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Fixed point theorems on generalized b-metric spaces

By IOAN-RADU PETRE (Cluj-Napoca) and MONICA BOTA (Cluj-Napoca)

Abstract. In this paper we will present some fixed and strict fixed point theorems
in generalized b-metric spaces using the Picard and weak Picard operators technique.
Also, we give an application for a system of Volterra-type equations.

1. Introduction

The concept of b-metric space or generalizations of it appeared in some works,
such as N. BOURBAKI [8], I. A. BAKHTIN [1], S. CZERWIK [9], J. HEINONEN [11],
etc. Some examples of b-metric spaces and some fixed point theorems in b-metric
spaces can also be found in M. BORICEANU, A. PETRUSEL and I. A. Rus [4],
M. BORICEANU [5], [6], M. BOTA [7]. The purpose of this paper is to present
some fixed and strict fixed point results in generalized b-metric spaces and to give
an application for a system of Volterra-type equations.

2. Notations and auxiliary results

The aim of this section is to present some notions and terminology used in
the paper. We first give the definition of a generalized b-metric space.
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Definition 2.1. Let X be a set and let S > I be a square m X m matrix
of nonnegative real numbers, where I denotes the identity matrix. A functional
d: X x X — R is said to be a generalized b-metric if for all x,y,z € X the
following conditions are satisfied:

(1) d(z,y) =0 if and only if z = y;

(2) d(z,y) = d(y,z);

(3) d(z,z) < S[d(x,y) + d(y, 2)].

Then the pair (X, d) is called a generalized b-metric space.

The class of generalized b-metric spaces is larger then the class of generalized
metric spaces, since a generalized b-metric space is a generalized metric space
when S = I in the third assumption of the above definition. We say that || - || :
X — R is a generalized norm if (in a similar way to the generalized metric) it
satisfies the classical axioms of a norm. In this case, the pair (X, || - ||) is called a
generalized normed space. If the generalized metric generated by the norm || - ||
(i.e., d(z,y) := ||z —y]|) is complete then the space (X, ||-||) is called a generalized
Banach space. Some examples of b-metric spaces are given by V. BERINDE [2],
S. CzErwWIK [9], J. HEINONEN [11]. Here we give some examples of generalized
b-metric spaces.

Notice that if A, B € My, m(R4), A = [ai;], B = [bi;], fori,5 € {1,2,...,m}
then by A < B we mean a;; < b;; , for ¢,5 € {1,2,...,m}.

Ezample 2.2. Let X be a set with the cardinal card(X) > 3. Suppose that
X = X1 UX> is a partition of X such that card(X;) > 2. Let S =[5! §22] > [§9

§21 S22 ] =

be a matrix of real numbers. Then, the functional d: X x X — Rf_ defined by:

d(z,y) == 2 [811] , T,y € Xy

1
[ ] , otherwise

is a generalized b-metric on X.

Ezample 2.3. The set P(R) (with 0 < p < 1), where {?(R) := {(2)nen C
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R | Y07, |@,|P < oo}, together with the functional d : (#(R) x ¢9(R))? — R,

© 1/p
(Z “Tln - y1n|p>

n=1

[eS) 1/q
(Z |-r2n - y2n|q>
n=1

d(z,y) :==

. . . . / .
is a generalized b-metric space with S = [2:1: ;ffq] > [39]. Notice that the

above example holds for the general case ¢P(X) with 0 < p < 1, where X is a
generalized Banach space.

Ezample 2.4. The space LP[0, 1] (where 0 < p < 1) of all real functions z(t),
t € [0,1] such that fol |z(t)[Pdt < oo, together with the functional

d(z,y) = (/01 |21 () — yl(t)l”ahf)l/p

([ 1eatt) = o) "

for each (z1,y1), (z2,y2) € LP[0,1] x L?[0, 1]

)

is a generalized b-metric space with S = [210/17 210/q ]

Notice that in a generalized b-metric space (X, d) the notions of convergent
sequence, Cauchy sequence, completeness are similar to those for usual metric
spaces. Since generalized b-metrics do not induce topologies, the notions of open
set and closed set should be clearly established in this context.

We consider now the following families of subsets of a generalized b -metric
space (X, d):

PX)={Y|Y CX}; P(X):={Y e P(X)|Y #0};
Py(X):={Y € P(X) | Y is bounded}; Pp(X):={Y € P(X)|Y is compact};
Py(X)={Y € P(X)|Yisclosed}; Ppu(X):=P(X)NPy(X).

If (X, d) is a generalized b-metric space with d(z,y) := [d1(z,y) . ..dmn(x,y)], then
we write:
Dy, (A, B)
D(A,B) = . ,
Dy, (A,B)

m
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where
Dy, : P(X) x P(X) — [0,4+00], Dy, (A, B) = inf{d;(a,b) |a € A, b€ B}
represents the generalized gap functional generated by d;, for i € {1,...,m};
Pdy (Av B)
p(A,B) = e ,
Pd,, (A, B)
where

pa, : P(X) x P(X) = [0,40<),  pa,(A, B) = sup{Dy,(a, B) | a € A}

resents the generalized excess functional generated by d;, for i € {1,...,m};
H, (A, B)
H(A,B) = e ,
Hdm (Aa B)
where

Hy : P(X) X P(X) — [0,'|‘OO]7 Hdl(A,B) = max{pdi (A,B),pdl(B,A)}

7

represents the generalized Pompeiu—Hausdorff functional generated by d;, for i €
{1,...,m};
04, (A, B)
0(A,B) = . ,
dd (A7 B)

m

where

84, : P(X) x P(X) — [0, 4+00], d4,(A, B) = sup{d;(a,b) :a € A,b € B}

i

represents the generalized delta functional generated by d;, for i € {1,...,m}. In
particular, §(A) := 6(A, A) is the diameter of the set A.

