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Projective change between arbitrary («, 3)-metric
and Randers metric

By DAXIAO ZHENG (Shanghai) and QUN HE (Shanghai)

Abstract. In this paper, we study a special class of Finsler metrics: («, §)-metric,
and obtain some necessary and sufficient conditions for them to be projectively or Doug-
las related to Randers metric.

1. Introduction

No matter in Riemannian geometry or in Finsler geometry, geodesics are
very important study objects. We say that a Finsler metric is projectively rela-
ted to another metric if they have the same geodesics as oriented point sets. In
Riemannian geometry, two Riemannian metrics @ and & are projectively related
if and only if their spray coefficients have the relation

Gl = GL + M0y

where A = A\(z) is a scalar function on the base manifold, and (z*,y*) denote the
local coordinates in the tangent bundle TM. Two Finsler metrics F' and F' are
projectively related if and only if their spray coefficients have the relation

G'=G"+ Py’

where P(y) is a scalar function on TM \ {0} and homogeneous of degree one in y.
The change of a Finsler metric F' to another Finsler metric F' := F + 3 is called
a Randers change, where g is a nonzero one form on the base manifold satisfying
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|8]| < 1. It has been proved in [5] that F is projectively related to its Randers
change F if and only if 3 is closed.

The projective change between two Finsler spaces has been studied by many
geometers [1], [3], [12]. An interesting result concerned with the theory of pro-
jective change was given in Rapcsdk’s paper, and the necessary and sufficient
condition for projective change was obtained. The authors Z. SHEN and CivI
YILDIRIM studied on a class of projectively flat metrics with constant flag curvat-
ure in [11]. In 2008, Y. SHEN and Y. YU studied the projective change between
two Randers metrics. In 2009, NINGWEI CUI and YI-BING SHEN studied projec-
tive change between F' = % and a Randers metric and gave more detailed
descriptions. In 2011, M. ZOHREHVAND and M. M. REZAII studied the projec-
tive change between two special classes of («, 3)-metrics F' = % and Randers
metric. In this paper, we will study the projective change between arbitrary

(a, B)-metric and Randers metric. More precisely, we have the following result.

Theorem 1.1. Let F = a¢(s) be an («a,)-metric and F = & + 3 be a

Randers metric on a manifold M with dimension n > 3. Suppose

% kqt+kor/1+kgt? dt
¢ # Ce® et +ioty/14kst> © where C, ki, ky and k3 are constants. Then F is

Douglas related to F if and only if they are Douglas metrics.

Theorem 1.2. Let F = a¢(s) and F = a¢(s) be two (a, 3)-metrics on M
with dimension n > 3. Suppose they are Douglas metrics. Then F' is projectively
related to F' if and only if

Gl = GL + 0y' — 7(k10® + ko S2)b1 + 7 (ka2 + ko B2,
where 7 = 7(x) and T = 7(x) are scalar functions and 0 is a 1-form on M.

Theorem 1.3. Let F = ad(s) be an («a,)-metric and F = & + 3 be a

Randers metric on a manifold M with dimension n > 3. Suppose

IS kitt+ko/1+kgt? di
¢ # Ce? 1+it*+hatv/14k3® — ywhere C, ky, ko and ks are constants and (3 is not

parallel with respect to a.. Then F is projectively related to F if and only if the
following conditions hold:

{1+ (kg + kos?)s® + k3s?}¢" = (ky + kas?) (¢ — s¢), (1.1)
bij; = 27{(1 + k1b*)as; + (kob® + ks)bib; }, (1.2)

dB =0, (1.3)

Gl = GL + 0y — m(kia® + k2 B2, (1.4)
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where 7 = 7(x) is a scalar function on M and k1, ks and ks are constants with
(ko, k3) # (0,0), 0 is a 1-form on M.

Theorem 1.4. Let F = «a¢(s) be a non-Randers type («, 3)-metric and

F =a —1—3 be a Randers metric on M with dimension n > 3, and let ¢ =
fs kit+koy/1+kgt? dt
Ce’® 1+t +katV1t+k3t?  where C, k1, ko and ks are constants with ko # 0. Sup-

pose that (3 is not parrel with respect to . Then F' is Douglas related to F if
and only if the following conditions hold:

(a) F has isotropic S-curvature,

(b) & = /ci/a?+ks3p3?,

(c) dB = ka/crdp,

where ¢, is a scalar function on M.

