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Projective change between arbitrary (α, β)-metric
and Randers metric

By DAXIAO ZHENG (Shanghai) and QUN HE (Shanghai)

Abstract. In this paper, we study a special class of Finsler metrics: (α, β)-metric,

and obtain some necessary and sufficient conditions for them to be projectively or Doug-

las related to Randers metric.

1. Introduction

No matter in Riemannian geometry or in Finsler geometry, geodesics are

very important study objects. We say that a Finsler metric is projectively rela-

ted to another metric if they have the same geodesics as oriented point sets. In

Riemannian geometry, two Riemannian metrics α and α̃ are projectively related

if and only if their spray coefficients have the relation

Gi
α = Gi

α̃ + λxk
ykyi,

where λ = λ(x) is a scalar function on the base manifold, and (xi, yi) denote the

local coordinates in the tangent bundle TM . Two Finsler metrics F and F̃ are

projectively related if and only if their spray coefficients have the relation

Gi = G̃i + P (y)yi,

where P (y) is a scalar function on TM \{0} and homogeneous of degree one in y.

The change of a Finsler metric F to another Finsler metric F̃ := F + β̃ is called

a Randers change, where β̃ is a nonzero one form on the base manifold satisfying
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‖β̃‖ < 1. It has been proved in [5] that F is projectively related to its Randers

change F̃ if and only if β̃ is closed.

The projective change between two Finsler spaces has been studied by many

geometers [1], [3], [12]. An interesting result concerned with the theory of pro-

jective change was given in Rapcsák’s paper, and the necessary and sufficient

condition for projective change was obtained. The authors Z. Shen and Civi

Yildirim studied on a class of projectively flat metrics with constant flag curvat-

ure in [11]. In 2008, Y. Shen and Y. Yu studied the projective change between

two Randers metrics. In 2009, Ningwei Cui and Yi-Bing Shen studied projec-

tive change between F = (α+β)2

α and a Randers metric and gave more detailed

descriptions. In 2011, M. Zohrehvand and M. M. Rezaii studied the projec-

tive change between two special classes of (α, β)-metrics F = α2

α−β and Randers

metric. In this paper, we will study the projective change between arbitrary

(α, β)-metric and Randers metric. More precisely, we have the following result.

Theorem 1.1. Let F = αφ(s) be an (α, β)-metric and F̃ = α̃ + β̃ be a

Randers metric on a manifold M with dimension n ≥ 3. Suppose

φ 6= Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are constants. Then F is

Douglas related to F̃ if and only if they are Douglas metrics.

Theorem 1.2. Let F = αφ(s) and F̃ = α̃φ̃(s) be two (α, β)-metrics on M

with dimension n ≥ 3. Suppose they are Douglas metrics. Then F is projectively

related to F̃ if and only if

Gi
α = Gi

α̃ + θyi − τ(k1α
2 + k2β

2)bi + τ̃(k1α̃
2 + k2β̃

2)b̃i,

where τ = τ(x) and τ̃ = τ̃(x) are scalar functions and θ is a 1-form on M .

Theorem 1.3. Let F = αφ(s) be an (α, β)-metric and F̃ = α̃ + β̃ be a

Randers metric on a manifold M with dimension n ≥ 3. Suppose

φ 6= Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are constants and β is not

parallel with respect to α. Then F is projectively related to F̃ if and only if the

following conditions hold:

{1 + (k1 + k2s
2)s2 + k3s

2}φ′′ = (k1 + k2s
2)(φ− sφ′), (1.1)

bi|j = 2τ{(1 + k1b
2)aij + (k2b

2 + k3)bibj}, (1.2)

dβ̃ = 0, (1.3)

Gi
α = Gi

α̃ + θyi − τ(k1α
2 + k2β

2)bi, (1.4)
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where τ = τ(x) is a scalar function on M and k1, k2 and k3 are constants with

(k2, k3) 6= (0, 0), θ is a 1-form on M .

Theorem 1.4. Let F = αφ(s) be a non-Randers type (α, β)-metric and

F̃ = α̃ + β̃ be a Randers metric on M with dimension n ≥ 3, and let φ =

Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are constants with k2 6= 0. Sup-

pose that β is not parrel with respect to α. Then F is Douglas related to F̃ if

and only if the following conditions hold:

(a) F has isotropic S-curvature,

(b) α̃ =
√
c1
√
α2 + k3β2,

(c) dβ̃ = k2
√
c1dβ,

where c1 is a scalar function on M .

