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On expanding real polynomials with a given factor

By HORST BRUNOTTE (Düsseldorf)

Abstract. Let f be a monic polynomial with real coefficients all of whose roots

lie outside the closed unit disk and are non-positive. It is proved that f is a factor

of a polynomial all of whose coefficients are non-negative and satisfy a rather strong

boundedness condition. This result is applied to polynomials f with integer coefficients.

It is shown that f is a factor of a so-called CNS polynomial provided f has at most one

pair of complex-conjugate roots.

1. Introduction

Let f be a monic polynomial with real coefficients such that no root of f is

non-negative. E. Meissner [23] and A. Durand [9, Théorème 2] showed that f

is a factor of a polynomial F with only non-negative coefficients. Moreover, such

a polynomial F of minimal degree can effectively be computed [12].

Here we further restrict to polynomials f all of whose roots lie outside the

closed unit disk. In the first part of this note we show that there exists a real

polynomial g such that the coefficients of the product fg are all non-negative

and satisfy a rather strong boundedness condition (see Theorem 9). However,

our proof of the existence of the polynomial g is nonconstructive because we use

uniform distribution of irrationals modulo one.

In the second part we apply this result to polynomials f with integer coeffi-

cients and give a condition which guarantees that f is a factor of a so-called CNS

polynomial. Let us briefly explain this notion. CNS polynomials1 were introduced

by A. Pethő [25] and are defined as follows. The monic nonconstant polynomial

Mathematics Subject Classification: 11C08, 11B83, 12E05, 11R04.
Key words and phrases: real polynomials, expanding polynomials, CNS polynomials.
1CNS polynomials are named complete base polynomials in [13].
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f ∈ Z[X] with non-vanishing constant term is called a CNS polynomial if for all

A ∈ Z[X] there exists a B ∈ {0, . . . , |f(0)| − 1} [X] such that A ≡ B (mod f).

Among other things it is known that the roots of CNS polynomials lie outside the

closed unit disk and are non-positive. Moreover, there is an algorithm to decide

the CNS property of a given polynomial [29], [8], [13]. On the other hand, the

characterization of CNS polynomials has remained an open problem. G. Barat

et al. [7] provided a detailed account on the historical development and the con-

nections of the concept of canonical number systems to other theories, e.g. shift

radix systems, finite automata or fractal tilings.

Recently, A. Pethő [26] put forward the following question: If f ∈ Z[X]

is a monic polynomial all of whose roots lie outside the closed unit disk and are

non-positive is it true that f is a factor of a CNS polynomial? Here we show that

the answer to this question is affirmative if f has at most one pair of complex-

conjugate roots (see Theorem 12). Furthermore, we associate to f a non-negative

quantity γ(f) which might be interpreted as a distance from f to the class of CNS

polynomials. We discuss several examples and show that for f without complex

roots a CNS polynomial which admits f as a factor can effectively be computed

(see Theorem 14). For a quadratic polynomial f we construct an upper bound

for γ(f); an analogous bound for cubic f will be reported elsewhere. Finally, we

list some properties of the quantity γ(f).

2. Real polynomials with expanding roots and a given factor

Let us fix some notation. For f ∈ R[X] we denote by Ωf the multiset of

roots of f and by L(f) the length of f , i.e., the sum of the absolute values of the

coefficients of f . Our main interest lies in the set E of real monic polynomials f

of positive degree such that every root α of f is expanding, i.e., all conjugates of

α (including α itself) lie outside the closed unit circle (this notion was coined in

[4, Introduction]).

The main tool of our approach are polynomials of the form (1) below. We

prepare their application by a series of simple observations. The statements of

the first lemma follow directly from the definitions.

Lemma 1. (i) E is closed under multiplication.

(ii) If f ∈ E and g ∈ R[X] is a nonconstant monic divisor of f then g ∈ E .

We will make use of the following property of the length function (see [22]).
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Lemma 2. For f, g ∈ R[X] we have

L(fg) ≤ L(f)L(g).

A central role in our consideration is played by the polynomials

Gn(f) =
∏

α∈Ωf

(
Xn − αn

)
(n ∈ N) (1)

whose properties are collected now.

Lemma 3. Let f ∈ R[X] be monic and n ∈ N>0.

(i) The polynomial Gn(f) has real coefficients, f divides Gn(f), and we have

deg(Gn(f)) = n deg(f) and Gn(f)(0) = f(0)n.

