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Solvable groups which do not possess characters of nontrivial
prime power degree

By QINGYUN MENG (Zhengzhou), JIANLI CAO (Zhengzhou) and NI DU (Xiamen)

Abstract. In this paper, we consider solvable groups which do not possess cha-

racters of nontrivial prime power degree. In particular, for some of the minimal groups

with this property, we characterize them and determine their structure.

1. Introduction

Let G be a finite group and cd(G) be the set of the irreducible character

degrees of G. In recent years, the influence of cd(G) on the structure of G has been

considered by many scholars. In [1], B. Huppert pointed out that the structure

of a finite group G is controlled to a large extent by the type of the prime-number

decomposition of the degrees of the irreducible characters of G over C. In [9],

O. Manz considered finite solvable groups whose character degrees are powers of

primes and characterized them. In this paper, we discuss the opposite situation.

The finite solvable groups which do not possess characters of nontrivial prime

power degree are investigated.

The study of cd(G) has been assisted by attaching a graph to cd(G). We

often consider two kinds of graphs connected with these sets. One is called prime

character degree graph, written by ∆(G), whose vertex set is ρ(G), the set of
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primes dividing elements of cd(G). Two vertices p and q in ρ(G) are adjacent if

there is some degree a ∈ cd(G) such that pq divides a. The other is called common

divisor graph, written by Γ(G), whose vertex set is cd(G)\{1}. And two vertices

a and b are adjacent if they have common divisors. It has been shown in [7] that

for a group G, if Γ(G) is complete, then G is solvable. Clearly, if all the elements

in cd(G)\{1} have a nontrivial common divisor p, then Γ(G) is complete. Lewis

in [8] proposed to find more groups whose Γ(G) is complete while cd(G)\{1} has

no common divisor. Obviously, these groups’ each nontrivial character degree

should have at least two distinct prime divisors. This stimulates us to learn more

about solvable groups which do not possess characters of nontrivial prime power

degree.

For convenience, a solvable group G is said to be a (∗)-group, for every

1 6= a ∈ cd(G), a has at least two distinct prime divisors. Note that (∗)- property
is inherited by epimorphic images, but not by subgroups, even normal subgroups.

Call G a critical (∗)-group, if G is a (∗)-group, but any proper subgroup of G is

not a (∗)-group. One can imagine that it’s not easy to characterize (∗)-groups
directly. Since every (∗)-group has critical (∗)-groups as its subgroups, we pay

more attention to the properties of the critical (∗)-groups.
In Section 2 we give some lemmas about (∗)-group and critical (∗)-groups .

Depending on whether the Frattini subgroup of G contains the socle or not, we

consider critical (∗)- groups G separately in Section 3. The main results are the

following.

Theorem 1.1. G is a critical (∗)-group with Soc(G) � Φ(G) if and only if

the following holds:

(1) G′ ∩Z(G)= 1 and Z(G)=Φ(G); In particular, G′ is a Sylow subgroup of G.

(2) Ḡ = G/Z(G) is a Frobenius group with a cyclic Frobenius complement of

order qr, where q and r are primes. Also, Ḡ′ as the Frobenius kernel is the

unique minimal normal subgroup of Ḡ.

Theorem 1.2. If G is a critical (∗)- group with a normal Sylow subgroup P ,

then one of the following holds.

(1) The character degree graph of G, ∆(G), is a complete graph;

(2) G′ = P is nilpotent of class 2. In particular, G has derived length 3.

Now we fix some notation which will be used repeatedly. Let m be an integer.

The set of prime divisors of m is denoted by π(m). Let G be a finite group. Φ(G)

is the Frattini subgroup of G. G∞ is the nilpotent residual of G. Soc(G) is the

socle of G. Denote π(G) for the set of the prime divisors of |G|. Write NL(G)
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for the set of nonlinear irreducible characters of G. Let N be a normal subgroup

of G. We define Irr(G|N) to be the set of irreducible characters of G whose kernels

do not contain N . Also, for a character ϑ ∈ Irr(N), let Irr(G|ϑ) denote the set

of irreducible constituents of ϑG. Correspondingly, write cd(G|ϑ) = {χ(1)|χ ∈
Irr(G|ϑ)}. For convenience, when we say that x is a prime power we imply that

x 6= 1.

2. Properties and lemmas

Lemma 2.1. Let G be a finite group. Then G∞ = ∩p∈π(G)O
p(G).

Proof. Because G∞ is contained in every normal subgroup whose quotient

is nilpotent. It follows that G∞ ≤ Op(G) for all p ∈ π(G). And this imp-

lies that Op(G/G∞) = Op(G)/G∞. Since G/G∞ is nilpotent, we have that

∩p∈π(G)O
p(G/G∞) = 1̄, which forces that G∞ = ∩p∈π(G)O

p(G). ¤

Proposition 2.2. Let G be a (∗)- group. Then G′ = ∩p∈π(G)O
p(G).

Proof. By Lemma 2.1, it is sufficient to show G′ = G∞.