Theorem 1.5. Let F' = «a¢(s) be a non-Randers type («, 8)-metric and

F = a +B be Randers metric on M with dimension n > 3, and let ¢ =
I kittko/1+kgt? n
Ce™? t+ht?+hat/14k3  where C, ky, ko and k3 are constants with kg # 0. Sup-

pose that f is not parrel with respect to a. Then F' is projectively related to F
if and only if the following conditions hold:

(a) F has isotropic S-curvature,
(b) &= /erv/a? +ksp?,

(¢) df = kay/erdB,

(d) G, = G§ + k1fBsg + 0y,

where 0 is a 1-form on M.

2. Preliminary

For a given Finsler metric F' = F(x,y), the geodesics of F satisfy the follo-

wing ODEs:
d?z’ ; dz
2G" — | =
p7e +2G (33, dt) 0,

where G = G*(z,y) are the geodesic coefficients, given by
i L e m 2
G' = Zg {[F ]xmyly - [F ]:cl}

The equivalent condition that a Finsler metric F' is projective to F has been
characterized by using spray coefficients.
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Let (M, F) be a Finsler space. Another Finsler metric F' on M is projec-
tive to F' if and only if there exists a scalar function P(y) on TM \ {0}, i.e.,
homogeneous of degree one in y, such that

G =G+ Ply)y, (2.1)

where G' and G/ are spray coefficients of F and F respectively. In what follows,
we will explain what is a (regular) (o, 8)-metric. Let ¢ = ¢(s), |s| < by, be a
positive C'*° function satisfying
B(s) —s¢'(s) + (b — s%)¢”" >0 (|s| < b < by).

For a given Riemannian metric @ = y/a;;y'y/ and a 1-form 3 = b;y’ satisfying
1Bzl < bo for any x € M, we call F := a¢(s),s = g, an (regular) (a, 3)—metric.
In this case, the fundamental form of the metric tensor induced by F' is positive
definite. Let V3 = bi|jdxi ® dz’ be the covariant derivative of 3 with respect
to a. Denote

1 1
Tij = §(bz‘|j +bj),  sij = §(bi|j = byjj)-

Clearly, 3 is closed if and only if s;; = 0. Let s; := b's;;, s;

sb = s;yf and rgg := rijyiyj . The geodesic coefficients G* of F' and the geodesic

il o anid
= a"sy;, So = 8y,

coefficients G?, of « are related by follows

G' =G + aQsh + {—2aQsg + roo H{Ub' + Oa~'y'}, (2.2)
where
¢¢’ — 5(¢¢" + ¢'¢')
0= 2.3
3006 — 50) + (7 — 217 =
__ ¢

Q—¢_s¢,, (2.4)

B 1 ¢//
PTG+ - =

Definition 2.1. Let
i o3 ; 1 oG™ ,

where G? are the spray coefficients of F. The tensor D := D;klc?i@dxj Rdz* ®dx!
is called the Douglas tensor. A Finsler metric is called Douglas metric if the
Douglas tensor vanishes.

It is easily seen from (2.1) that the Douglas tensor is a projective invariant.
Noting that the spray coeflicients of a Riemannian metric are quadratic forms,
one can see that the Douglas tensor vanishes from (2.6). It means that Douglas
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tensor is a non-Riemannian quantity. From [4], we get

, o3 , 1 4
D= ———— | T"'— ——T7%y" ), 2.
IRET Byd Dyk oyt ( n+17Y 4 ) (2.7)
where
T = aQsi + V{—2asq + roo }b',
Ty = Q'so+ Va1 (b? — 5%)[roo — 2Qasg)
+2¥[rg — Q'(b* — 5%)s0 — Qss]. (2.8)
A simple caculation shows
Tym =2¥(ro + s0) + a1 (b? — 5%)[ro0 — 2Qasg). (2.9)
Let F and F be two (a, 3)-metrics and assume that they have the same Douglas

tensors, i.e. D;kl = D;kl From (2.7) we have

o3 L 1 - )
— | " -T"——T - T)n)y" | =0.
Oy Oy oy ( n+1( v Y )y)

Then there exists a class of scalar functions H}; := H, () on M such that

Ti_Ti_

g (T = Tyn)y' = Ho,

where Hj, := H;kyjyk, T and T}%. are given by (2.8) and (2.9) respectively. For
a Randers metric, S. BAcs6 and M. MATSUMOTO proved the following

Lemma 2.1 ([3]). A Randers metric F = o + 8 is a Douglas metric if and
only if 3 is closed.