Theorem 1.5. Let F = αφ(s) be a non-Randers type (α, β)-metric and

F̃ = α̃ + β̃ be Randers metric on M with dimension n ≥ 3, and let φ =

Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are constants with k2 6= 0. Sup-

pose that β is not parrel with respect to α. Then F is projectively related to F̃

if and only if the following conditions hold:

(a) F has isotropic S-curvature,

(b) α̃ =
√
c1
√
α2 + k3β2,

(c) dβ̃ = k2
√
c1dβ,

(d) Gi
α = Gi

α̃ + k1βs
i
0 + θyi,

where θ is a 1-form on M .

2. Preliminary

For a given Finsler metric F = F (x, y), the geodesics of F satisfy the follo-

wing ODEs:
d2xi

dt2
+ 2Gi

(
x,

dx

dt

)
= 0,

where Gi = Gi(x, y) are the geodesic coefficients, given by

Gi =
1

4
gil{[F 2]xmylym − [F 2]xl}.

The equivalent condition that a Finsler metric F is projective to F̃ has been

characterized by using spray coefficients.
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Let (M, F̃ ) be a Finsler space. Another Finsler metric F on M is projec-

tive to F̃ if and only if there exists a scalar function P (y) on TM \ {0}, i.e.,
homogeneous of degree one in y, such that

Gi = G̃i + P (y)yi, (2.1)

where Gi and G̃i are spray coefficients of F and F̃ respectively. In what follows,

we will explain what is a (regular) (α, β)-metric. Let φ = φ(s), |s| < b0, be a

positive C∞ function satisfying

φ(s)− sφ′(s) + (b2 − s2)φ′′ > 0 (|s| 6 b < b0).

For a given Riemannian metric α =
√
aijyiyj and a 1-form β = biy

i satisfying

‖βx‖α < b0 for any x ∈ M , we call F := αφ(s), s = β
α , an (regular) (α, β)−metric.

In this case, the fundamental form of the metric tensor induced by F is positive

definite. Let ∇β = bi|jdxi ⊗ dxj be the covariant derivative of β with respect

to α. Denote

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bi|j).

Clearly, β is closed if and only if sij = 0. Let sj := bisij , s
i
j := ailslj , s0 := siy

j ,

si0 := sijy
j and r00 := rijy

iyj . The geodesic coefficients Gi of F and the geodesic

coefficients Gi
α of α are related by follows

Gi = Gi
α + αQsi0 + {−2αQs0 + r00}{Ψbi +Θα−1yi}, (2.2)

where

Θ =
φφ′ − s(φφ′′ + φ′φ′)

2φ((φ− sφ′) + (b2 − s2)φ′′)
, (2.3)

Q =
φ′

φ− sφ′ , (2.4)

Ψ =
1

2

φ′′

(φ− sφ′) + (b2 − s2)φ′′ . (2.5)

Definition 2.1. Let

Di
jkl :=

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
, (2.6)

where Gi are the spray coefficients of F . The tensor D := Di
jkl∂i⊗dxj⊗dxk⊗dxl

is called the Douglas tensor. A Finsler metric is called Douglas metric if the

Douglas tensor vanishes.

It is easily seen from (2.1) that the Douglas tensor is a projective invariant.

Noting that the spray coefficients of a Riemannian metric are quadratic forms,

one can see that the Douglas tensor vanishes from (2.6). It means that Douglas



Projective change between arbitrary (α, β)-metric and Randers metric 183

tensor is a non-Riemannian quantity. From [4], we get

Di
jkl :=

∂3

∂yj∂yk∂yl

(
T i − 1

n+ 1
Tm
ymyi

)
, (2.7)

where

T i = αQsi0 +Ψ{−2αs0 + r00}bi,
Tm
ym = Q′s0 +Ψ′α−1(b2 − s2)[r00 − 2Qαs0]

+ 2Ψ[r0 −Q′(b2 − s2)s0 −Qss0]. (2.8)

A simple caculation shows

Tm
ym = 2Ψ(r0 + s0) + Ψ′α−1(b2 − s2)[r00 − 2Qαs0]. (2.9)

Let F and F̃ be two (α, β)-metrics and assume that they have the same Douglas

tensors, i.e. Di
jkl = D̃i

jkl. From (2.7) we have

∂3

∂yj∂yk∂yl

(
T i − T̃ i − 1

n+ 1
(Tm

ym − T̃m
ym)yi

)
= 0.

Then there exists a class of scalar functions Hi
jk := Hi

jk(x) on M such that

T i − T̃ i − 1

n+ 1
(Tm

ym − T̃m
ym)yi = Hi

00,

where Hi
00 := Hi

jky
jyk, T i and Tm

ym are given by (2.8) and (2.9) respectively. For

a Randers metric, S. Bácsó and M. Matsumoto proved the following

Lemma 2.1 ([3]). A Randers metric F = α + β is a Douglas metric if and

only if β is closed.