Moreover, if f ∈ Z[X] then bothGn(f) andGn(f)/f have integer coefficients.

(ii) If g ∈ R[X] is monic then

Gn(fg) = Gn(f)Gn(g).

(iii) If f ∈ E then we have Gn(f) ∈ E .
Proof. (i) This is well known (cf. [4, proof of Lemma 8]).

(ii), (iii) Trivial. ¤

For ρ ∈ R>0 we let

Dρ = {f ∈ R[X] : f monic and L(f) < (1 + ρ) |f(0)|}
and

D+
ρ = Dρ ∩ R≥0[X].

Plainly, we have 1 ∈ D+
ρ .

Lemma 4. (i) For σ1, . . . , σm ∈ R>0 we have

Dσ1 · · · Dσm ⊆ Dρ

where we set

ρ = (1 + σ1) · · · (1 + σm)− 1.

(ii) For 0 < σ ≤ ρ we have Dσ ⊆ Dρ.
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Proof. (i) Applying Lemma 2 to fi ∈ Dσi
we find

L(f1 · · · fm) ≤ L(f1) · · ·L(fm) < (1 + σ1) |f1(0)| · · · (1 + σm) |fm(0)|
= (1 + ρ) |(f1 · · · fm)(0)| .

(ii) Obvious. ¤

Our goal is to find a multiple of f ∈ E with non-negative coefficients and

bounded length. The main ingredients are Lemmas 5 and 8 below.

Lemma 5. If f ∈ E and ρ ∈ R>0 then Gn(f) ∈ Dρ for all n ∈ N such that

n > − log
(
(1 + ρ)1/ deg(f) − 1

)

log |µ|

where µ ∈ C is a root of minimal modulus of f .

Proof. For the sake of completeness we include a slightly adapted copy of

[4, proof of Lemma 8]. Let d = deg(f), Ωf = {α1, . . . , αd} and define

G :=

d∑

i=0

giX
i :=

d∏

i=1

(
X − αn

i

)
.

Then we have

1

|g0| +
|gd−1|
|g0| + · · ·+ |g1|

|g0| + 1

= 1 +

∣∣∣∣∣
∑

1≤i≤d

α−n
i

∣∣∣∣∣+
∣∣∣∣∣

∑

1≤i<j≤d

α−n
i α−n

j

∣∣∣∣∣+ · · ·+
∣∣∣∣∣
∏

1≤i≤d

α−n
i

∣∣∣∣∣

≤
∏

1≤i≤d

(
1 +

∣∣α−n
i

∣∣
)
≤

(
1 +

∣∣µ−n
∣∣
)d

< 1 + ρ,

hence

L(Gn(f)) = L(G(Xn)) = L(G(X)) < (1 + ρ) |g0|
= (1 + ρ) |G(0)| = (1 + ρ) |Gn(f)(0)|

and therefore Gn(f) ∈ Dρ. ¤

We prepare the proof of Lemma 8 below and start with some auxiliary results.

For x ∈ R we denote by ‖x‖ the distance from x to the nearest integer.
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Lemma 6. Let u, v,N ∈ N and assume (u, v) = 1 and v > 1. Then there is

some n ≥ N such that ∥∥∥n · u
v

∥∥∥ ≥ c

where we set c = 1/3. Furthermore, if v 6= 3 we can choose c = 2/5.

Proof. First, let v be even. Choose an odd t with t ≥ 2N/v and set

n = (tv)/2. Then n ≥ N and tu = 2k + 1 with some k ∈ N. Therefore we have

n · u
v
=

tuv

2v
=

2k + 1

2
= k +

1

2

which implies ∥∥∥n · u
v

∥∥∥ =
1

2
> c.

Second, let v = 2w + 1 be odd. By an obvious modification of [28, Lemma A.3]

there exist n ≥ N and z ∈ Z such that

w = nu+ zv.

We verify

n · u
v
=

w − zv

v
=

w

v
− z =

v − 1

2v
− z = −z +

1

2
− 1

2v

which implies ∥∥∥n · u
v

∥∥∥ =
1

2
− 1

2v
≥ c. ¤

Lemma 7. Let θ ∈ (0, π) and N ∈ N. Then there is some n ≥ N such that

∥∥∥∥n · θ

2π

∥∥∥∥ ≥
{
2/5, if θ < 2π/3,

1/3, otherwise.