Because G∞ is contained in every normal subgroup whose quotient is nil-

potent. We have that G∞ ≤ G′ for any group. Since G is a (∗)-group, every
nilpotent factor group of G is abelian and so G′ ≤ G∞. This forces G′ = G∞ and

G′ = ∩p∈π(G)O
p(G) follows. ¤

Before we give another property of (∗)-groups, we first present a result related
to semi-linear groups. We refer the reader to [10] for our notation relating to semi-

linear groups.

Lemma 2.3. Let V be a vector space over GF (q) of dimension m, where q is

a prime power. Γ(V ) is the semi-linear group of V . Then cd(Γ(V )) = {d | d|m}.
In addition, if ((qm − 1)/(q − 1),m) = 1, then Z(Γ(V )) is the Hall π(q − 1)-

subgroup of Γ0(V ), where Γ0(V ) ≤ Γ(V ) consisting of all of the multiplications;

and cd(K1) = cd(Γ(V )) for every K1 ≥ K, where K is a complement of Z(Γ(V ))

in Γ(V ).

Proof. Notice that Γ(V ) = Γ0(V )oG, where G = Gal(GF (qm)/GF (q)) is

a cyclic group of order m, Γ0(V ) ≤ Γ(V ) consisting of all of the multiplications.

And observe that cd(Γ(V )) = {|G : CG(λ)| | λ ∈ Irr(Γ0(V ))}. We know that

Γ0(V ) ∼= Irr(Γ0(V )) as G- sets since G is cyclic. And so cd(Γ(V )) = {|G :

CG(x)| | x ∈ Γ0(V )} = {d | d|m} (the second “=” is guaranteed by Galois

theorem).
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Furthermore, if (|Γ0(V )|/|Z(Γ(V ))|,m) = ((qm − 1)/(q − 1),m) = 1, then

((qm − 1)/(q − 1), (q − 1)) = 1 since ((qm − 1)/(q − 1), (q − 1)) | m by Lem-

ma 2.4 (a) of [11]. Thus Z(Γ(V )) as the Hall π(q − 1)-subgroup of Γ0(V ) has a

complement in Γ(V ), say K. That is Γ(V ) = K × Z(Γ(V )). Now for every K1

with K ≤ K1 ≤ Γ(V ), we can see that cd(K1) = cd(Γ(V )) = {d | d|m}. ¤

Lemma 2.4. If G is a (∗)-group. Then ∆(G), the prime character degree

graph of G, is connected.

Proof. It is enough to prove the fact that if ∆(G) is non-connected, then

cd(G) contains prime powers. Suppose ∆(G) is non-connected, then from the

Main Theorem of [6], G is as in Example 2.1–2.6 described in Section 2 of [6].

From the results of that paper, it is clear to see that when G is as in Example 2.1,

2.2, 2.3, 2.5, cd(G) contains prime powers. Actually, when G is as in Example

2.4, cd(G) also contains prime powers as referred from the statement prior to

Lemma 3.4 of [6]. Since the author didn’t give the proof in that paper, we write

it down here.

Claim. If G is as in Example 2.4, then every divisor of m occurs in cd(G).

As the definition of Example 2.4 shows: G/V ∼= H, where V is a vector

space over GF (q) of dimension m, q is a prime power. Also, K/Z ≤ H/Z ≤
Γ(V ), K/Z ≤ Γ0(V ) and H/K ∼= Gal(V ), where (qm − 1)/(q − 1) | |K/Z|,
(m, |K/Z|) = 1. It follows that ((qm − 1)/(q − 1),m) = 1 and so by Lemma 2.3,

we have cd(H/Z) = cd(Γ(V )) = {d | d|m}. Finally, notice that G/V ∼= H, the

claim follows. In particular, we get that cd(G) contains prime powers when G is

as in Example 2.4.

At last, by Lemma 3.6 (v) of [6], we also know G has irreducible characters

of prime powers degrees when G is as in Example 2.6. Now we complete the

proof. ¤

Let G be a finite group with |ρ(G)| ≥ 2. If G satisfies that for every χ ∈
NL(G), π(χ(1)) = ρ(G), then G is a (∗)-group. For this kind of (∗)-groups, when
|ρ(G)| = 2, there was a description as the following lemma shows.

Lemma 2.5 ([12]). Let p and q be two distinct prime integers, and G be a

finite group. Then the following two are equivalent:

(1) Any nonlinear irreducible character of G has degree prqs with both r, s > 0.

(2) G has abelian normal {p, q}-complement A and an abelian Hall {p, q}-sub-
group H = P × Q, where P is a Sylow p-subgroup and Q is a Sylow q-

subgroup, and the centralizers CA(P ) = CA(Q).
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In fact, when |ρ(G)| ≥ 2, by using the results of paper [12], the conclusion

also holds. We write it down here as a theorem.

Theorem 2.6. Let G be a finite group with |ρ(G)| ≥ 2. Then the following

two are equivalent.

(1) For every χ ∈ NL(G), π(χ(1)) = ρ(G) holds.