Let (X, d) be a generalized b-metric space. If F': X — P(X) is a multivalued
operator, then we denote by Fix(F') the fixed point set of F, i.e., Fix(F) := {x €
X | z € F(x)} and by SFix(F') the strict fixed point set of F, i.e., SFix(F) :=
{r € X | {z} = F(z)}. The symbol Graph(F) denotes the graph of F, i.e.,
Graph(F) := {(z,y) e X x X : y € F(z)}.

By definition, a square matrix of real numbers is said to be convergent to
zero if A" — 0 as n — oo (see R. S. VARGA [21]). Some examples of matrices
that are convergent to zero can be founded in R. PRECUP [18].
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Lemma 2.5 ([18]). Let A € M, ., (Ry). Then the following statements are
equivalent:

(i) A is a matrix convergent to zero;
(ii) The eigenvalues of A are in the open unit disc, i.e., |\| < 1, for every A € C
with det(A — AI) = 0;
(iii) The matrix I — A is non-singular and (I — A) ' =T+ A+ -+ A" +...;
(iv) The matrix I — A is non-singular and (I — A)~! has nonnegative elements;

(v) A"q — 0 and gA™ — 0 as n — oo, for any q € R™.

3. Main results

The following results are useful for some of the proofs in the paper.

Lemma 3.1. Let (X, d) be a generalized b-metric space and let A, B € P(X).
We suppose that there exists n € R, > 0 such that:
(i) for each a € A there is b € B such that d(a,b) < n;
(ii) for each b € B there is a € A such that d(a,b) <.
Then, H(A, B) <.
PrROOF. It follows immediately from the definition of Pompeiu—Hausdorff

generalized functional. (|

Lemma 3.2. Let (X,d) be a generalized b-metric space, A € P(X) and
x € X. Then D(x, A) = 0 if and only if x € A.

PRrROOF. We show that A = {x € X | D(z, A) = 0}.

Obviously, D(x, A) = 0 implies 2 € A. Now, let # € A, which means that
for any r € R, r > 0 we have AN B (x,7) # 0, i.e., for any 7 € R’?, 7 > 0, there
exists a € A such that d (z,a) <r,ie., D(z,A) =0. O

Lemma 3.3. Let (X, d) be a generalized b-metric space and let (z,,)neny C X.
Let S € My, m(R), with S > I. Then:

d(wo,xn) < Sd(zo,21) 4+ -+ S" Yd(zy_2, 20 1) + S" rd(zn_1, 7).
ProOF. We have
d(xo, x,) < Sd(xg, 1) + Sd(x1,x,) < Sd(xg, 1) + S?d(21, 20) + S%d (2, 7))
< Sd(zp,z1) + -+ S"_ld(xn,g,xnfl) + S"_ld(xn,l,xn),

which completes the proof. ([l
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Lemma 3.4. Let (X,d) be a generalized b-metric space and let
S € My, m(R), with S > I. Then for all A, B,C € P(X) we have:

H(A,C)<S[H(A,B)+ H(B,C)].
ProOOF. We have
d(a,c) < Sd(a,b) + Sd(b,c), foranya€ A, be B, ceC.
Taking infoc we have
D(a,C) < Sd(a,b) + SD(b,C), forany a € A, be B.

Thus,
D(a,C) < Sd(a,b)+ SH(B,C), foranyac A, be B.

It follows that
supa € AD(a,C) < SH(A,B)+ SH(B,C)
and analogously,
supc € CD(c,A) < SH(A,B) + SH(B,(C).
Hence,
H(A,C)< S[H(A,B)+ H(B,C)],
which completes the proof. O

Lemma 3.5. Let (X,d) be a generalized b-metric space and let A,B €
P, (X). Then for each o € R7", a > 0 and for each b € B, there exists a € A
such that
d(a,b) < H(A, B) + a.

If, moreover, A,B € P.,(X) and S € M, ,,(R), with S > I, then for each
b € B, there exists a € A such that

d(a,b) < SH(A, B).

PRroOF. The first statement follows immediately from the definition of Pom-
peiu—Hausdorff generalized functional. Now, let ¢, = [% e %], n € N*. Then for

each b € B, there exists a,, € A such that

d(an,b) < H(A,B) +e,, neN-.
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We may assume that a,, — a € A. Therefore,
d(a,b) < Sd(a,a,) + Sd(ay,b) < Sd(a,a,) + SH(A, B) + Se,,, n€N*.
Letting n — oo, we get that
d(a,b) < SH(A, B),
which is the desired conclusion. O

Lemma 3.6. Let (X,d) be a generalized b-metric space and let A,B €
P.(X). For each ¢ > 1 and for all a € A, there exists b € B such that:

d(a,b) < q¢H (A, B).