Proof. If ρ := θ/(2π) is irrational then our assertion is a consequence of

the uniform distribution modulo one of the sequence (nρ)n∈N (e.g., see [14, The-

orem 1.59]). Otherwise, let u, v ∈ N>0 such that (u, v) = 1 and ρ = u/v. Clearly,

v > 1 and we can apply Lemma 6. ¤

Lemma 8. Let θ ∈ (0, π) and N ∈ N. Then there exists an odd n ≥ N such

that cos(nθ) ≤ 0.
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Proof. We first let θ ≤ π/2. From Lemma 7 we infer the existence of

k, ` ∈ N such that k ≥ N + 1 and

(
2`+

4

5

)
π ≤ kθ ≤

(
2`+

6

5

)
π. (2)

If k is odd we are done because

2`π +
π

2
< kθ < 2`π +

3π

2
.

Otherwise we distinguish several subcases.

Case 1. (k − 1)θ ≥ (2`+ 1/2)π

Set n = k − 1 and observe nθ < (2`+ 3/2)π.

Case 2. (k − 1)θ < (2`+ 1/2)π

As (k − 1)θ > (2(`− 1) + 1/2)π we are done if (k − 1)θ ≤ (2(`− 1) + 3/2)π.

Otherwise, we take n = k + 1 because then by (2) and our prerequisites

(
2`+

1

2

)
π <

(
2`+

4

5

)
π ≤ nθ ≤

(
2`+

1

2
+ 1

)
π =

(
2`+

3

2

)
π.

Now, we let θ > π/2 and pick an even L such that

θ ≤ L

L+ 1
· π.

Again using Lemma 7 we find k, ` ∈ N such that

k ≥ N + L+ 2 (3)

and (
2`+

2

3

)
π ≤ kθ ≤

(
2`+

4

3

)
π.

If k is odd we are done. Otherwise, we set

θν = (k + L− (2ν + 1))θ, bν =

(
2

(
`+

L

2
− (ν + 1)

)
+

1

2

)
π,

Bν =

(
2

(
`+

L

2
− (ν + 1)

)
+

3

2

)
π (ν ∈ Z).

Similarly as above, we deal with several subcases.

Case 1. θ−1 ≥ b−1
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Set n = k + L+ 1 and observe

nθ ≤
(
2`+

4

3
+ L

)
π < B−1.

Case 2. θ−1 < b−1

Set c = 2`+ 2/3 and assume ν ≥ −1 and θν < bν . Then we have

c(k + L− 2ν − 1) =
cBν

θ
<

cbν
θ

≤ k

(
2`+ L− 2ν − 3

2

)
,

hence

2ν(k − c) < k

(
L+ 2`− 3

2
− c

)
− c(L− 1) < k(L− 2)− c(L− 1)

which yields

2ν <
k(L− 2)− c(L− 1)

k − c
. (4)

Moreover we find

θν+1 = θν − 2θ < Bν − 2θ = Bν+1.

Thus there is a maximal ν ∈ N such that θν < bν , and we choose

n = k + L−(
2(ν + 1) + 1

)
.

By this choice we have

bν+1 ≤ nθ = θν+1 < Bν+1

and n ≥ N because

k > c · L+ 1

L+ 2
,

hence
k(L− 2)− c(L− 1)

k − c
< 2L

and finally

n > k + L− k(L− 2)− c(L− 1)

k − c
− 3 > k − L− 3 ≥ N − 1

by (4) and (3). ¤



168 Horst Brunotte

It was shown by E. Meissner [23] andA. Durand (see [9, Théorème 2]) that

every real polynomial f without non-negative roots is a factor of a polynomial F

with only non-negative coefficients. We are now in a position to show that F can

be chosen in D+
ρ for a given positive ρ provided that every root of f is expanding.

For convenience we denote by cf the number of pairs of complex-conjugate roots

of f . Further, we use the notation

E− = {f ∈ E : Ωf ∩ R>0 = ∅} ,

i.e., we are dealing with the set of nonconstant monic real polynomials all of whose

roots are expanding and non-positive.

Theorem 9. Let f ∈ E− and ρ ∈ R>0.

(i) If cf = 0 then there exists N ∈ N such that for all odd n ≥ N we have

Gn(f) ∈ D+
ρ .

(ii) Let cf = 1 and N ∈ N. Then there is an odd n ≥ N such that Gn(f) ∈ D+
ρ .