Later on, B. Li and Z. Shen got more general consequence:

Lemma 2.2 ([2]). Let F = αφ(s), s = β
α , be an (α, β)-metric on an open

subset U in the n-dimensional Euclidean space Rn(n ≥ 3), where α =
√
αij(x)yiyj

and β = bi(x)y
i. Suppose that the following conditions: (a) β is not parallel with

respect to α, (b) φ 6= k1
√
1 + k2s2+k3s for any constants k1, k2 and k3, (c) db 6= 0

everywhere or b = constant on U . Then F is a Douglas metric on U if and only

if the function φ = φ(s) satisfies

{1 + (k1 + k2s
2)s2 + k3s

2}φ′′ = (k1 + k2s
2)(φ− sφ′), (2.10)

and β satisfies

bi|j = 2τ{(1 + k1b
2)aij + (k2b

2 + k3)bibj}, (2.11)

where τ = τ(x) is a scalar function on U and k1, k2 and k3 are constants with

(k2, k3) 6= (0, 0).
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We will prove that ”b = const” in condition (c) contradicts (a) or (b) when

F is a Douglas metric. In fact, condition (c) in Lemma 2.2 can be removed.

Lemma 2.3. Let F = αφ(s), s = β
α , be an (α, β)-metric on an open subset

U in the n-dimensional Euclidean space Rn(n ≥ 3), where α =
√
αij(x)yiyj and

β = bi(x)y
i. Suppose that the following conditions: (a) β is not parallel with

respect to α, (b) φ 6= k1
√
1 + k2s2 + k3s for any constants k1, k2 and k3. If

b = constant on U , then F is not a Douglas metric.

Proof. Suppose that F is a Douglas metric, from Lemma 2.2, we have

{1 + (k1 + k2s
2)s2 + k3s

2}φ′′ = (k1 + k2s
2)(φ− sφ′),

bi|j = 2τ{(1 + k1b
2)aij + (k2b

2 + k3)bibj}.

Since b = const, from [6] we have

r0 + s0 = 0.

Since β is closed, we get

r0 = birijy
j = 2τ{(1 + k1b

2) + (k2b
2 + k3)b

2}β = 0.

Since β is not parallel with respect to α, τ 6= 0, we get

(1 + k1b
2) + (k2b

2 + k3)b
2 = 0.

Noting that

{1 + (k1 + k2s
2)s2 + k3s

2}φ′′ = (k1 + k2s
2)(φ− sφ′),

by setting s = b,

k1 + k2b
2 = 0,

we have

(k2s
2 + k3)φ

′′ = k2(φ− sφ′).

If k2 = 0, it is easy to check that F is a Randers metric. If k2 6= 0, we have

Ψ =
1

2

φ′′

φ− sφ′ + (b2 − s2)φ′′ =
1

2

1
k3

k2
+ b2

.

From [2], we see that F is of Randers type which contradicts the condition. ¤
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Lemma 2.4. Let F = αφ(s), s = β
α , be an (α, β)-metric on an open subset

U in the n-dimensional Euclidean space Rn(n ≥ 2), where α =
√
αij(x)yiyj and

β = bi(x)y
i. Suppose that the following conditions: (a) β is not parallel with

respect to α, (b) φ 6= k1
√
1 + k2s2 + k3s for any constants k1, k2 and k3. Then F

is a Douglas metric on U if and only if the function φ = φ(s) satisfies

{1 + (k1 + k2s
2)s2 + k3s

2}φ′′ = (k1 + k2s
2)(φ− sφ′), (2.12)

and β satisfies

bi|j = 2τ{(1 + k1b
2)aij + (k2b

2 + k3)bibj}, (2.13)

where τ = τ(x) is a scalar function on U and k1, k2 and k3 are constants with

(k2, k3) 6= (0, 0).

Proof. ⇒: Set U = U ′ ∪ U ′′, where U ′ = {x ∈ U | db 6= 0} and U ′′ = {x ∈
U | db = 0}. From Lemma 2.3, we can assume U ′′◦ = ∅, i.e., ∂U ′ ∩U = U ′′. Since
U ′ is an open set, from Lemma 2.2, (2.12) and (2.13) hold in U ′. Since φ and β

are smooth, (2.12) holds in (−b(x), b(x)) for any x ∈ U . Next we consider β. For

any x0 ∈ U ′′, we just need to prove τ continues at x0. If

[(1 + k1b
2) + (k2b

2 + k3)b
2]|x0 6= 0,

then

τ(x0) =
bibjbi|j

[(1 + k1b2) + (k2b2 + k3)b2]b2
∣∣
x0
.