PrROOF. We may assume that A # B. Then Hy,(A,B) > 0, for all i €
{1,...,m}. We suppose that there exists ¢ > 1 and there exists a € A such that
for all b € B, we have d(a,b) £ ¢H(A, B). That is, there exists j € {1,...,m}
such that

dj(a,b) > quj (A,B)

Taking inf b € B we have
Dy, (a,B) > qHg,(A, B).
Hence, we get the contradiction
Hy,(A,B) > Dg,(A,B) > qHy,(A,B) > Hq, (A, B),
which completes the proof. (|

Lemma 3.7. Let (X,d) be a generalized b-metric space and let A,B €
Py(X). For each ¢ > 1 and for all a € A, there exists b € B such that:

5(A, B) < qd(a,b).
PrROOF. We may assume that A # B. Then 64,(A,B) > 0, for all ¢ €
{1,...,m}. We suppose that there exists ¢ > 1 and there exists a € A such that
for all b € B, we have 6(4, B) £ qd(a,b). That is, there exists j € {1,...,m}

such that
da; (A, B) > qd;(a,b).

Taking sup,cp we have
(de (A, B) > qédj (a, B)

Hence, we get the contradiction
6a,(A, B) > qda; (A, B) > d4,(A, B),

which completes the proof. ([l
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Lemma 3.8. Let A € M,, ,, (Ry) be a matrix convergent to zero. Then,
there exists (Q > 1 such that for any q € (1,Q) we have that ¢qA is convergent
to 0.

PROOF. Since A is convergent to zero, we have that the spectral radius

p(A) < 1. Next, since gp (4) = p(qA) < 1, we can choose Q = ﬁ > 1 and

hence, the conclusion follows. O

Definition 3.9. Let (X, d) be a generalized b-metric space and let f: X — X
be a singlevalued operator. Then, f is called a left A -contraction if there exists
a matrix A € M, ., (R}) convergent to zero such that

d(f(z), f(y)] < Ad(z,y), foranyz,y € X.

Definition 3.10. Let (X, d) be a generalized b-metric space. Then f: X — X
is a Picard operator (briefly PO), if we have that:

(i) Fix(f) = {z*} for some z* in X;
(i) for each zp € X, the sequence (z,,)nen (where x,, = f™ (x0)), converges to z*.

Definition 3.11. Let (X, d) be a generalized b-metric space and let f : X — X
be a PO. Then f is a M-Picard operator (briefly M PO) if M € M, ,,,(R4) and
there exists the operator f* : X — X, f*(x) = lim,— f™(z0) such that
d(zg, f(x0)) < Md(xg, f(x0)), for each zg € X.

Now we present some fixed point theorems in generalized b-metric spaces for
singlevalued operators.

Theorem 3.12. Let (X,d) be a complete generalized b-metric space with
S € Mpm(Ry), S > 1 and let f: X — X be a left A-contraction such that
AS = SA and SA < I. Then f is a (I — SA)~" S-Picard operator.

PrOOF. Let z¢p € X. Inductively, for any n € N and p € N*, we have

d (Tns Tntp)
< Sd(xp, tng1) + -+ SV (Tnp-2, Tngp1) 5P (Tnip1, Tnip)
< SA™d(zg, ) + -+ SPTLAYTPT2G (20, 21) + SPTLAMTPTL (2, 1)
< SA™ (I+SA+ -+ SP2APT2 4+ SP2AP7Y) d (0, 71)
< SA™ (I+SA+- 4 SPT2APT2 4 P71 AP ) d (20, 31)
< SA™ (I —SA) " d(xg,21).

Letting n — oo, we obtain that the sequence (z,),en is Cauchy in X. By comp-
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leteness of X, it follows that there exists * € X such that for any zg € X, the
sequence (z,) — x* when n — co. We have

dlz*, f(x*)] < Sd(a*, xpnt1) + Sd[xpi1, f(2*)] < Sd(z*, xp11) + SAd(zy,, 2%)

and thus, * is a fixed point of f in X.

For the uniqueness, we suppose that y* € X is another fixed point of f with
y* # x*. Then

dy*, =) =d[f (y"), f ()] < Ad(y",27).
It follows that
(I —-A)d(y",z") <0

Since (I —A) € Mym (Ry) and (I — A) # 0, we have the only one possibility
d (y*,z*) = 0 and thus, y* = z*.

Since in a generalized b-metric space d is not continuous in general, we will
use the following error estimate for the fixed point

d(xp, ") = d[f"(x0), [*(z¥)] < A%d(xg,2"), for any n € N.
We have
d(xo,z*) < Sd(zg,21) + Sd(z1,2™) < Sd(xg,21) + SAd(20, 2™)

and thus,
d(zg,2*) < (I —SA)~'Sd(xg,21).

Since SA € M, (R4) and SA < I it follows that SA is a matrix convergent to
zero and since S > I, it follows that (I — SA)~1S has nonnegative elements.
Hence, f is a (I — SA)~1S-Picard operator. O

Our Theorem 3.12 can be used, for example, to establish the existence and
the uniqueness of the solution for a system of integral equations. In this respect,
let us consider the case of two Volterra-type equations system (see the following
result).