(iii) There exists a polynomial g ∈ E− ∪ {1} such that gf ∈ D+
ρ .

Proof. (i) Lemma 5 yieldsGn(f) ∈ Dρ. As n is oddGn(f) can be written as

a product of polynomials with non-negative coefficients and our assertion follows.

(ii) We use induction on deg(f) and first let deg(f) = 2, hence f = (X − α)

(X − ᾱ) with α ∈ C and =(α) 6= 0. We may assume α = |α| eiθ with 0 < θ < π.

Lemma 8 yields an odd

n ≥ max

{
N,

log 3− log ρ

log |α|
}

such that cos(nθ) ≤ 0. Then

Gn(f) = X2n − 2<(αn)Xn + |α|2n

has non-negative coefficients, and by our choice of n we have

L(Gn(f)) < (1 + ρ) |α|2n ,

i.e., Gn(f) ∈ D+
ρ . Now, let deg(f) > 2. Using Lemma 1 (ii) we write

f = qg (q, g ∈ E−, deg(q) = 2, cq = 1) (5)

and pick a real σ with

0 < σ ≤
√
1 + ρ− 1. (6)

Clearly, cg = 0. By (i) there is some N such that for all odd n ≥ N we have
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Gn(g) ∈ D+
σ , and by what we have just seen there is an odd n ≥ N such that

Gn(q) ∈ D+
σ . By Lemma 3 (ii) and Lemma 4 (i) we find

Gn(f) = Gn(q)Gn(g) ∈ D+
σ D+

σ ⊆ D+
ρ .

(iii) We proceed by induction on cf and observe that the case cf < 2 is

settled by (i), (ii), Lemma 3 (i) and (iii) because the quotient Gn(f)/f belongs to

E∩R≥0[X] and thus does not have a non-negative root. Therefore, let cf ≥ 2 now.

Let us pick a σ with (6) and again factorize f as in (5), thus in particular cg < cf .

By (ii) there is some n such that Gn(q) ∈ D+
σ , and by induction hypothesis we

find h ∈ E− ∪ {1} such that hg ∈ D+
σ . In view of Lemma 3 (i) we deduce

h · Gn(q)

q
· f = h · Gn(q)

q
· q · g = (hg)Gn(q) ∈ D+

σ D+
σ ⊆ D+

ρ . ¤

We point out that in general the product gf in Theorem 9 (iii) cannot be

replaced by Gn(f) for some positive n: For instance, let ζ be a primitive fifth

root of unity and set α = (4 +
√
5)ζ and β = (4−√

5)ζ2. The polynomial

f = (X − α)(X − ᾱ)(X − β)(X − β̄) (7)

belongs to E−, and we have cf = 2 and

<(αn)<(βn) < 0 (n ∈ N>0).

If we assume Gn(f) ∈ R≥0[X] for some positive n then Lemma 10 below would

imply

0.3 <

(
4−√

5

4 +
√
5

)n

· 0.81 ≤ 4−√
5

4 +
√
5
· 0.81

which is absurd.

Lemma 10. Let a, b, u, v ∈ R, n ∈ N>0. If

a, b ≥ 1, uv ≤ 0, and (X2n−2anuXn+a2n)(X2n−2bnvXn+b2n) ∈ R≥0[X]

then we have

max {u, v} ≤
(
min {a, b}
max {a, b}

)n

|min {u, v}| .
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Proof. By our prerequisites we have

anu+ bnv ≤ 0 and anv + bnu ≤ 0.

Without loss of generality we may assume u ≥ 0, hence

max {u, v} = u and min {u, v} = v.

If a ≤ b we have

an |v| = −anv ≥ bnu,

hence

u ≤ (a/b)n |v| .
The case a > b can be treated analogously. ¤

3. Application to polynomials with integer coefficients

We let A be the set of monic integer polynomials f of positive degree such

that every root α of f satisfies the following conditions:

• α is expanding.

• If α is real then α is negative.

These properties were named analytical conditions in [1]. Using the notation of

the previous section we can write

A = E− ∩ Z[X].

We aim at giving conditions which guarantee that f ∈ A is a factor of a CNS

polynomial. Some background on the class C of CNS polynomials is required in

Example 13 below, and we refer the reader to [25], [1], [7].

Let us first collect some properties ofA. The last statement Proposition 11 (v)

is not needed here, we just mention it for the sake of completeness.