If [(1 + k1b
2) + (k2b

2 + k3)b
2]|x0 = 0, similarly to Lemma 2.3 we can prove that

F is of Randers type which contradicts the condition.

⇐: obvious. ¤

3. On Douglas related metric

It is known that for some special (α, β)-metrics, they are Douglas related

to a Randers metric if and only if they are Douglas metrics, such as Matsumoto

metric F = (α+β)2

α . In what follows, we consider more general case.

Lemma 3.1. Let Φ1 + Φ2ᾱ + Φ3α̃ = 0, where α̃ =
√
Ψ1 +Ψ2ᾱ, ᾱ =√∑n

i=1 y
2
i , n ≥ 3, Φ1, Ψ1, Φ2, Φ3 and Ψ2 are homogeneous polynomials. Then

one of the following holds:

(a) Φ1 = Φ2 = Φ3 = 0,
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(b) α̃ = kᾱ+ k1,

where k = Φ2

Φ3
and k1 = Φ1

Φ3
are homogeneous polynomials.

Proof. If Φ1 +Φ2ᾱ+Φ3α̃ = 0, then we have

(Φ1 +Φ2ᾱ)
2 = Φ2

3(Ψ1 +Ψ2ᾱ).

Since Φ1, Ψ1, Φ2, Φ3 and Ψ2 are homogeneous polynomials, we have

2Φ1Φ2 = Φ2
3Ψ2, (3.1)

Φ2
1 +Φ2

2ᾱ
2 = Φ2

3Ψ1. (3.2)

The irreducible decomposition of Φ3 is Φ3 = g1
i1g2

i2 · · · gnin , where each gj is an

irreducible polynomial. If Φ3 is not a factor of Φ2, then there exists a gj which

is not a factor of Φ2. From (3.1), gj
2ij has to be a factor of Φ1 and therefore a

factor of Φ2
2ᾱ

2 from (3.2). Since ᾱ2 is irreducible, gj must be a factor of Φ2 which

contradicts assumption. Thus either Φ2 have the factor Φ3 or Φ1 = Φ2 = Φ3 = 0.

a simple argument shows that either Φ1 have the factor Φ3 or Φ1 = Φ2 = Φ3 = 0.

This finishes the proof of the lemma. ¤

From Lemma 3.1, we have the following lemma.

Lemma 3.2. Let Φ1 + Φ2ᾱ + Φ3α̃ + Φ4ᾱα̃ = 0, where α̃ =
√
Ψ1 +Ψ2ᾱ,

ᾱ =
√∑n

i=1 y
2
i , n ≥ 2, Φ1 and Ψ1 are homogeneous polynomials of degree two,

Φ2, Φ3 and Ψ2 are homogeneous polynomials of degree one, and Φ4 is a constant.

Then one of the following holds:

(a) Φ1 = Φ2 = Φ3 = Φ4 = 0,

(b) α̃ = kᾱ+
∑n

i=1 kiyi,

where k and ki are constants.

Proof. Multiplying (Φ3−Φ4ᾱ) on both sides of Φ1+Φ2ᾱ+Φ3α̃+Φ4ᾱα̃ = 0,

yields

Φ1Φ3 − Φ2Φ4ᾱ
2 + (Φ2Φ3 − Φ1Φ4)ᾱ+ (Φ3

2 − Φ2
4ᾱ

2)α̃ = 0.

From Lemma 3.1 we have case (i)

Φ1Φ3 − Φ2Φ4ᾱ
2 = Φ2Φ3 − Φ1Φ4 = Φ3

2 − Φ2
4ᾱ

2 = 0.

Since ᾱ2 is irreducible, from

Φ3
2 − Φ2

4ᾱ
2 = 0,
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we get Φ3 = Φ4 = 0. Then the equation Φ1 +Φ2ᾱ+Φ3α̃+Φ4ᾱα̃ = 0 becomes:

Φ1 +Φ2ᾱ = 0,

which means Φ1 = Φ2 = 0.