Theorem 3.13. Let I = [0,a] (with a > 0) be an interval of the real axis
and consider the following system of integral equations in C(I, X;) x C(I, X5):

w1 (t) =M [y ku (85,21 (s), 22 (5)) ds
xo (1) = Ao fot ko (t,s,m1 (s), 22 (s))ds
for t € I, where \; € R, fori € {1,2}.

(3.1)

We assume that:
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i) k1€ C(I? x X1 x X5, X1) ,ka € C(I” x X1 x X3, Xo);
ii) there exist the matrices A = [g1! 312], Q = [§ 2] € Myo (Ry) with g > 1
such that

ki (t,s,u1,u2) — ki (t,5,v1,v2) | x;, < qlaanllur —villx, + aizlluz — v2||x,),

for each (t,s,ui,uz), (t,8,v1,v2) € I* x X1 x Xo, i € {1,2}.

Then, the integral equations system (3.1) has a unique solution z* := [g]
in C(I,Xl) X C(I7X2)
PROOF. For i € {1,2} and =z :=[71] € C(I, X1) x C(I, X2), we define
fi : C(I,Xl) X O(I,Xg) — C(I,Xi),
x+— fix

t
fix(t) == )\Z—/ ki(t,s,21(s),x2(s))ds, for anyte I.
0

By 1), the operators fi, fo are well defined. Moreover, the system (3.1) can be
re-written as a fixed point equation in the following form

x = f(z),

where f := [}2 } Obviously, z* := {2} is a solution for (3.1) if and only if z* is
a fixed point for the operator f.

We show that f is a left M contraction. Let x := [3], vy := [¥2] € C(I, X1) X
C(I,Xs). For i € {1,2}, we have

I1fi () (8) = fi (y) (B) |

< |/\¢\/0 ki (t, 5,21 (5) ;w2 (8)) — ki (, 5,91 (5) , y2 (5)) || x,ds

X

< Al /Olq(ailﬂl“l (8) = y1 (8) [Ix, + aizllz2 (s) —y2 (s) [ x,) ds

t t
— Ing <|x ~ il [ e7ds +alles — ol | d)
0 0

by
< Plertq (ol —walls, + ol — salln,),

u sup e~ lur ()l x
where ||ul[p := [” 1”’31} = { t€(0.al L

luzllz, SuPseio,a) € lluz(®)llx,

}, 7 > 0 denotes the Bielecki-

type norm on the generalized Banach space C(I, X;) x C(I, X3).
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Thus, we obtain that

Ai )
5. < Plaaler —plls, +aller —walls), for i {1,2)

I fi(z) = fi(y)]
These inequalities can be written in the vector form

1f (@) = f (W) [Ip < Mz —yl|s,

where

A [I/\iqau} .
T ije{1,2}

Taking 7 > maxi,j € {1,2}|\;|¢%a;;, we have that that the matrix M is con-
vergent to zero and thus, f is a left M-contraction. Moreover, M@ = QM and
QM < I. By Theorem 3.12 it follows that there exists a unique fixed point
o = [g] in O(I, X1) x C(I, X) for f = [;ﬁ;] O

Definition 3.14. Let (X, d) be a generalized b-metric space and let f : X — X
be a singlevalued operator. Then, f is called a left (A, B, C')-contraction if there
exist the matrices 4, B,C € M, (Ry), where A is convergent to zero with
A+ B+ C < I such that

d[f (), f(y)] < Ad(z,y) + Bd[z, f (z)| + Cd[y, f (y)], for any 2,y € X.

Theorem 3.15. Let (X,d) be a complete generalized b-metric space with
S e Mpym(Ry),S>1Tandlet f: X — X be aleft (A, B,C)-contraction such
that KS = SK, where K := (I — C)"'(A + B) and SA < I. Then f is a
(I — SA)~1S(I — B)-Picard operator.

PrROOF. Let zg € X. We have
d (xnvanrl) =d [f (xnfl) 7f (xn)] < Ad (xnflvmn) + Bd [xnflv f (mnfl)}
+ Cd[xp, [ (xn)] = (A+ B)d(xpn-1,2,) + Cd (T, Trnt1)
and inductively
Ad(Tn, Tns1) < (I—C) M (A+B)d(zp—1,20) < -+ < [(I-C) " (A+DB)]"d(zo, z1).
Since A,B,C € My, (Ry) and A+ B+ C < I, we get that K € M, ., (Ry)
and K < I. Thus, K is convergent to zero. For any n € N and p € N*, we have
d(In,$n+p)
< Sd(xp, Tpgr) + o0 F sP=1d ($n+p72a xnﬂ?fl) + 5P~ d (anrpfla mnﬂ))
< SKnd(J,‘o, 3;‘1) + -4 Sp_lKn+p_2d(.’130,$1) + Sp_lKn+p_1d($0,$1)
<SK"(I+SK+ -+ SP2KP™2 + SP2KP~1) d (z0, 71)
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<SK"(I+SK+- -4 SPT2KP2 4 SPTIKP™H 4 ) d (2o, 21)
< SK™(I—SK) "d(xg,21).
Letting n — oo, we obtain that the sequence (x,) is Cauchy in X. By comp-

leteness of X, it follows that there exists * € X such that for any zg € X, the
sequence (z,) — x* when n — co. We have

dlz*, f(2%)] < Sd (2%, xny1) + Sd[wns1, f (7))
< 8d (2", xpi1) + SAd (2, 2") + SBd (2, Tnt1) + SCd [z, f (7))
< Sd (2", xny1) + SAd (zn, 2*) + SBK"™d (x0, 1) + SCd [z, f ()]
and thus,
dlz*, f (z")] < (I — SC) " Sd (2", 2ny1) + (I — SC) " SAd (2, 2*)
(I — SC)™" SBK™d (20, 21) .