Later on, B. L1 and Z. SHEN got more general consequence:

Lemma 2.2 ([2]). Let F = a¢(s), s = g, be an («, B8)-metric on an open
subset U in the n-dimensional Euclidean space R™(n > 3), where a =/, (x)y'y?
and 3 = b;(x)y*. Suppose that the following conditions: (a) 3 is not parallel with
respect to a, (b) ¢ # kn/1 + kos2+kss for any constants ki, ke and ks, (c) db # 0
everywhere or b = constant on U. Then F is a Douglas metric on U if and only
if the function ¢ = ¢(s) satisfies

{14 (kg + kos?)s® + k3s?}¢" = (ky + kas?) (¢ — s¢), (2.10)
and [} satisfies
bit; = 27{(1 4 k1b*)as; + (kob® + k3)bib; }, (2.11)

where 7 = 7(x) is a scalar function on U and ki, ko and ks are constants with

(k27 k3) 7é (07 0)
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We will prove that ”b = const” in condition (c) contradicts (a) or (b) when

F is a Douglas metric. In fact, condition (¢) in Lemma 2.2 can be removed.

Lemma 2.3. Let F = ag¢(s), s = g, be an («, 8)-metric on an open subset
U in the n-dimensional Euclidean space R™(n > 3), where o =/a;;(z)y'y? and
B = b;(x)y’. Suppose that the following conditions: (a) 8 is not parallel with
respect to a, (b) ¢ # kn/1+ kgs® + kzs for any constants ki, ko and ks. If

b = constant on U, then F' is not a Douglas metric.

PROOF. Suppose that F' is a Douglas metric, from Lemma 2.2, we have
{1 + (k‘l + k‘252)82 + k’382}¢// = (kl + k‘282)(¢ — S(b/)7
bi\j =27{(1+ klbg)aij + (kgbg + kg)bibj}.
Since b = const, from [6] we have

ro + 59 = 0.
Since § is closed, we get

ro = b'rijy? = 27{(1 + k1b?) + (k2b® + k3)b*}8 = 0.
Since (8 is not parallel with respect to a, 7 # 0, we get

(14 k%) + (k2b? + k3)b® = 0.
Noting that

{1+ (k1 + ko5?)s® + kas”}¢" = (k1 + kas?)(¢ — s5¢'),

by setting s = b,
ki + kob? = 0,

we have
(]{1282 + kg)(]ﬁ" = kg(d) — Sd)/).
If ko = 0, it is easy to check that F'is a Randers metric. If ko #£ 0, we have

(z)// _

1 1 1
U= _ - .
26— 5o + (1 — D" 2 142

From [2], we see that F' is of Randers type which contradicts the condition.
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Lemma 2.4. Let F = a¢(s), s = g, be an («, 8)-metric on an open subset
U in the n-dimensional Euclidean space R™(n > 2), where o =+/a;;(z)y'y? and
B = b;(x)y’. Suppose that the following conditions: (a) 3 is not parallel with
respect to o, (b) ¢ # kn/1 + kos? + kss for any constants ki, ke and k. Then F
is a Douglas metric on U if and only if the function ¢ = ¢(s) satisfies

{14 (ky + kos?)s? + k3s?}¢" = (k1 + kas?) (¢ — 5¢), (2.12)
and (3 satisfies
bij; = 27{(1 4 k1b*)as; + (kob® + k3)bib; }, (2.13)

where T = 7(x) is a scalar function on U and ki, ko and ks are constants with

(ka, k3) # (0,0).