Case (ii): α̃ = k′ᾱ + k1
′, where k′ = Φ2Φ3−Φ1Φ4

Φ3
2−Φ2

4ᾱ
2 and k1

′ = Φ1Φ3−Φ2Φ4ᾱ
2

Φ3
2−Φ2

4ᾱ
2

are homogeneous polynomials. Since Φ1 is a homogeneous polynomial of degree

two, Φ2 and Φ3 are homogeneous polynomials of degree one, Φ4 is a constant, we

obtain (b). ¤

Lemma 3.3. Let α̃ = µ(x, β
α )α, where α̃ and α are Riemannian metrics

on M . Then µ(x, β
α ) =

√
c1(x) + c2(x)

β2

α2 , where c1 and c2 are scalar functions

on M .

Proof. From Theorem 2.1 of [14], we have

α̃ =
√
c1α2 + c2β2 + c3αβ.

Noting that α̃ is Riemannian, we have c3 = 0, hence µ
(
x, β

α

)
=

√
c1(x) + c2(x)

β2

α2 .

¤

Remark 3.1. In fact, Theorem 2.1 of [14] told us: the Cartan tensor of (α, β)-

metric is of the form Cijk = KijBk +KjkBi +KkiBj if and only if F 2 = c1α
2 +

2c2αβ + c3β
2, where Kij is the angular metric tensor of the Riemannian metric

α and Bi are some tensor fields. From the proof of Theorem 2.1 of [14], one can

see the consequence also holds for general (α, β)-metric.

Theorem 3.1. Let F = αφ(s) be an (α, β)-metric and F̃ = α̃ + β̃ be a

Randers metric on a manifold M with dimension n ≥ 3. Suppose

φ 6= Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are constants. Then F is

Douglas related to F̃ if and only if they are both Douglas metrics.

Proof. Supposing F is Douglas related to F̃ , then there exists a class of

scalar functions Hi
jk := Hi

jk(x) such that

T i − T̃ i − 1

n+ 1
(Tm

ym − T̃m
ym)yi = Hi

00.

Hence

Hi
00 + α̃s̃i0 = αQsi0 +Φ{−2αQs0 + r00}bi − 1

n+ 1
{2Φ(r0 + s0)

+ Φ′α−1(b2 − s2)[r00 − 2Qαs0]}yi. (3.3)
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Choose a special coordinate system at a point as in [1]. Take a change of coordi-

nates (s, ya) → (yi) by

y1 =
s√

b2 − s2
ᾱ, ᾱ =

√√√√
n∑

a=2

y2a,

and

α =
√
δijyiyj , β = by1.

Set

sij :=
1

2
(bi|j − bj|i), ri|j :=

1

2
(bi|j + bj|i).

Then we have

s0 =

n∑
a=2

bs1ay
a si0 = sijy

j = si1
s√

b2 − s2
ᾱ+

n∑
a=2

siay
a,

r0 = br11
s√

b2 − s2
ᾱ+ b

n∑
a=2

r1ay
a,

r00 = 2r1a
s√

b2 − s2
yaᾱ+ r11

s2

b2 − s2
ᾱ2 + raby

ayb.

Case(i): α̃ = µ(x, s)α. Then we have

s̃i0 = s̃i1
s√

b2 − s2
µ(x, s)ᾱ+

n∑
a=2

siay
a.

From Lemma 3.3, we have

µ(x, s) =
√
c1(x) + c2(x)s2.

(3.3) can be written as

Φi
1 +Φi

2ᾱ = 0.

Set i = 1, or i = a in the above eqution, we have

µs̃1a =

[
Q− 2QΦb2 − 2Φs

n+ 1
+

2QΦ′s(b2 − s2)

n+ 1

]
s1a

+

[
2nΦs

n+ 1
− 2s2Φ′(b2 − s2)

(n+ 1)b2

]
r1a − 2H1

1a

s

b
, (3.4)
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(
µs̃1a

sb

b2 − s2
−Qs1a

sb

b2 − s2
−Ha

11

s2

b2 − s2

)
ᾱ2 = Ha

bcy
byc

+
2yayc

n+ 1

[
Φb(r1c + s1c) +

1

b
Φ′(b2 − s2)r1c − 2bQΦ′(b2 − s2)s1c

]
, (3.5)

[
2Ha

1c

s

b
yc + µs̃acy

c − sacQyc +
2Φsr11
n+ 1

ya +
Φ′s2(b2 − s2)r11y

a

(n+ 1)b2

]
b2

b2 − s2
ᾱ2

= −Φ′(b2 − s2)rbcy
byc

n+ 1
ya. (3.6)

From (3.5), we have

µ(x, s)ss̃1a = sQs1a +Ha
11

s2

b
+Ha

bb

b2 − s2

b
, b 6= a.