_|_

Letting n — oo, we get that z* is a fixed point of f in X.
For the uniqueness, we suppose that y* € X is another fixed point of f with
y* # x*. Then

d(y*,x*) =d[f(y"), f ()] < Ad(y",2") + Bdly", f (y")| + Cd [", f (z7)].
It follows that
(I-A)d(y*,z*) <0.
Since (I — A) € Mym(Ry) and (I — A) # 0, we have the only one possibility
d(y*,z*) = 0 and thus, y* = z*.

Since in a generalized b-metric space d is not continuous in general, we will
use the following error estimate for the fixed point. For any n € N*, we have
d(zn,2") =d[f (zn1), f (2")] < Ad (2n—1,27) + Bd[zn—1, 2] + Cd 27, f (z7)]

< Ad(zy_1,2*) + BK" 'd (z9, 1)
< A[Ad (2y—2,2") + Bd (2 _2,2n_1)] + BK" " 'd (20, 21)
< A%d(xy_o,2") + ABK"%d (zg,2,) + BK"'d (zg,21)

n—1
<o <A™ (20, 27) + ZAiBK"_i_ld(xo,m).
i=0

Then

d(zg,x*) < Sd(xg,21) + Sd (x1,2%) < Sd(xg,21) + SAd (xg, ™) + SBd (zg, 1)
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and thus,
d(zo,x*) < (I —SA) "SI — B)d(x,x1).

Since SA € My, (R4) and SA < I it follows that SA is a matrix convergent
to zero and since S > I,0 < B < I, it follows that (I — SA)~1S(I — B) has
nonnegative elements.

Hence, f is a (I — SA)~1S(I — B)-Picard operator. O

It is known (see CZERWIK [9]) that if (X, d) is a generalized b-metric space,
then the functional H : Py . (X) X Py o (X) — [0,400]™ is a generalized b-metric
in Py (X). Also, if (X, d) is a complete generalized b-metric space, we have that
(Py,ci(X), H) is a complete generalized b-metric space. Notice that a generali-
zed Pompeiu-Hausdorff functional H : Py o (X) x Py o (X) — [0,4+00]™ can be
introduced in the setting of generalized b-metric spaces (H; is the vector-valued
Pompeiu-Hausdorff metric on P, . (X) generated by d;, where ¢ € {1,...,m})
and thus, the concept of a multivalued left A-contraction in Nadler’s sense can
be formulated.

Definition 3.16. Let Y C X be a nonempty set and let F : Y — Py (X)
be a multivalued operator. Then, F' is called a multivalued left A-contraction in
Nadler’s sense if A € My, ., (R4) is a matrix convergent to zero and

HI[F(z),F (y)] < Ad(z,y), foranyz,yeY.

Definition 8.17. Let (X,d) be a generalized b-metric space. Then F : X —
P (X) is a multivalued weak Picard operator (briefly MW P operator), if for each

z € X and y € F' (), there exists a sequence (x,),,y such that:

(i) zo =z, 21 = y;
(ii) Zni1 € F (x0);

(iii) the sequence (), oy is convergent to a fixed point of F.

Definition 3.18. Let (X,d) be a generalized b-metric space and let F :
X — P(X) be a MWP operator. Then we define the multivalued operator
F* : Graph (F) — P (Fix(F)) by the formula {F*(z,y) =z € Fix(F) : there
exists a sequence of successive approximations of F' starting from (x,y) that con-
verges to z}.

Definition 3.19. Let X, Y be two nonempty sets and let F': X — P (Y) be
a multivalued operator. Then a singlevalued operator f : X — Y is a selection
for F if f(x) € F' (x), for any z € X.
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Definition 3.20. Let (X, d) be a generalized b-metric space and let F: X —
P (X) be a MW P operator. Then F is a M -multivalued weak Picard operator
(briefly M-MW P operator) if M € M,, ,, (R4) and there exists a selection f>
of F*° such that d (z, f* (z,y)) < Md(z,y), for all (z,y) € Graph (F).

Now we present some fixed point theorems in generalized b-metric spaces for
multivalued operators.

Theorem 3.21. Let (X,d) be a complete generalized b-metric space with
S e Mpm(Ry),S > I and let F : X — Py(X) be a multivalued left A-
contraction in Nadler’s sense such that AS = SA and SA < I. Then F is a
(I — SA)™" S-multivalued weak Picard operator.

PROOF. Let zo € X such that z1 € F(zo). Let g €(1, ﬁ). For F(xg), F(x1)
and for x1 € F(xo), by Lemma 3.6, it follows that there exists zo € F(x1) such
that

d(xz1,22) < qH [F (x0), F (21)] < qAd (29, 21) .

