have to distinguish several cases.

6.1. The case when a; = a3 is minimal. Obviously, we have 81 < (3, there-
fore either 51 = B4 or 81 = B or B4 = B holds. But, both the cases 1 = 84 and
B4 = Pe give case I in Proposition 3 since otherwise s3|sg. But case I contradicts
our assumption oy = as, since othewise s3|sg again.

Therefore we may assume (3; = g and either case II or IIT holds. Since by
assumption 84 > B¢ we deduce that a; = ag < ay < ag. Therefore Proposition 1
results in a1 = 3 = Qg — 1 or a1 = (g = (4.

First suppose that case IT holds. Then we have 51 = 55 = 0 and 85 = 4 = 1.
Puta=a; =a3,a =as =as5 <1and oy = o+ h with h € {0,1}, and assume
h = 0. Then, in the virtue of Lemma 4 there does no solution exist. Note that
we may apply Lemma 4 only if 55 > 0, but S = 0 means so < p < s1. Similarly,
we may also exclude the case h = 1 and o = 1. Hence we are reduced to the
possibility h = 1 and o’ = 0. According to Lemma 5, we obtain

pa2 — qﬁfz—l —r
with 0 < r < 2p. On the other hand, a|s; — s; implies a|g — 1 (Lemma 3), hence
pq® > pa® + 2p > ¢?>~1. Since By > 1 we deduce B3 = 2,3. Applying the second
part of Lemma 5, after canceling common factors, we get

paJrl o 2pqﬁ272 < qﬂ271 < pOHrl'

Note that p’¢¢ = p = ;—; > ;—‘; In case of B3 = 2 we see from c|sy — s2 that
c|p®tt — ¢ (Lemma 3), and from the inequality above that ¢ < p®*! — ¢ < 2p.
Therefore p®t1q = be + 1 < 4p?, subsequently o = 0 and a3 = a5 and s3]s;5.

Suppose now that By = 3 and p®t! — 2pg < ¢? < p**+!. Evaluating
-1 -1 atlo 1) (p%g — 1 2a+1 9patl
i1 B2 D= 0"e D1 o p (2
So — 1 q3 -1 q q2
2041 2

2a+1 2 2
+2 :
=2 +L<2q2+4p)_p L L) < LD 6
q @ g q P

it leads to a contradiction by 2 = 5 < 3.
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Now let us consider case III. Here we write ' = 81 = 86 < 1, =3 = 64 =
Bo—1,a=0a; =a3z, ag = a+h with h € {0,1} and o' = ay = a5 < 1. Unless

h=1and o/ = =0 we can apply Lemma 4. Since p°¢¢ = p = ;—;‘ < Z—;‘ we can

use the second part of Lemma 5 in the remaining case, and we obtain

a+1 2p
¢ot

<q<pth

But it contradicts the assumption ¢ is odd unless g = 83 = 54 < 1. But this case
has been treated above.

6.2. The case when a7 = a4 is minimal. Observe, that only the cases IT and
IIT may hold under this assumption. By 81 < B4 we have 8, = 83 or 1 = [¢. But
the first equality is not possible in the cases II and III. Therefore we may assume
81 = Bg- Since ag < az would imply s3 > sg, we have a1 = a4 < ag < ag, and
now Proposition 1 yields a; = a4 = ag — 1. Note that a; = a3 has already been
investigated above.

In case IT we write @« = a1 = o4 = a3 — 1 and @’ = ay = a5 < 1 and we have
B1 = Ps =0 and B3 = B4 = 1. Therefore Lemma 4 settles this case.

Case III is analogous. Let « = a1 = ay = az3 —1and o = ay = a5 < 1.
Moreover, we have 8’ = 81 = g < 1l and 8 = 83 = B4 = B — 1. We apply
Lemma 4 again.