(2) G has a nontrivial abelian normal Hall (ρ(G))′-subgroup A and an abelian

Hall ρ(G)-subgroup H, where for every P ∈ Sylp(G), Q ∈ Sylq(G) and every

pair of primes {p, q} ⊆ ρ(G), CA(P ) = CA(Q) holds.

Proof. Firstly, we prove that the statement (2) implies statement (1). In

fact, for every pair of primes {p, q} ⊆ ρ(G) and every P ∈ Sylp(G), Q ∈ Sylq(G),

we get that CIrr(A)(P ) = CIrr(A)(Q) by Lemma 3 of [12]. This implies that for

any ϕ ∈ Irr(A), either IH(ϕ) = H holds or |H : IH(ϕ)| can be divided by every

prime in ρ(G). Notice that A and H are abelian and G = A o H. By using

Gallagher’s theorem and Clifford’s theorem, we have that for any χ ∈ NL(G),

π(χ(1)) = ρ(G) holds.

Now, we prove that the statement (1) implies the statement (2). By hypothe-

sis, for any χ ∈ NL(G), π(χ(1)) = ρ(G) holds. Using Itô’s theorem, we know that

G has an abelian normal Hall (ρ(G))′-subgroup, say A. Furthermore, by Schur–

Zassenhauss theorem we also know that G has a Hall ρ(G)-subgroup, say H. We

claim that H is abelian. In fact, H ∼= G/A is a quotient group of G. It is easy to

see that the degree of any nonlinear irreducible character of H satisfies the state-

ment(1). In particular, for any p ∈ ρ(G), by Thompson’s theorem H has a normal

p-complement. Notice that ρ(G) = π(H). By the arbitrariness of p, we conclude

that H is nilpotent. Suppose that H is nonabelian. Then there exists some prime

p ∈ π(H) and P ∈ Sylp(H) such that P is nonabelian. Hence, H has at least

one nonlinear irreducible character of p-power degree. This contradicts with the

statement (1). Thus, H must be abelian. Observe that A and H are abelian

and G = A oH. If we take any pair of primes {p, q} ⊆ ρ(G) and P ∈ Sylp(G),

Q ∈ Sylq(G). Then Ao (P ×Q) is the Hall (ρ(G))′ ∪ {p, q}-subgroup of G. And

for any ϕ ∈ NL(A o (P × Q)), π(ϕ(1)) = {p, q} holds. Implying Lemma 2.5 to

Ao (P ×Q), we have that CA(P ) = CA(Q) holds. ¤

Lemma 2.7. Let G be a critical (∗)-group and 1 < N C G. If N has a

complement in G, then G′ ≤ N . Furthermore, if N is a minimal normal subgroup

of G, then G′ = N .

Proof. LetH be a complement ofN inG. SupposeG′ � N , thenH ∼= G/N

is nonabelian. And so cd(G/N) = cd(H) contains prime powers since G is a
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critical (∗)-group. Notice that cd(G/N) ⊆ cd(G). This contradicts with cd(G)

has no prime powers. Now G′ ≤ N holds. Recall that G is nonabelian and hence

G′ 6= 1. Thus the minimality of N forces G′ = N . ¤

Lemma 2.8. Let G be a critical (∗)-group. Then G has at most one normal

Sylow subgroup. In particular, |ρ(G)| ≤ |π(G)| ≤ |ρ(G)|+ 1.

Proof. Suppose there exist distinct primes p and q belonging to π(G) such

that G has a normal Sylow p-subgroup P and a normal Sylow q-subgroup Q.

Then by Schur–Zassenhaus theorem and Lemma 2.7, we get that G′ ≤ P ∩Q = 1,

contradicting with that G is nonabelian. Thus, G has at most one normal Sylow

subgroup. Particularly, in light of Itô’s theorem ( see Corollary 12.34 in [4]), the

inequality |π(G)| ≤ |ρ(G)|+ 1 holds. ¤

3. Critical (∗)-groups

Let G be a critical (∗)-group. The following theorem is a description of G

when Soc(G) � Φ(G).

Theorem 3.1. G is a critical (∗)-group with Soc(G) � Φ(G) if and only if

the following two hold:

(1) G′ ∩ Z(G) = 1 and Z(G) = Φ(G); In particular, G′ is a Sylow subgroup of

G.

(2) Ḡ = G/Z(G) is a Frobenius group with a cyclic Frobenius complement of

order qr, where q and r are two distinct primes. Also, Ḡ′ as the Frobenius

kernel is the unique minimal normal subgroup of Ḡ.

Proof. We first prove that (1) and (2) hold in a critical (∗)-group with

Soc(G) � Φ(G). Since Soc(G) is not contained in Φ(G), it follows that there

exists some minimal normal subgroup of G, say N , such that N ∩ Φ(G) = 1.

Then by Hilfsatz III. 4.4 of [3], we know that N has a complement in G, say H.