For F (z1), F (z2) and for o € F (x1), there exists x5 € F (x2) such that
d(z2,x3) < qH [F (21), F (22)] < ¢Ad (z1,22) < (qA)Qd(xo,xl).
Inductively, there exists the sequence (z,) € X such that x,+; € F (z,) and
d(Tn,Tni1) < (qA)" d(zo,21), for any n € N*.
For any n € N and p € N*, we have

d (wm mnﬂ))

S Sd(xna xn-‘rl) +--+ Spild ($7L+p—27 xn-{-p—l) + Spild (mn-&-p—la x7z+p)

< S (qA)" [T+ + 772 (AP + 5772 (gAY | d (w0, 21)
<S(qA)" (T4 +¢° 28 2AP 2 4 g2 1P AP d (20, 1)
<S(qA)" (I+--+g" 2P 2AP 2 4 gP 1 P71 AP~ 4 ) d (20, 1)
< 8 (qA)* (I — gSA) " d(zo,x1).

Letting n — oo and using Lemma 3.8, we obtain that the sequence (), oy is
Cauchy in X. By completeness of X, it follows that there exists z* € X such

that for any z¢ € X, the sequence (z,) — x* when n — oco.
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We have

D[z*,F (%)) < Sd (2", 2n41) + SD [zpt1, F ()]
< Sd(z*,xpy1) + SH[F (z,), F (27)] < Sd (2", p11) + SAd (2, ")

and letting n — oo, we get that D [z*, F (z*)] = 0. By Lemma 3.2, it follows that

x* € F(z*). Hence, z* € F (z*).
Since in a generalized b-metric space d is not continuous in general, we will
use the following error estimate for the fixed point. For any n € N*, we have

d(zp,2*) = qH [F (xn-1), F (z%)] < qAd (zy—1,2") < --- < (qA)" d (w9, 27) .
Then
d(zg,x") < Sd(xg,21) + Sd (x1,2%) < Sd(zg, 1) + ¢SAd (x9,x™)

and thus,
d(zo,x*) < (I —qSA)™" Sd(zg,21) .

Letting ¢ \, 1, we get that
d(zo, ") < (I —SA)" Sd (z,x1).

Since SA € My, ., (Ry) and SA < I it follows that SA is a matrix convergent to
zero and since S > I, it follows that (I — SA)™" S has nonnegative elements.
Hence, F is a (I — SA)~" S-multivalued weak Picard operator. O

Remark 3.22. In a similar manner with the proof of Theorem 3.13 (using
Theorem 3.21) can be obtained existence results for the following integral inclusion
system in C (I, X;) x C (I, X3):

{xl (t) € M fot Ky (t,s,21(s),x2(s))ds (3.2)

2 (t) € Xo [y Ko (t, 5,21 (5) 2 (5)) ds
for t € I :==[0,a] (where \; € R, i € {1,2}).

Definition 3.23. Let Y C X be a nonempty set and let F': Y — P, (X) be a
multivalued operator. Then, F' is called a multivalued left (A, B, C')-contraction
if there exist the matrices A, B,C € M, ., (Ry), where A is convergent to zero
with A+ B+ C < I such that

H|[F(z),F(y)] < Ad(z,y) + BD [z, F(z)]+ CD |y, F(y)], forany z,y €Y.
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Theorem 3.24. Let (X,d) be a complete generalized b-metric space with
SeMpm(Ry), S>1 and let F: X — Py(X) be a multivalued left (A, B, C)-
contraction such that KS = SK, where K:= (I—qC)~*(A+B), ¢ €(1, m)
and SA < I. Then F is a (I — SA)~'S(I — B)-multivalued weak Picard operator.

PROOF. Let 9 € X such that 1 € F(xg). For F(x¢),F (x1) and for
x1 € F (z9), by Lemma 3.6, it follows that there exists xo € F (x1) such that

d(z1,22) < qH [F (x0), F (21)] < ¢Ad (z9,21)
+ gBD [zg, F(x0)] + qCD [z1, F(21)] < q(A+ B)d(xg,21) + qCd (21, x2) .

Thus,
d(z1,29) < q(I—qC) " (A4 B)d (g, ).

For F (z1), F (z2) and for o € F (x1), there exists x5 € F (x2) such that

d(w2,73) < qH [F (21), F (22)] < qAd (z1,22)
+ ¢BD [x1, F(21)] + qCD [22, F(22)] < ¢ (A+ B)d(x1,22) + qCd (22, x3) .

Thus,
d(z3,73) < q(I — qC) " (A + B)d(w1,22) < [q(I — ¢C) " (A + B)]*d(z0,71).
Inductively, there exists the sequence (z,,) € X such that x,+; € F(x,) and
d(Tn, 2pi1) < [q (I — qC) (A + B)]nd(xmxl), for any n € N*.