Proposition 11. (i) C is contained in A.

(ii) A is multiplicatively closed.

(iii) If g ∈ Z[X] is a non-constant monic divisor of some f ∈ A then g ∈ A.

(iv) Let f ∈ A. Then f(0) ≥ 2, f(−1) ≥ 1 and f(1) ≥ 1.

(v) If f ∈ A then every root of f is a positively algebraic integer.2

2For the definition see [21, Section 2].
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Proof. (i) See for instance [1, Theorem 2.1].

(ii), (iii) Clear by the definitions.

(iv) Trivial.

(v) Clear by [15]. ¤

In order to decide the above mentioned question it actually is enough do deal

with polynomials with only positive coefficients because we have the following

result: For f ∈ A there exists a non-negative integer m bounded by an effectively

computable constant such that (X + 2)mf has only positive coefficients (for a

proof see for instance [11, Lemma 2]). However, so far we cannot exploit this fact

for our purposes here. Therefore we proceed differently and give the following

partial answer to the question raised above.

Theorem 12. Let f1, . . . , fm ∈ A and assume that each polynomial fi has

at most one pair of complex conjugate roots (i = 1, . . . ,m). Then the product

f1 · · · fm is a factor of a CNS polynomial.

Proof. Let

σ = 21/m − 1

and i ∈ {1, . . . ,m}. As cfi ≤ 1 we infer from Theorem 9 and Lemma 3 (i), (iii)

that there is some ni ∈ N such that

Gni(fi) ∈ D+
σ ∩ E , gi := Gni(fi)/fi ∈ Z[X].

All coefficients of Gni(fi) are non-negative, hence using Lemma 4 (i)

(g1 · · · gm)(f1 · · · fm) = Gn1
(f1) · · ·Gnm

(fm) ∈ D1 ∩ N[X] ⊂ C
by [6, Theorem 3.2]) or [18]. ¤

We define a function γ : A → N ∪ {∞} by

γ(f) = inf {deg(g) : g ∈ Z[X], gf ∈ C} .
Thus γ(f) might be interpreted as a distance from f to the set of CNS polyno-

mials. Clearly, f ∈ C is equivalent to γ(f) = 0. A polynomial g ∈ Z[X] such that

gf ∈ C and deg(g) = γ(f) is called a CNS multiplier of f .

Our examples show that in favorable cases the computation of γ(f) or the

determination of bounds for γ(f) can be easy. We need the well known charac-

terization of linear and quadratic CNS polynomials (for proofs see for instance

[17], [2, Remark 4.5] and [19], [20], [16], [10], [30], [6], respectively):

X + c ∈ C ⇐⇒ c ≥ 2
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and

X2 + bX + c ∈ C ⇐⇒ −1 ≤ b ≤ c ≥ 2.

Example 13. (i) It is known [27], [24] that the cubic polynomials

f ∈ {X3 + 80X2 + 117X + 89, X3 + 97X2 + 143X + 109,

X3 + 173X2 + 257X + 198, X3 + 410X2 + 611X + 473}

have the property f ∈ C, but f +1 /∈ C. Thus we expect that γ(f +1) should

be small. Indeed, in all four cases we see γ(f + 1) = 1 because we easily

check

(X + 4) · (f + 1) ∈ C.
(ii) Let f = X2 − 2X + 6 and g = X3 + 2X2 + 3, thus f /∈ C by the well known

characterization of quadratic CNS polynomials and g /∈ C by [10, Theorem 3].

Using an algorithm mentioned above we can check that the product

p := fg = X5 + 2X3 + 15X2 − 6X + 18

is a CNS polynomial. We remark that γ(f) = 1 (e.g., by Proposition 16

below) and also γ(g) = 1 because the product

(X + 2) · g = X4 + 4X3 + 4X2 + 3X + 6

is a CNS polynomial as can be checked algorithmically.

We resume that f, g provide an example of non-CNS polynomials whose

product is a CNS polynomial. Thereby we answer a question of Ch. van der

Woestijne [31, Section 4]. It is easy to see that the degree of such a product

must be at least five.

Moreover, as both f and g are irreducible we observe that p is a reducible

CNS polynomial without a CNS factor of degree less than deg(p).