And so by Lemma 2.7, N = G′ follows. Now G = G′ oH. Since G′ is a minimal

normal subgroup of G, we may assume G′ is a p-group, and let P ∈ Sylp(G). Then

G′ ≤ P and so P CG. Note that P ′ ≤ Φ(G)∩G′ = Φ(G)∩N = 1. This is P ′ = 1

and so P is abelian. Recall that G′ ≤ P , we have that every Sylow subgroup of G

is abelian. That is to say, G is an A-group. We get P = G′ × (P ∩ Z(G)) from

a theorem of Taunt (see Theorem 14.6, Chapter 6 in [3]). In particular, we have

G′ ∩ Z(G) = 1.
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Consider factor group Ḡ = G/Z(G). Observing that Z(G) = CH(G′), it
follows that H/Z(G) acts faithfully, coprimely and irreducibly on Ḡ′. Thus, Ḡ′ is
the unique minimal normal subgroup of Ḡ. Using Theorem 12.3 of [4], we know

that Ḡ is a Frobenius group with Ḡ′ as its Frobenius kernel.
Now we show that Ḡ is a critical (∗)-group. It is clear that Ḡ is a (∗)-

group since G is a (∗)-group. For any nonabelian subgroup K̄ = K/Z(G) < Ḡ,

it suffices to show that cd(K̄) contains prime powers. Note that Irr(K) =

Irr(K̄) ∪ Irr(K|Z(G)). For every λ ∈ Irr(Z(G)), since G′ ∩ Z(G) = 1, by Propo-

sition 19.12 (a) of [2], λ extends to K. Now using Gallagher’s theorem it follows

that cd(K|λ) = cd(K̄). And thus, cd(K) = cd(K̄). Recall that G is a critical

(∗)-group and K < G, therefore, cd(K) = cd(K̄) contains prime power.

On the other hand, because Ḡ is a Frobenius group, we have cd(Ḡ) =

{1, |H̄|}. Since we have known that Ḡ is a critical (∗)-group, it forces |H̄| = qr,

where q and r are distinct primes.

At last, we prove Z(G) = Φ(G). On one hand, Φ(G) ≤ Z(G) since Φ(G) ∩
G′ = 1. On the other hand, we claim that Z(G) ≤ Φ(H), and so Z(G) ≤ Φ(G)

by Hilfsatz III. 3.3 of [3], which implies that Z(G) = Φ(G).

Now we prove Z(G) ≤ Φ(H). It is enough to show that for any L < H,

LZ(G)<H. If this is not true, then there exists some L<H such that LZ(G)=H.

Let G1 = G′L, then G1 < G. Note that Ḡ ∼= G1/L ∩ Z(G) is a Frobenius group

with cd(G1) = cd(G1/L ∩ Z(G)) = cd(Ḡ) = {1, qr}, which contradicts with G is

a critical (∗)-group (the first “=” is also guaranteed by Proposition 19.12 (a) of

[2]). Thus, we have Z(G) ≤ Φ(H). In particular, P ∩ Z(G) ≤ Φ(H). Observe

that P = G′ × (P ∩ Z(G)), P ∩ Z(G) is the Sylow p-subgroup of H, this forces

that P ∩Z(G) = 1 and P = G′ × (P ∩Z(G)) = G′ is the Sylow p-subgroup of G.

Now we prove the sufficiency of the theorem. Note that G′ ∩ Z(G) = 1, by

Proposition 19.12 of [2], we get cd(G) = cd(Ḡ) = {1, qr} and so G is a (∗)-group.
Clearly, Ḡ is a critical (∗)-group. Now for any nonabelian subgroup K < G,

consider cd(K). Since Z(G) = Φ(G), it follows that KZ(G) < G. For K̄ < Ḡ,

by the critical property of Ḡ, we get that cd(K̄) = cd(K/K ∩ Z(G)) = cd(K)

(the second “=” is also guaranteed by Proposition 19.12 (a) of [2]) contains prime

powers. And so G is a critical (∗)-group.
Note that Ḡ′ is the unique minimal normal subgroup of Ḡ, and G′∩Z(G) = 1.

It follows that G′ is a minimal normal subgroup of G which is not contained in

Φ(G) = Z(G). That is Soc(G) � Φ(G). ¤

Corollary 3.2. Suppose G is a critical (∗)-group with Soc(G) � Φ(G). Then

(1) cd(G) = {1, qr}, where q 6= r are two distinct primes;
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(2) |π(G)| = |ρ(G)|+ 1.

Proof. Let Ḡ = G/Z(G). Note that cd(G) = cd(Ḡ) ∪ cd(G|Z(G)). From

Theorem 3.1 we know G′ ∩ Z(G) = 1, then by using Proposition 19.12 (a) of [2]

and Gallagher’s theorem, we obtain cd(G|Z(G)) = cd(Ḡ) and so cd(G) = cd(Ḡ).

Again by Theorem 3.1, (1) follows.

From Theorem 3.1, we know that G′ is an abelian normal Sylow subgroup

of G. In light of Ito’s theorem and Lemma 2.8, |ρ(G)|+ 1 = |π(G)| follows. ¤

In the following, we consider critical (∗)-group G when Soc(G) ≤ Φ(G).

Proposition 3.3. Suppose G is a critical (∗)-group with Soc(G) ≤ Φ(G),

then there exists χ ∈ NL(G) such that π(χ(1)) 6= ρ(G). In particular, |ρ(G)| ≥ 3

and | cd(G)| ≥ 3.