For any n € N and p € N*, we have

d (Tn, Tnp)
< Sd(@n, Tng1) + -+ ST (Tpgp—2y Tngp—1) + SPTH (Tnt o1, Trogp)
S (qK)" [ 4o 8P (KPP 4 5P (qK)pfl} d(xo, 1)
S(qR)" (I + -+ qP728P2KP=2 4 P 1P KP=Y) d (20, 71)
S(qE)" (I+---+qP 28 2KP=2 4 P SP L KP=1 ) d (w0, 1)
S ()" (I — SK) " d (z0,21). (+)

‘o 1 1
We show that K is convergent to zero and ATETO) = 5K
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Since A4, B,C € My, (Ry) and A+ B+ C < I, we have that (A+ B+ C)
is convergent to zero. It follows that ¢ (A + B + C) is convergent to zero and
thus, ¢ (A+ B+ C) < I. Then

A+B+qC<q(A+B+C)<I (3.3)
and
0<I—q(A+B+0C)<I—qC (3.4)

By (3.3) it follows that K < I and by (3.4) it follows that K € M,, », (Ry).
Thus, K is convergent to zero.
We observe that
0<C[I—-q(A+B+ ().

It follows that
A+ B<A+B+C—-qC(A+B+0C)
and thus,
(I-¢C) " (A+B)<A+B+C.
By the properties of spectral radius, we get that p (K) < p (A4 + B + C) and thus,

1 1
PATETO) = (R
Now, letting n — oo in (*) and using Lemma 3.8, we obtain that the sequence

(zp,) is Cauchy in X. By completeness of X, it follows that there exists z* € X
such that for any z¢ € X, x, — z* when n — oco.
We have

D[z*, F(z*)] < Sd(z*,xn+1) + SD[xnt1, F(z)]
< Sd(z*, xp41) + SH[F (zy,), F(z¥))
< Sd(z*, xpg1)+ SAd(xy, 2%)+ SBDxy, F(z,)] + SCDz*, F(z*)].
Thus,
0< D" F(x*)] < (I —-8C) " S[d(x* xny1) + Ad (2, 2*) + Bd (2, 2ni1)]

and letting n — oo, we get that D [z*, F (z*)] = 0. By Lemma 3.2, it follows that
z* € F (z*). Hence, z* € F (x*).
Since in a generalized b-metric space d is not continuous in general, we will
use the following error estimate for the fixed point. For any n € N*, we have
d(zp,x") =qH[F (xn-1),F (2%)] < qAd (xp—1,2%) + ¢Bd (xp—1, Tn)
< qAd (zp_1,2%) +qBK" 'd (20, 21)
< qA[qAd (2n—2,2) 4 ¢Bd (¥n—2,2n—1)] + ¢BK" "d (z¢, z1)
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< (qA)’d(zn-2,2%) + P ABK"?d (o, 21) + ¢BK"~"d (w0, 71)
<o < (gA)"d (o, 27) + Y g TABE" T d (wo, 1)
=0

Then
d(zo,x") < Sd(xg,z1) + Sd(x1,2") < Sd(zxo, 21) + ¢S Ad(z0, 2*) + ¢SBd(xo, 71)

and thus,
d(zg,2*) < (I — qSA)AS(I — B)d(xq,x1).

Letting ¢ \, 1, we get that
d(zg,z*) < (I — SA)™'S(I — B)d(zo, x1).

Since SA € My, m(R4) and SA < I it follows that SA is a matrix convergent
to zero and since S > I,0 < B < I, it follows that (I — SA)~1S(I — B) has
nonnegative elements.

Hence, F is a (I — SA)~1S(I — B)-multivalued weak Picard operator. [

We give some addition results for the strict fixed point set of F.

Theorem 3.25. If all the assumption of Theorem 3.24 holds and SFix(F)
is nonempty, then:
Fix(F) = SFix(F) = {z"}.

PROOF. By Theorem 3.24, it follows that a* € Fix (F). We suppose that
there exists y* € Fix (F) such that y* # z*. Then

d(y",2") = Dy*, F(z")] < H[F (y°) , F («7)]
< Ad(y",=%) + BD [y, F(y*)| + CD a7, F(2")] = Ad (y", =7) .

It follows that
(I —A)d(y*,z*) <0.

Since (I — A) € My, ,m (Ry) and (I — A) # 0, we have the only one possibility
d(y*,z*) = 0 and thus, y* = z*. Hence, Fix (F)) = {#*}. On the other hand,
since SFix (F') is nonempty and SFix (F') C Fix (F) = {z*}, we conclude that
Fix (F) = SFix (F) = {z*}. O
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Theorem 3.26. Let (X,d) be a complete generalized b-metric space with
S € MpymRy), S > 1T and let F : X — Py(X) be such that A,B,C €
M m(Ry), where A is convergent to zero with A+ B+ C < I, KS = SK,
where K := (I — C)"'(A+ B), SA < I and

6 [F(z), F(y)] < Ad(x,y) + B [z, F(x)] + Cé [y, F(y)], for any z,y € X.

Then SFix (F) = {z*}.

PRrROOF. Let ¢ € (1, m). For {z}, F(z) and for x € X it follows that
there exists a selection f: X — X, f () € F (x) such that

dle, F(2)] < qdlz, f (2)].
We have
d[f (x), f(y)] <O[F (z), F(y)] < Ad(z,y)
+ B[z, F(z)] + Co [y, F(y)] < Ad(2,y) + ¢Bd [z, f (z)] + ¢Cd[y, f (y)]-

Since A, B,C € My,m (Ry) and A+ B+ C < I, we have that (A+ B+ C) is
convergent to zero. It follows that ¢ (A + B + C) is convergent to zero and thus,
q(A+ B+ C) < I. Then

A+qB+qC <q(A+B+C)< I

By Theorem 3.15, it follows that there exists a unique z* € X such that 2* =
f(z*) € F(x*), ie., 2* € Fix (F).