PROOF. =: Set U =U'UU", where U ={x €U | db# 0} and U" = {z €
U | db=0}. From Lemma 2.3, we can assume U"° = (), i.e., OU'NU = U". Since
U’ is an open set, from Lemma 2.2, (2.12) and (2.13) hold in U’. Since ¢ and S
are smooth, (2.12) holds in (—b(x),b(x)) for any x € U. Next we consider 3. For
any zg € U”, we just need to prove 7 continues at xg. If

(14 k1b%) + (kob® + k3)b%]| sy # 0,
then o
bbby
[(1 + k/’le) + (k2b2 + k?g)bg]bg |$0.
If [(1 + k1b%) + (k2b? + k3)b?]|z, = 0, similarly to Lemma 2.3 we can prove that
F is of Randers type which contradicts the condition.
<: obvious. |

T(l‘o) =

3. On Douglas related metric

It is known that for some special («, 3)-metrics, they are Douglas related

to a Randers metric if and only if they are Douglas metrics, such as Matsumoto

_ (a+B)?

metric F . In what follows, we consider more general case.

Lemma 3.1. Let &1 + ®sa + P3¢ = 0, where a@ = /¥, 4+ VYsa, a =
Voo Y2, n >3, &y, Uy, &y, &3 and Uy are homogeneous polynomials. Then

3

one of the following holds:
(a) (1)1:(1)2:(1)3:0,
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(b) & =ka+ ky,
where k = %ﬁ and ky = % are homogeneous polynomials.

PRrOOF. If &1 + o + $3a = 0, then we have
(B + Poa)? = P2(TV) + Uya).
Since @1, ¥y, &5, 3 and ¥y are homogeneous polynomials, we have

20,0y = PV, (3.1)
®? + D302 = 2V, (3.2)

The irreducible decomposition of ®3 is $3 = g1%1g2" - - - g,**, where each g; is an
irreducible polynomial. If ®3 is not a factor of ®,, then there exists a g; which
is not a factor of ®. From (3.1), g;%% has to be a factor of ®; and therefore a
factor of ®3a? from (3.2). Since @2 is irreducible, g; must be a factor of ®; which
contradicts assumption. Thus either ®5 have the factor ®3 or &, = 5 = &3 = 0.
a simple argument shows that either ®; have the factor ®3 or ®; = &5 = &3 = 0.
This finishes the proof of the lemma. O

From Lemma 3.1, we have the following lemma.

Lemma 3.2. Let ®; + o0 + P30 + Pyaa = 0, where & = V¥ + U4,
a=+/>r vyl n>2 & and ¥, are homogeneous polynomials of degree two,
®,y, 3 and V4 are homogeneous polynomials of degree one, and 94 is a constant.
Then one of the following holds:

(a) (1)1:(1)2:4)3:(1)420,
(b) d = kd + Z?:l kly“

where k and k; are constants.

PRrROOF. Multiplying (®3—®4a) on both sides of 1+ Poa+P3a+Pyac = 0,
yields
D1 P3 — PyDya’ + (By®s — D1Dy)a + (P32 — d2a)a = 0.

From Lemma 3.1 we have case (i)
DDy — Do®ya’ = Oyds — BBy = B3? — d2a% = 0.
Since @2 is irreducible, from

P3? — a2 =0,
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we get @3 = &, = 0. Then the equation ¢1 + Poa + P3a + P, = 0 becomes:

P + P2 =0,
which means ®; = &, = 0.

T W ’ I DaP3 -0 Dy AN T P Y ey
Case (ii): & = k'a + k', where k' = K rumrsren and k" = i o
are homogeneous polynomials. Since ®; is a homogeneous polynomial of degree

two, @5 and ®3 are homogeneous polynomials of degree one, ®4 is a constant, we

obtain (b). O

Lemma 3.3. Let & = p(z, g)a, where & and « are Riemannian metrics
on M. Then u(zx, g) =/a(z)+ cz(x)g—z, where ¢; and cy are scalar functions
on M.

PROOF. From Theorem 2.1 of [14], we have

& = cra? + 282 + czaf.