Proof. Suppose that for every θ ∈ NL(G), π(θ(1)) = ρ(G). By using

Theorem 2.6, we get that G = AoH, where A is the abelian normal Hall (ρ(G))′-
subgroup of G, H is a Hall ρ(G)-subgroup of G and CA(Q) = CA(R) for every

pair of primes {q, r} ⊆ ρ(G), Q ∈ Sylq(G), R ∈ Sylr(G). Now it’s not difficult

to see that CA(Q) = CA(H). Using Fitting’s lemma, we get [A,Q] = [A,H].

Clearly, [A,H] 6= 1. Now we show that [A,H] = A. Suppose [A,H] < A, again

by Fitting’s lemma, G = [A,H]H × CA(H) and so cd(G) = cd([A,H]H). This

implies [A,H]H is a (∗)-group, which contradicts with G is a critical (∗)-group.
Now we have [A,H] = A. And 1 = CA(H) = CA(Q) = CA(R) holds.

By Lemma 2.8, we know that A is a Sylow subgroup of G, say A is a Sylow p-

subgroup. Since Soc(G) ≤ Φ(G), we have 1 6= A∩Soc(G) ≤ A∩Φ(G) ≤ M , where

M is any maximal subgroup ofG. This fact tells us that for any maximal subgroup

of G, say M , the p-part of M , i.e. M ∩ A is nontrivial. Since A is the Sylow p-

subgroup of G, we have A � Φ(G). This implies that there exists a maximal

subgroup of G, say M0, such that M0 ∩ A is not A. By the maximality of M0,

we also know that M0 contains a subgroup H0 which is conjugating to H. Now

M0 = (A ∩M0) oH0. Recall that 1 = CA(Q) = CA(R) for every Q ∈ Sylq(G),

R ∈ Sylr(G) and every pair of primes {q, r} ⊆ ρ(G). In light of Itô’s theorem, we

get that ρ(G) = ρ(M0). Applying the statement (2) of Theorem 2.6 to M0, we

see that M0 is a (∗)-group which contradicts our hypothesis that G is a critical

(∗)-group. Thus, there must exist a character χ ∈ NL(G) with π(χ(1)) 6= ρ(G).

In particular, since G is a (∗)-group, we have that |ρ(G)| ≥ 3 and | cd(G)| ≥ 3

hold. ¤

Now we give an example of critical (∗)-group G with Soc(G) ≤ Φ(G).
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Example 3.4. Let F be the Galois field of order 26. Define a 2-group P =

{x = (x1, x2) | x1, x2 ∈ F} with the operation “·”:

x · y = (x1, x2) · (y1, y2) = (x1 + y1, x2 + y2 + x1y
2
1), ∀x, y ∈ P

It is easy to see (P, ·) is a group. Fix two elements of F ∗(F ∗ ∼= C63) of order 3

and 7, say s and t respectively. Now let s and t act on P as follows:

s : P → P, x = (x1, x2) 7→ (x1s, x2), ∀x ∈ P.

t : P → P, x = (x1, x2) 7→ (x1t, x2t
3), ∀x ∈ P.

We can see that s, t ∈ Aut(P ) are of order 3 and 7 respectively. Let C = 〈s, t〉,
then C ≤ Aut(P ) is a cyclic group of order 21. Now let G denote the semi-direct

product of C over P , then G is a critcal (∗)-group with Soc(G) ≤ Φ(G).

Proof. First, we claim P ′ = Φ(P ) = Z(P ) = {(0, a) | a ∈ F}. In fact, we

can obtain Z(P ) = {(0, a) | a ∈ F} by computing. Observe that P/Z(P ) ∼= F

is abelian and so P ′ ≤ Z(P ). And it is not hard to get |Z(P ) : P ′| ≤ 2 by

computing. Notice that 〈t〉 ∼= C7 acts Frobeniusly on P ′ = Z(P ) ∩ P ′. Then

|P ′| ≡ 1 (mod 7). This forces P ′ = Z(P ). Notice that P/P ′ = P/Z(P ) ∼= F .

This forces that P ′ = Φ(P ) since P ′ ≤ Φ(P ). Now we have P ′ = Φ(P ) = Z(P ).

In the following, we give 3 steps to show G is a critical (∗)-group with

Soc(G) ≤ Φ(G).

Step 1. G is a (∗)-group.
Note that P/Z(P ) ∼= F and C acts Frobeniusly on P/Z(P ), which equals to

say that G/Z(P ) is a Frobenius group with cd(G/Z(P )) = {1, 21}. On the other

hand, for nonprincipal character λ ∈ Irr(Z(P )), χ ∈ Irr(G | λ), by Theorem 6.11

of [4], we know there exists a θ ∈ Irr(CG(λ) | λ) such that χ(1) = |G : CG(λ)|θ(1).
Observe that CG(λ) = P 〈s〉, and so χ(1) = 7θ(1). Moreover, since P ′ = Z(P )

and Z(P ) = P ′ ∩ Z(P ) � Ker(λ), it follows that λ can’t extend to P by Propo-

sition 19.12 (a) of [2]. This fact implies that 2 | θ(1) and so 14 | χ(1). Now we

get that G is a (∗)-group.
Step 2. G is a critical (∗)-group.
First, we claim that P̄ = P/Z(P ) is irreducible under C. Suppose this is

not true and P̄1 < P̄ is invariant under C. Since C act Frobeniusly on P̄1, it

follows that |P̄1| ≡ 1 (mod 21). This forces that P̄1 = P̄ and so the claim holds.