(iii) The roots of the polynomial f = X4 − X3 + 31X2 + 99X + 121 given by

(7) are the conjugates of α = (4 +
√
5)ζ and β = (4 − √

5)ζ2 where ζ is a

primitive fifth root of unity. We easily check f /∈ C because (0, 0, 1, 0) ∈ Z4

is periodic3 (of period length 3), but

(X + 6) · f = X5 + 5X4 + 25X3 + 285X2 + 715X + 726 ∈ C

by Kovács’ Theorem [3, Theorem 2.3]. Therefore we find γ(f) = 1.

3The reader is referred to [2] for the necessary background.
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Now we show that for every monic integer polynomial f all of whose roots

are real and less than −1 we can construct a CNS polynomial which admits f as

a factor.

Theorem 14. Let f ∈ A have degree d and assume that f has only real

roots. Let n be an odd integer with

n > − log(21/d − 1)

log(−r)

where r is a maximal root of f . Then we have

γ(f) ≤ (n− 1)d,

and we can effectively compute a polynomial g ∈ Z[X] such that gf is a CNS

polynomial.

Proof. Using Lemma 5 we choose an odd integer n with

Gn(f) ∈ D+
1

and we set g := Gn(f)/f . Thus gf ∈ C by [6, Theorem 3.2]) or [18]. ¤

Let us take a closer look at quadratic polynomials. Firstly, we give the γ-

values of some quadratic polynomials in A. In view of the description of CNS

polynomials of degree at most 2 we observe that in all cases dealt with in Propo-

sition 15 multipliers can be found which are CNS polynomials themselves.

Proposition 15. Let f = X2 + bX + c ∈ A.

(i) We have c ≥ 2 and −2
√
c < b ≤ c.

(ii) γ(f) = 0 if and only if −1 ≤ b ≤ c.

(iii) γ(f) = 1 if and only if −√
c+ 1 ≤ b ≤ −2. In this case X − b is a CNS

multiplier of f .

(iv) If −√
2c+ 1 ≤ b < −√

c+ 1 then γ(f) = 2 and X2 − bX + c is a CNS

multiplier of f .

(v) If b2 ≥ 4c then b ≥ 0 and γ(f) = 0.

Proof. (i) We have c ≥ 2 by Proposition 17 and |b| ≤ c by [4, Lemma 11].

Inspecting the roots of f we check b > −2
√
c.

(ii) Clear by (i) and the characterization of quadratic CNS polynomials cited

above.
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(iii) Let γ(f) = 1 and r ∈ Z with

(X + r) · f = X3 + (r + b)X2 + (c+ br)X + cr ∈ C.
Then b ≤ −2 by (ii), and [3, Theorem 3.1] yields r ≥ −b ≥ 2 and c+br ≥ b+r−1,

hence

b2 − 1 = (−b− 1)(1− b) ≤ (r − 1)(1− b) ≤ c

and b2 ≤ c+ 1.

Conversely, let b ≥ −√
c+ 1. Then γ(f) > 0 by (i), and

(X − b) · f = X3 + (c− b2)X − bc ∈ C
by [3, Proposition 3.2].

(iv) Clearly, we have γ(f) > 1 by (ii) and (iii). Further, we find

(X2 − bX + c) · f = X4 + (2c− b2)X2 + c2 ∈ C
by [10, Theorem 1].

(v) We have b ≥ 0 by (i), and we finish the proof using (ii). ¤

Secondly, we establish effectively computable bounds for the γ-values of non-

CNS quadratic polynomials with negative discriminants.

Proposition 16. Let f = X2 − bX + c ∈ A \ C and assume b2 < 4c.

(i) We have 2 ≤ b < 2
√
c.

(ii) Let b = 2. If c = 2 then γ(f) = 2 and X2 +2X +2 is a CNS multiplier of f .

If c ≥ 3 then γ(f) = 1 and X + 2 is a CNS multiplier of f .

(iii) Let b ≥ 3 and θ ∈ (0, π/2) such that cos θ = b/(2
√
c ). Then

γ(f) ≤ 2(2n − 1)

where the integer n is determined by the inequalities
π

2n+1
≤ θ <

π

2n
.

Proof. (i) Clear by Proposition 15 (i).

(ii) Clear by Proposition 15 (iii) and (iv).

(iii) With α :=
√
c eiθ we easily check

<(α2n
)
= c2

n−1

cos(2nθ) ≤ 0

0 ≤ −2 <(α2n
) ≤ |α|2n+1

= c2
n

.