We show that z* € SFix (F'). We have

0<d[z",F (")) <I[F (z"),F (%) < Ad (2", x™)
+ Bo[z*, F(z*)] + Co [z*, F(z")] = (B+ C) 6 [z*, F(z¥)] .
It follows that
0<(I-B-C)d[z", F(z™)] <0.

Since (I = B—-C) € My, (Ry) and (I — B—C) # 0, we have the only one
possibility § [z*, F/(2*)] = 0 and thus, we obtain that F (z*) = {z*}.

For the uniqueness, we suppose that there exists y* € SFix (F) such that
y* # x*. Then

d(z"y") =0 [F (z7), F (y)]
< Ad(z*,y")+ B[z, F(z")]+ Cé[y*, F(y*)] = Ad (", y") .
It follows that
(I —-A)d(z*,y*) <0.

Since (I — A) € My (Ry) and (I — A) # 0, we have the only one possibility
d(y*,z*) = 0 and thus, y* = z*. Hence, SFix (F) = {z*}. O
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Remark 3.27. If we choose B = C = 0 in Theorem 3.26 implies that
d[F(z),F(z)] = 0, for any x € X which yields that F' is a singlevalued ope-
rator. Therefore the statement of Theorem 3.26 is nontrivial if B + C > 0.

References

[1] I. A. BakuTiN, The contraction mapping principle in quasimetric spaces, Funct. Anal.,
Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.

[2] V. BERINDE, Seminar on Fixed Point Theory, Preprint, no. 3, 1993, 3-9.
[3] L. M. BLuMENTHAL, Theory and Applications of Distance Geometry, Ozford, 1953.

[4] M. Boriceanu, A. PeTruseL and I. A. Rus, Fixed point theorems for some multivalued
generalized contractions in b-metric spaces, Int. J. Math. Stat. 6 (2010), 65-76.

[5] M. BorICEANU, Strict fixed point theorems for multivalued operators in b-metric spaces,
Int. J. Mod. Math. 3 (2009), 285-301.

[6] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with
two b-metrics, Studia Univ. Babes-Bolyai, Mathematica 3 (2009), 3-14.

[7] M. Bota, Dynamical Aspects in the Theory of Multivalued Operators, Cluj University
Press, 2010.

[8] N. BourBaki, Topologie Générale, Herman, Paris, 1974.

[9] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat.
Univ. Modena 46 (1998), 263-276.

[10] M. FrEcHET, Les Espaces Abstraits, Gauthier-Villars, Paris, 1928.

[11] J. HEINONEN, Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin, 2001.

[12] J. Jacuywmski, J. MaTrkowsk and T. SwiaTrkowskI, Nonlinear contractions on semimetric
spaces, J. Appl. Anal. 1 (1995), 125-134.

[13] D. O’REecaN, R. Precup, Continuation theory for contractions on spaces with two vec-
tor-valued metrics, Appl. Anal. 82 (2003), 131-144.

[14] I.-R. PEeTRE, Fixed point theorems in vector metric spaces for single-valued operators,
Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approz. Convezity 9 (2011), 59-80.

[15] I.-R. PeTRE and A. PeTRUSEL, Krasnoselskii’s Theorem in generalized Banach spaces and
applications, FElectron. J. Qual. Theory Differ. Equ., no. 85 (2012), 1-20.

[16] A. PETRUSEL, Multivalued weakly Picard operators and applications, Sci. Math. Jpn. 59
(2004), 169-202.

[17] A. PerrusiL and I. A. Rus, Fixed point theoy for multivalued operators on a set with
two metrics, Fized Point Theory 8 (2007), 97-104.

[18] R. Precup, The role of matrices that are convergent to zero in the study of semilinear
operator systems, Math. Comput. Modelling 49, no. 3-4 (2009), 703-708.

[19] I. A. Rus, Principles and Applications of the Fixed Point Theory, Dacia, Cluj-Napoca,
1979.

[20] S. L. SingH, C. BHATNAGAR, Stability of iterative procedures for multivalued maps in
metric spaces, Demonstratio Math. 37 (2005), 905-916.



Fixed point theorems on generalized b-metric spaces 159

[21] R. S. VARrGA, Matrix Iterative Analysis, Vol. 27, Springer Series in Computational Mathe-
matics, Springer-Verlag, Berlin, 2000.

IOAN-RADU PETRE

DEPARTMENT OF APPLIED MATHEMATICS
BABES-BOLYAI UNIVERSITY

1, KOGALNICEANU STR.

400084, CLUJ-NAPOCA

ROMANIA

E-mail: ioan.petre@ubbcluj.ro

MONICA BOTA

DEPARTMENT OF APPLIED MATHEMATICS
BABES-BOLYAI UNIVERSITY

1, KOGALNICEANU STR.

400084, CLUJ-NAPOCA

ROMANIA

E-mail: bmonica@math.ubbcluj.ro

(Received May 12, 2012; revised October 11, 2012)