Let H ≤ G be a (∗)-group, then by Corollary 12.2 of [4], we know |π(H)| ≥ 3.

And so H contains a Hall {3, 7}-subgroup of G. Conjugating if necessary, we

may assume C ≤ H. We show that H = G and so complete the proof of Step 2.
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In fact, suppose H ∩ P ≤ Z(P ), then cd(H) = {1, 7}, contradicting with H is

a (∗)-group. So we have H ∩ P � Z(P ). Notice that C normalize H ∩ P since

H∩P CH, and C normalize Z(P ). It follows that (H∩P )Z(P )/Z(P ) is invariant

under C. This forces that (H ∩ P )Z(P ) = P since P̄ = P/Z(P ) is irreducible

under C. In addition, since Z(P ) = Φ(P ), we have P = (H ∩ P )Z(P ) = H ∩ P

and H = G. Now we obtain that G is a critical (∗)-group.
Step 3. Soc(G) ≤ Φ(G).

It is not hard to see Soc(G) ≤ P . Let N be any minimal normal subgroup

of G, we show N ≤ Z(P ). Suppose N � Z(P ). Consider factor group N̄ =

NZ(P )/Z(P ). Clearly, 1̄ 6= N̄ ≤ P/Z(P ), which is invariant under C. Observe

the fact that P̄ = P/Z(P ) is irreducible under C in Step 2, this forcesNZ(P ) = P .

Recall that N is a minimal normal subgroup which is abelian, we get that P is

abelian, a contradiction. Now, Soc(G) ≤ Z(P ). Since Z(P ) = Φ(P ), we have

Soc(G) ≤ Φ(G). ¤

We study critical (∗)-groups under the following hypothesis throughout the

rest of this paper.

Hypothesis 1. Let G be a critical (∗)-group with Soc(G) ≤ Φ(G). Suppose G

has a normal Sylow p-subgroup P and let H be a p-complement in G.

Lemma 3.5. Assume Hypothesis 1. Then P is nonabelian.

Proof. Suppose P is abelian, then we claim that P is a minimal normal

subgroup of G. Or else, let P1 < P be H- invariant, then P1H < G. Since G is

a critical (∗)-group, it follows that cd(P1H) contains prime powers and so there

exists λ ∈ Irr(P1) with |H : CH(λ)| is a prime power. Using Theorem 13.28

of [4], there exists a character ξ ∈ Irr(P | λ) with CH(λ) ≤ CH(ξ). Recall

that P is abelian and so ξP1 = λ with CH(λ) ≥ CH(ξ), which implies that

CH(λ) = CH(ξ). Now by Clifford’s theorem and Gallagher’s theorem, there

exists a character χ ∈ Irr(G | ξ) with χ(1) = |H : CH(λ)| which is a prime power;

a contradiction. Now the claim holds. In this case, G′ = P ≤ Soc(G) ≤ Φ(G)

by hypothesis. And so G is nilpotent, contradicting with that G is a (∗)-group.
Thus P is nonabelian. ¤

Corollary 3.6. Let G be a critical (∗)-group with Soc(G) ≤ Φ(G). Then

|ρ(G)| = |π(G)|.
In fact, if there is no normal Sylow subgroup, then in light of Itô’s theorem,

we know |ρ(G)| = |π(G)|; if G has a normal Sylow subgroup, then by Lemma 3.5,

we also have |ρ(G)| = |π(G)|.
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Lemma 3.7. Assume Hypothesis 1. Then the following holds:

(1) CG′(H) = 1;

(2) G′ = [P,H] and G = G′ oNG(H), where NG(H) = CG(H) = CP (H)×H.

Proof. Since there is no θ ∈ NL(P ) extending to G, by Lemma 3.2 of [13]

we have that CP ′(H) = 1. Clearly, P ′ ≤ G′ ≤ P and G′/P ′ = [P/P ′,H] =

[P/P ′, H,H] = [G′/P ′,H]. By Fitting’s lemma, we get that CG′/P ′(H) = 1̄,

and so CG′(H) ≤ P ′. Recall that CP ′(H) = 1. It forces CG′(H) = 1. Now,

G′ = G′∩P = G′∩ ([P,H]CP (H)) = [P,H](G′∩CP (H)) = [P,H]. In particular,

we have P = G′ oCP (H) and so G = G′ o (CP (H) ×H). It is not hard to see

NG(H) = CG(H) = CP (H)×H, which is a complement of G′ in G. ¤

Lemma 3.8. Assume Hypothesis 1. Then the following holds:

(1) For any character ϕ ∈ NL(P ), CH(ϕ) < H.