By taking s = 0, we get Ha
bb = 0. Then

µs̃1a = Qs1a +Ha
11

s

b
. (3.7)

From (3.6), we get

µs̃ac = sacQ− 2Ha
1c

s

b
a 6= c. (3.8)

If sij = 0, ∀i, j, then from (3.7) and (3.8), s̃ij = 0,, i.e. β is closed, which shows

that F̃ is Douglas metric. Otherwise,

Q = k1s+ k2
√
1 + k3s2

where k1, k2 and k3 are constants. Then

φ = Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt

which contradicts the condition.

Case(ii): α̃ 6= µ(x, s)α. Then (3.3) can be written as

Φi
1 +Φi

2α+Φi
3α̃+Φi

4αα̃ = 0,

where Φi
1, Φ

i
2 Φi

3, Φ
i
4 are polynomials of ya. From Lemma 3.1 and Lemma 3.2,

we have

(a) Φi
1 = Φi

2 = Φi
3 = 0 and Φi

4 = 0, or

(b) α̃ = k(x, s)α+
∑n

a=2 ka(x, s)y
a,

where Φi
3 = s̃iay

a and Φi
4 = s̃i1

s
b .

If (a) holds, we have s̃ij = 0. From Lemma 2.2, we have D̃i
jkl = 0.
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If (b) holds, we will prove that ka(x, s) = 0. Since

α̃ =
√
ã11y1y1 + ãabyayb + 2ã1by1yb

=

√
ã11

s2

b2 − s2
ᾱ2 + ãabyayb + 2ã1b

s√
b2 − s2

ᾱyb,

from (b), we have

ã11
s2

b2 − s2
ᾱ2 + ãaby

ayb = k2ᾱ2 + kakby
ayb, (3.9)

ã1b
s√

b2 − s2
yb = kkby

b. (3.10)

From (3.9), we have

ãab = kakb, b 6= a, (3.11)

ã11
s2

b2 − s2
+ ãaa = k2 + k2a. (3.12)

From (3.10), we have

ã1b
s√

b2 − s2
= kbk. (3.13)

Letting (3.12)× k2b and s = 0, and using (3.11) and (3.13), we check that

ãaak
2
b = ã2ab a 6= b.

Similarly,

ãbbk
2
a = ã2ab a 6= b.

Thus

ãaaãbbã
2
ab = ã4ab.

From the positive definiteness of α̃, we have

ãab = 0 a 6= b.

Thus from (3.11), there exists some a such that ka = 0. From (3.12), we have

ã11
s2

b2−s2 + ãaa = k2 and ã11
s2

b2−s2 + ãbb = k2 + k2b , for any b 6= a, which implies

k2b = ãbb − ãaa. Thus kb is independent of s. By taking s = 0 in (3.10), from

k > 0, we have kb = 0. Then α̃ = k(x, s)α, which contradicts the condition. This

completes the proof of the theorem. ¤

From the proof above and Lemma 3.3, we have following proposition.
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Proposition 3.1. Let F = αφ(s) be an (α, β)-metric and F̃ = α̃ + β̃ be a

Randers metric on M with dimension n ≥ 3. Suppose α̃ 6=
√
c1(x) + c2(x)s2α.

Then F is Douglas related to F̃ if and only if they are both Douglas metrics.

For two Randers metrics, they had already been considered in [6]. For φ =

Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt

and F is non-Randers and k2 6= 0, we have

Theorem 3.2. Let F = αφ(s) is a non-Randers type (α, β)-metric and

F̃ = α̃+ β̃ be a Randers metric on M with dimension n ≥ 3, and

φ = Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are constants with k2 6= 0.

Suppose β is not parrel with respect to α. Then F is Douglas related to F̃ if and

only if the following conditions hold:

(a) F has isotropic S-curvature,

(b) α̃ =
√
c1
√
α2 + k3β2,

(c) dβ̃ = k2
√
c1dβ.

where c1 is a scalar function on M .

First we need to prove the following lemmas.

Lemma 3.4. Let F = αφ(s), s = β
α , be an (α, β)-metric and

φ = Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are constants with k2 6= 0.

Then F is a Randers type metric if and only if k1 = k3.