Therefore

G2n(f) = X2n+1 − 2<(α2n
)
X2n + |α|2n+1 ∈ C

by [10, Theorem 1], and we easily conclude the proof using Lemma 3 (i). ¤
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We conclude by listing some simple properties of the function γ.

Proposition 17. Let f ∈ A.

(i) γ(f) > 0 if and only if there are polynomials h ∈ Z[X],

g ∈ {0, 1, . . . , f(0)− 1} [X]\{0} and a positive integer n such that deg(g) < n

and hf ≡ g (mod Xn − 1).

(ii) Let 0 < γ(f) < ∞ and g ∈ Z[X] such that gf is a CNS polynomial. Then

g ∈ A, γ(g) ≤ deg(f) and

g(1) ≥ f(0)

f(1)
· g(0).

(iii) Let γ(f) < ∞ and g ∈ Z[X] be a monic divisor of f of positive degree. Then

g ∈ A and

γ(g) ≤ γ(f) + deg(f)− deg(g).

(iv) Let f(1) = 1. Then γ(f) ≥ 2, and f(0) ≥ 3 implies γ(f) ≥ 3.

(v) For g ∈ A we have

γ(fg) ≥ max {γ(f)− deg(g), γ(g)− deg(f)} .

(vi) Let p ∈ C and n,m ∈ N>0 such that Gn(f) = p(Xm). Then we have

γ(f) ≤ m deg(p)− deg(f).

(vii) If γ(f) < ∞ then each root of f has the height reducing property4 with the

set

{0, 1, . . . , kf(0)− 1}
for some positive integer k.

Proof. (i) Clear by [18, Theorem 4].

(ii) In view of Proposition 11 (i) and (ii) the first two statements are obvious.

By [5, Lemma 2] we have

f(1)g(1) = (fg)(1) ≥ (fg)(0) = f(0)g(0),

hence the assertion is clear by Proposition 11 (iv).

(iii) This is an obvious consequence of the definitions.

(iv) We use [5, Lemma 2] and first observe f /∈ C, hence γ(f) > 0. Then the

assumption γ(f) = 1 leads to the existence of some r ∈ N≥2 such that

p := (X + r) · f ∈ C.
4For the definition see [4, Section 1].
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But this yields the contradiction

2r ≤ p(0) ≤ p(1) = 1 + r.

Now, let f(0) ≥ 3 and assume that there are r, s ∈ Z such that

p := (X2 + sX + r) · f ∈ C.

Having in mind that the first factor belongs to A and using s ≤ r ≥ 2 (see

Proposition 15 (i)) we similarly deduce the contradiction

3r ≤ p(0) ≤ p(1) = 1 + s+ r ≤ 1 + 2r.

(v) In case γ(fg) = ∞ then our assertion trivially holds. Therefore, let γ(fg) < ∞
and assume

γ(fg) < max {γ(f)− deg(g), γ(g)− deg(f)} .
Then there exists h ∈ Z[X] such that h(fg) ∈ C and

deg(h) = γ(fg) < max {γ(f)− deg(g), γ(g)− deg(f)} .

W.l.o.g. we may suppose deg(h) < γ(f)− deg(g). As (hg)f ∈ C we have

γ(f) ≤ deg(hg) = deg(h) + deg(g)

which implies the impossibility

deg(h) ≥ γ(f)− deg(g).

(vi) Clear by the definitions.

(vii) By assumption there is some g ∈ Z[X] such that p := gf is a CNS

polynomial, hence g = 1 or g ∈ A by (ii), thus k := g(0) ≥ 1 by Proposition 11

(iv). Let β ∈ Z[α], thus we can write β = h(α) with some h ∈ Z[X]. We find

r ∈ {0, 1, . . . , kf(0)− 1} [X] with h ≡ r (mod p). Let h = r + pt with t ∈ Z[X],

thus

β = r(α) + (pt)(α) = r(α) + g(α)f(α)t(α) = r(α). ¤
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Pethő for putting forward the CNS polynomial problem mentioned in the intro-

duction. This problem was the main motivation for the present note. Further, the

author thanks the anonymous referees for very carefully reading the first version

of this note.



Expanding real polynomials with a given factor 177

References
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[7] G. Barat, V. Berthé, P. Liardet and J. Thuswaldner, Dynamical directions in nume-
ration, Ann. Inst. Fourier (Grenoble) 56 (2006), 1987–2092, Numération, pavages, substi-
tutions.
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