(2) For any λ ∈ Irr(P/P ′) with G′ not contained in Ker(λ), CH(λ) < H. In

particular, |H : CH(λ)| has at least two distinct prime divisors.

(3) Let P1CP be anyH-invariant subgroup of P. If ϕ∈ NL(P1), thenCH(ϕ)<H.

Proof. It is trivial for (1). For (2), let λ ∈ Irr(P/P ′) such that G′ is not

contained in Ker(λ). If CH(λ) = H, then λ is extendible to G. Suppose η is

an extension of λ. Clearly, G′ ≤ Ker(η). Then G′ = G′ ∩ P ≤ Ker(η) ∩ P ≤
Ker(λ), a contradiction. In particular, since G is a critical (∗)-group, we have

that |H : CH(λ)|, as an irreducible character degree, has at least two distinct

prime divisors. For (3), suppose there exists a character ϕ ∈ NL(P1) such that

CH(ϕ) = H. Since P1 C P is H-invariant, then by using Theorem 13.28 of [4],

there exists θ ∈ Irr(P | ϕ) such that θ is H-invariant, which contradicts with (1).

Now we complete the proof. ¤

Under Hypothesis 1, by Lemma 2.7 we know G′ ≤ P and so G′′ ≤ P ′. In

fact, if G′′ = P ′, we also have G′ = P .

Lemma 3.9. Assume Hypothesis 1. If G′′ = P ′, then G′ = P .

Proof. Suppose G′′ = P ′ and G′ < P . We show there will be a contradic-

tion and so complete the proof.

Clearly, G′H C G. Note that cd(G′H) = cd(G′H/P ′) ∪ cd(G′H|P ′). For

ϕ ∈ NL(G′H/P ′), take θ ∈ Irr(G′/P ′) be an irreducible constituent of ϕG′/P ′ . It’s

clear that θ is nonprincipal. Using Theorem 8.16 of [4], θ extends to G′CH(θ)/P ′.
By Gallagher’s theorem, we know that for any ψ ∈ Irr(G′CH(θ)/P ′ | θ), ψ(1) =
θ(1) = 1. According to Clifford’s theorem, we have ϕ(1) = |H : CH(θ)|θ(1) = |H :
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CH(θ)|. On the other hand, using Theorem 13.28 of [4], there exists a character

ϑ ∈ Irr(P/P ′) with [ϑG′/P ′ , θ] 6= 0 such that CH(θ) ≤ CH(ϑ). Observe that

ϑG′/P ′ = θ, thus CH(θ) ≥ CH(ϑ). And so CH(θ) = CH(ϑ). Clearly, G′ � Kerϑ.

By Lemma 3.8 (2), we know |H : CH(ϑ)| = |H : CH(θ)| has two distinct primes.

And so ϕ(1) = |H : CH(θ)| is not prime power for any ϕ ∈ NL(G′H/P ′).
For ϕ ∈ Irr(G′H | P ′), let ξ ∈ Irr(G′) with [ϕG′ , ξ] 6= 0. If ξ is linear, then

ϕG′ = e(ξ1 + · · ·+ ξt) and Kerϕ ≥ ∩i=1,··· ,t Ker ξi ≥ G′′ = P ′, contradicting with

that P ′ is not contained in Kerϕ. Thus ξ is nonlinear. Now using Lemma 3.8

(3), we have CH(ξ) < H. By Clifford’s theorem, we get that ϕ(1) is not a prime

power.

Now we can see that G′H is a (∗)-group, a contradiction, as desired. ¤

Lemma 3.10. Assume Hypothesis 1 and suppose ∆(G) is not complete.

Then there exists a prime r ∈ π(H) which is not adjacent to p, and G′ = P =

[P,R] is nilpotent of class 2, where R ∈ Sylr(G).

Proof. From Lemma 3.8 (2), we know that G′ ≤ P ≤ F(G) and P is the

unique normal Sylow subgroup of G, and so π(H) = π(|G : F(G)|). By Theo-

rem 18.1 of [10], we know that |G : F(G)| ∈ cd(G). Thus, the derived subgraph

of π(H) is complete. Since ∆(G) is not complete by hypothesis, it must be that

p is not adjacent to some r ∈ π(H).

Let R be a Sylow r-subgroup of G. We consider subgroup PR. Clearly,

PR C G since G′ ≤ PR and R acts coprimely on P by fixing every nonlinear

character of P . Applying Theorem 19.3 of [10], we have that [P,R] is nilpotent

of class 2 with [P,R]′ = P ′ and P ′ ≤ Z(PR). Note that P ′ = [P,R]′ ≤ G′′ and it

forces that P ′ = G′′. By Lemma 3.9, we have G′ = P which is nilpotent of class 2

since P ′ ≤ Z(PR) ≤ Z(P ).