Proof. If k1 = k3, we have φ = C
√
1 + k1s2 + Ck2s, which means that F

is of Randers type. On the contrary, if F is of Randers type, we have

Ψ =
1

2

k1
√
1 + k3s2 + k2k3s

(1 + b2k1)
√
1 + k3s2 + k2s(1 + b2k3)

=
1

2

k′2
1 + k′2b2

,

for some constant k′2. Since the right side of the above equation is independent

of s, we have k1 = k3. ¤

Lemma 3.5. F = αφ(s) is a non-Randers type (α, β)-metric on M with

dimension n ≥ 3 and φ = Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are any

constants with k2 6= 0. Then F has isotropic S-curvature if and only if β satisfies

r00 = 0, s0 = 0.
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Proof. From Theorem 1 of [7], F has isotropic S-curvature if and only if

one of the following conditions hold

(i) rj + sj = 0, Φ = 0,

(ii) rij = ε(b2aij − bibj), sj = 0,

where ε = ε(x) is a scalar function, and

Φ = −2(n+ 1)k
φ∆2

b2 − s2
,

(iii) r00 = 0, s0 = 0,

where

∆ = 1 + sQ+ (b2 − s2)Q′,

and

Φ = −(Q− sQ′){n∆+ 1 + sQ} − (b2 − s2)(1 + sQ)Q′′.

From Lemma 3.4, we just need to prove that k1 = k3 when Φ = 0 or Φ =

−2(n+ 1)k φ∆2

b2−s2 . Since φ = Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, we have

∆ = 1 + b2k1 +
k2s(1 + k3b

2)√
1 + k3s2

,
and

Φ =
−k2

(1 + k3s2)
3
2

[
(k1 + nk3 + (n+ 1)k1k3b

2)s2 + n+ 1 + (nk1 + k3)b
2

+ (n+ 1)k2(1 + k3b
2)s

√
1 + k3s2

]
.

If Φ = 0, we get (k1 + nk3 + (n + 1)k1k3b
2) = 0, n + 1 + (nk1 + k3)b

2 = 0 and

1 + k3b
2 = 0. Thus k1 = k3 = − 1

b2 .

If Φ = −2(n+1)k φ∆2

b2−s2 , we see that ∆
2 = 0 when s2 = b2 for Φ is a continuous

function.Thus 1 + b2k1 + k2(±b)
√
1 + k3b2 = 0, i.e., k1 = k3 = − 1

b2 . ¤

Proof of Theorem 3.2. ⇒: Supposing α̃ 6= √
c1 + c2s2α, from Proposit-

ion 3.1, we see that F is a Douglas metric. From Lemma 2.4, we have

{1 + (k′1 + k′2s
2)s2 + k′3s

2}φ′′ = (k′1 + k′2s
2)(φ− sφ′).



Projective change between arbitrary (α, β)-metric and Randers metric 193

Since φ = Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, we get k1 = k3. From Lemma 3.4, F is of

Randers type which contradicts the condition. Hence α̃ =
√
c1 + c2s2α, and F is

not a Douglas metric.

Combining (3.4), (3.5) and (3.6) yields

√
c1 + c2s2s̃

1
a =

[
Q− 2QΨb2 − 2Ψs

n+ 1
+

2QΨ′s(b2 − s2)

n+ 1

]
s1a

+

[
2nΨs

n+ 1
− 2Ψ′s2(b2 − s2)

(n+ 1)b2

]
r1a − 2H1

1a

s

b
, (3.14)

2Ha
1a

s

b
+

1

n+ 1

{
2Ψr11s+Ψ′(b2 − s2)

[
r11

s2

b2
+ raa

(
b2 − s2

b2

)]}
= 0. (3.15)

√
c1 + c2s2s̃

1
a = Qs1a +Ha

11

s

b
, (3.16)

√
c1 + c2s2s̃

a
b = Qsab − 2Ha

1b

s

b
, b 6= a, (3.17)

rab = 0, a 6= b and raa = rbb. (3.18)

Since F is not a Douglas metric, we have sji 6= 0 for some i, j. From (3.16),

(3.17) and Q = k1s+ k2
√
1 + k3s2, we have

√
c1s̃

1
a = k2s

1
a,

√
c1s̃

a
b = k2s

a
b , c2 = k3c1. (3.19)

Taking into account φ = Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, we have

Ψ =
1

2

k1
√
1 + k3s2 + k2k3s

(1 + b2k1)
√
1 + k3s2 + k2(1 + b2k3)s

,

and

Ψ′ =
1

2

k2(k3 − k1)√
1 + k3s2[(1 + b2k1)

√
1 + k3s2 + k2(1 + b2k3)s]2

.

Since k1 6= k3, from (3.14), considering the degree of s, we have s1a = s̃1a = 0,

r1a = 0, i.e., r0 = s0 = 0. By taking s = 0 in (3.15), we have Ψ′(0)raa = 0,

hence raa = 0. Substituting it into (3.15), we have r11 = 0. From Lemma 3.5,

we see that F has isotropic S-curvature. Since s0 = 0, (3.19) is equivalence to

dβ̃ = k2
√
c1dβ.