6.3. The case when a; = ag is minimal. Obviously, only case I may hold.
Therefore we have a; = ag = 0, a3 = a4y = 1 and ' = B2 = 5 < 1. Moreover,
B3 < B1 or B4 < 1 would yield s3 < s1 or s4 < s1, and we obtain either 5; = (3
or 81 = B4. In case of 51 = B4, the application of Lemma 4 gives a contradiction.
Therefore Proposition 1 implies 5 := 1 = 83 = 84— 1. Considering now d|sg — s3
and c|sg — s4, we obtain (by Lemma 3) d < ¢%~# and ¢ < ¢%#~!. Thus
¢?Pe=28=1 > cd+1 > g% ie. Bg > 28+ 1. On the other hand, ad + 1 = pg® and
therefore ¢,d < pg® and ¢% = cd + 1 < p?¢®? < ¢*#*+2 follow, which contradicts
the bound for g found before.

6.4. The case when a3 = a4 is minimal. From a = a3 = a4 < a1, a6 we
deduce that 8; < f33, 54 hence 8/ = 31 = g < f3,51. Note that only the cases
IT and IIT may hold, hence 8 = 83 = B4, ' < 1l and o = as = a5 < 1. We
may exclude the case 2 < [4 since otherwise case II would be fulfilled, and
b1 =0 =02 =0 and a; < as < 1 would yield a contradiction by ab+ 1 = 1.
Therefore we suppose 84 < 82 and apply Lemma 4.
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6.5. The case when a4 = ag is minimal. Clearly, under this assumption only
the cases II and III may hold. Thus ay = ag < a1, and we obtain 51 < S4, Bs,
hence 5, = B3 in the virtue of Proposition 1. But, this contradicts 8, = ¢, since
we obtain s3|sg.

7. Open problems and questions

Let s(k) respectively S(k) be the smallest m such that there is no respectively
only finitely many sets of primes S with |S| = k, such that an S-Diophantine m-
tuple exists. If no such k exists set s(k) = oo respectively S(k) = oo. Therefore
the first question arises:

Question 1. Are s(k) and S(k) for any positive integer k finite?

In case of k = 1 Corollary 2 tells us that s(1) = S(1) = 3. In case of k = 2
the statement of Conjecture 1 may be read as s(2) < 4 and S(2) < 4 respectively.
By a simple computer search we obtain the following result:

Lemma 9. Let 1 < a < b < ¢ < d < 1000, then there exist only three
S-Diophantine quadruples with |S| = 3 and no quadruples with |S| = 2, i.e.
s(3) > 4.

Let 1 < a <b<c<d< e < 300, then there exist 32 S-Diophantine
quintuples with |S| = 5 and no quintuples with |S| = 4, i.e. s(4) > 5 and s(5) > 5.

In view of the lemma above we guess that s(3) =5 and S(3) = 4.

Question 2. Are s(2) =4, S(4) = 2, s(3) =5 and S(3) = 4 correct? What
are the values of s(4),S(4) and more generally what are the values of s(k) and
S(k) for k > 57

Now let us consider m-tuples (ai,...,a,,) € Z™ such that they are S-
Diophantine with |S| being small. In order to do so we choose a prime p and
put a3 =1 and a; = p* — 1 for ¢ = 2,...,m and some fixed integers as < az <
-+ < ayy, such that all the polynomials

Pij(x) = 2™t — p% — 2% 4 2

are irreducible. Note that we can always find such a’s due to SCHINZEL [17][Theo-
rem 5]. It is widely believed that irreducible polynomials take infinitely many
prime values simultaneously (cf. [18][Hypotheses H] and [1]). Seeing the primes
as a model of a randomly distributed sequence of density 1/ log n strongly suggests
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that for infinitely many primes p all the quantities a;a; +1 with 1 <7 < j <m
are primes again. In our context this means that there are infinitely many sets S

with |S| = () —m +1 = (") such that there is at least one S-Diophantine

m-~tuple. This motivates the next question:

Question 3. Is the statement

S(k) > {Wj’“ﬁJ

actually true? Are there better asymptotic estimates? What can be said about
upper bounds?
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