Next, we claim that [P,R] = P . In fact, if [P,R] < P , then consider subgroup

[P,R]H. We show [P,R]H is a (∗)-group and get a contradiction. For ϕ ∈
NL([P,R]H), let ξ ∈ Irr([P,R]) with [ϕ[P,R], ξ] 6= 0, then ξ is a nonprincipal

character. If ξ is nonlinear, then ϕ(1) is not a prime power by Lemma 3.8 (3). If

ξ is linear, observe that

ξ ∈ Irr([P,R]/P ′) ⊆ Irr([P,R]/P ′ ×CP/P ′(R)) = Irr(P/P ′)

and Ker ξ does not contain G′ = P . Applying Lemma 3.8 (2), we also get that

ϕ(1) is not a prime power. Now we proved the claim. ¤

Corollary 3.11. Assume Hypothesis 1 and suppose that ∆(G) is not comp-

lete. If r ∈ π(H) is not adjacent to p, then the Sylow r-subgroups of G are cyclic.
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Moreover, if there exists another prime s such that s is not adjacent to p either,

then P ′ = Z(P ).

Proof. By Lemma 3.10, we know P = [P,R] and so CP/P ′(R) = 1̄ by

Fitting’s Lemma. This is to say the principal character is the unique R-invariant

character in Irr(P/P ′). Observing that G is a (∗)-group, we conclude that the

r-complement of H, Or(H), does not fix any nonprincipal character of Irr(P/P ′).
In the proof of Lemma 3.10, we also know R fixes every nonlinear character of P .

By the same reason, Or(H) does not fix any element of NL(P ). Now we get that

Or(H) does not fix any nontrivial element of Irr(P ).

Suppose R is not cyclic, then there exists R0 < R such that [P,R0] 6= 1.

In fact, if every proper subgroup of R centralizes P , since R is not cyclic, we

can find two different maximal subgroups of R, say R1, R2, such thatR = R1R2.

And then [P,R] = [P,R1R2] = [P,R1][P,R2] = 1, this is a contradiction. Now

consider subgroup PR0. Clearly, PR0CG. And it is not hard to see that ∆(PR0)

is not complete since p is not adjacent to r in ∆(G). By replacing [P,R] with

[P,R0], repeat the argument for [P,R] in the proof of Lemma 3.10, we can also

get [P,R0] = P . Applying Fitting’s lemma, CP/P ′(R0) = 1̄. Thus R0 fixes no

nontrivial element in Irr(P/P ′).
Consider subgroup POr(H)R0. Clearly, POr(H)R0 < G. Since we have

shown that Or(H) does not fix any nontrivial element of Irr(P ) and R0 fix

every member of NL(P ) but no nontrivial one in Irr(P/P ′), so we obtain that

POr(H)R0 is a (∗)-group, contradicting with G is a critical (∗)-group. Thus, R

must be cyclic.

Suppose neither r nor s is adjacent to p. Let RS be a Hall {r, s}-subgroup
of H. We have known that P ′ ≤ Z(P ) in the proof of Lemma 3.10. Suppose P ′ is
a proper subgroup of Z(P ). Notice that CP (RS) = CP (R) ∩CP (S) = P ′ since
CP/P ′(R) = CP/P ′(S) = 1̄ and P ′ ≤ Z(PR)∩Z(PS) , it follows that Z(P )RS is

nonabelian.

Now consider cd(Z(P )RS). For ϕ ∈ Irr(Z(P )RS/P ′), let θ ∈ Irr(Z(P )/P ′)
such that [ϕZ(P )/P ′ , θ] 6= 0, then rs | |RS : CRS(θ)| since CZ(P )/P ′(R) =

CZ(P )/P ′(S) = 1̄. Using Clifford’s theorem, we know rs | ϕ(1). For every non-

principal character ξ of P ′, ξ is RS-invariant since CP (RS) = P ′. According to

Theorem 13.28 of [4], we may let λξ be an extention of ξ in Z(P ) such that λξ

is RS-invariant. We have Irr(Z(P ) | ξ) = {λλξ | λ ∈ Irr(Z(P )/P ′)}. Observe

that CRS(λλξ) = CRS(λ) since CRS(λξ) = RS. On the other hand, recall that

CP/P ′(RS) = 1̄. And so for every nonprincipal character λ ∈ Irr(Z(P )/P ′), we
have that rs | |RS : CRS(λ)| = |RS : CRS(λλξ)|. Now for ψ ∈ Irr(Z(P )RS | P ′),
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by Clifford’s theorem we have rs | ψ(1). Thus, Z(P )RS is a (∗)-group, contra-
dicting with G is a critical (∗)-group. Now P ′ = Z(P ) holds. ¤

Theorem 3.12. Let G be a critical (∗)-group. Suppose G has a normal

Sylow subgroup P . Then one of the following holds:

(1) ∆(G) is a complete graph.

(2) G′ = P is of nilpotent class 2. In particular, G has derived length 3.

Proof. If Soc(G) � Φ(G), then cd(G/Z(P )) = {1, rs} by Corollary 3.2 and

(1) holds. Suppose Soc(G) ≤ Φ(G) and ∆(G) is not complete, then by Lem-

ma 3.10, we know (2) holds. ¤
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