⇐:

Di
jkl − D̃i

jkl =
∂3

∂yj∂yk∂yl
(αQsi0 − α̃s̃i0) =

∂3

∂yj∂yk∂yl
(k1βs

i
0) = 0. ¤
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4. Examples

Example 1. F = αφ(s), φ = earcsinh(s), s = β
α and F̃ =

√
α2 + β2 + β.

F has isotropic S − curvature, then F is Douglas related to F̃ . In this case,

µ(x, s) =
√
1 + s2.

Example 2. F = αφ(s), φ =
√
1 + s+ s2e

1√
3
arctan( 2√

3
(s+ 1

2 )), s = β
α and

F̃ = α + β. F has isotropic S − curvature, then F is Douglas related to F̃ . In

this case, µ(x, s) = 1.

Example 3. F = α + β, and F̃ = µ(x)α + µ(x)β, then F is Douglas related

to F̃ . In this case, the condition of isotropic S − curvature can be removed.

5. On projective related metric

Since projectively related metrics have to be Douglas related metrics, from

Theorem 1.1 and Theorem 1.3, we only need to consider projectively related

Douglas metrics.

Theorem 5.1. Let F = αφ(s) and F̃ = α̃φ̃(s) be two (α, β)-metrics on M

with dimension n ≥ 3. Suppose they are Douglas metrics. Then F is projectively

related to F̃ if and only if

Gi
α = Gi

α̃ + θyi − τ(k1α
2 + k2β

2)bi + τ̃(k1α̃
2 + k2β̃

2)b̃i,

where τ = τ(x) and τ̃ = τ̃(x) are scalar functions and θ is a 1-form on M .

Proof. If one of the metrics is of Randers type or β is parallel with respect

to α, it is easy to get the conclution. Thus, we can assume (a) β is not parallel

with respect to α, (b) φ 6=√
1 + k2s2 + k3s for any constants k1, k2 and k3. From

Lemma 2.4 and (2.5), we have

Ψ =
1

2

k1 + k2s
2

1 + k1b2 + (k2b2 + k3)s2
,

and

r00 = 2τα2{1 + k1b
2 + (k2b

2 + k3)s
2}.

Then from equation (2.2), we have

Gi = Gi
α + r00(Ψbi +Θα−1yi) = Gi

α + τ(k1α
2 + k2β

2)bi + r00Θα−1yi,
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and

G̃i = Gi
α̃ + τ̃(k̃1α̃

2 + k̃2β̃
2)b̃i + r̃00Θ̃α̃−1yi.

Thus F is projectively related to F̃ if and only if

Gi
α = Gi

α̃ + θyi − τ(k1α
2 + k2β

2)bi + τ̃(k1α̃
2 + k2β̃

2)b̃i. ¤

From Theorem 1.1 and Theorem 5.1, we have the following

Theorem 5.2. Let F = αφ(s) be an (α, β)-metric and F̃ = α̃ + β̃ be a

Randers metric on a manifold M with dimension n ≥ 3. Suppose

φ 6= Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are constants and β is not

parallel with respect to α. Then F is Projectively related to F̃ if and only if the

following conditions hold:

{1 + (k1 + k2s
2)s2 + k3s

2}φ′′ = (k1 + k2s
2)(φ− sφ′), (5.1)

bi|j = 2τ{(1 + k1b
2)aij + (k2b

2 + k3)bibj}, (5.2)

dβ̃ = 0, (5.3)

Gi
α = Gi

α̃ + θyi − τ(k1α
2 + k2β

2)bi, (5.4)

where τ = τ(x) is a scalar function on M and k1, k2 and k3 are constants with

(k2, k3) 6= (0, 0), θ is a 1-form on M .

Similarly, for φ = Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt

and F is of non-Randers type and

k2 6= 0, we have

Theorem 5.3. Let F = αφ(s) be a (α, β)-metric of non-Randers type

and F̃ = α̃ + β̃ be a Randers metric on M with dimension n ≥ 3, and φ =

Ce

∫ s
0

k1t+k2

√
1+k3t2

1+k1t2+k2t
√

1+k3t2
dt
, where C, k1, k2 and k3 are constants with k2 6= 0. Sup-

pose β is not parrel with respect to α. Then F is projectively related to F̃ if and

only if the following conditions hold:

(a) F has isotropic S-curvature,

(b) α̃ =
√
c1
√
α2 + k3β2,

(c) dβ̃ = k2
√
c1dβ.

(d) Gi
α = Gi

α̃ + k1βs
i
0 + θyi, where θ is a 1-form on M

It is an immediate consequence of Theorem 1.4.
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