Noting that & is Riemannian, we have c3 = 0, hence p(, g) = \/er(z) + caa) 25

QD

Remark 3.1. In fact, Theorem 2.1 of [14] told us: the Cartan tensor of («, 3)-

metric is of the form Cy;, = KBy, + K1 B; + Ky B; if and only if F? =c¢a?+

2coa3 + ¢332, where K;; is the angular metric tensor of the Riemannian metric

a and B; are some tensor fields. From the proof of Theorem 2.1 of [14], one can
see the consequence also holds for general (a, §)-metric.

Theorem 3.1. Let F = a¢(s) be an («, 8)-metric and F=a+8 bea

Randers metric on a manifold M with dimension n > 3. Suppose
I kit+koy/14+kgt? dt
¢ # Ce vt +hotv/14k5® = where C, ki, ko and ks are constants. Then F is

Douglas related to F if and only if they are both Douglas metrics.

PROOF. Supposing F' is Douglas related to F, then there exists a class of
scalar functions HY, := HJ, () such that

Ti_j:ti_

— (T =Ty = Hi,
Hence

- . o
H(Z)O =+ 0456 = QQ56 -+ @{72016250 + Too}bz — m{Q@(TO + 50)

+ @' a1 (b — 5*)[roo — 2Qaso] }y'. (3.3)
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188
Choose a special coordinate system at a point as in [1]. Take a change of coordi-

nates (s,y%) — (y°) by

B =0y

and

Set 1 1
5 (bitg = bjja), iy = 5 (baly + bjja)-

Sij =

Then we have

n n
— a 1 __ T,,) — 2 — 1 ,,a
S0 = E bs1ay® sy =S5y =8| ———=a+ E suy
J / 2 . 2 a )
a=2 b § a=2

n
S _
———=a+bY ray",
— S
a=2
2

To = b’l“ll \/1)27
S
2

YOt 0% Ty

00 = 2714 —F——=
00 la o

Case(i): & = p(x, s)a. Then we have
wzx, s)a + Z sty
a=2

i i S
50 =8| ——=—=
D2 _ o2

From Lemma 3.3, we have
(@, s) = \ei1(x) + ca(x)s?.

(3.3) can be written as
P! + dha = 0.

Set ¢ =1, or ¢ = a in the above eqution, we have
20s  2QP's(b? — 32)}
Sla

gl = - 2 @ 2 -
Hoa [Q QP n+1 n+1
252@/(b% — 52 s
(ni 52 )} Tl — 2H11a5, (3.4)

2nds _
n+1
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b sb 52 _ 0 b e
(/J‘ ab2 Qsla — Hillbg_Q) a2 = Hbcyby
2y y°

+n+1

[cbb<mc+slc>+b<1><b e - 2OV~ e 35)

2‘1)57“11 a + CI)/SQ(bQ — 52)7“1111]&} b2 072
b2

S c za, cC C
|:2Hbey + ps:y _Sach("f' n+1 Y (n+1)b2

Sl Gl L i

— 2

= — . 3.6
n+1 Y (36)
From (3.5), we have
52 b? — 52
w(x, 8)8814 = $Qs14 + Hiy — 5 + Hyjpy———— T b # a.
By taking s = 0, we get Hj, = 0. Then
. W S
us; = Qs1q + HUE' (3.7
From (3.6), we get
18 = 54.Q — ZHfC% a # c. (3.8)

If 5;; = 0, Vi, j, then from (3.7) and (3.8), §;; = 0,, i.e. (3 is closed, which shows
that F is Douglas metric. Otherwise,

Q=kis+kov1 +k382

where k1, ko and k3 are constants. Then

fs kit+koy/1+kgt? dt
0 1y

¢ = Ce k1t24kot\/1+k3t?

which contradicts the condition.

Case(ii): & # p(x,s)a. Then (3.3) can be written as
P! + Db+ PLa + Plaa = 0,

where ®%, ®) ®% &) are polynomials of y*. From Lemma 3.1 and Lemma 3.2,
we have
(a) @4 = @4 =P, =0and &) =0, or
(b) & = k(x, S)O‘ + ZZ o ka(, 8)y",
where ®% = 5y and &} = 521%
If (a) holds, we have 85 = 0. From Lemma 2.2, we have Dékl =0.
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If (b) holds, we will prove that k,(z,s) = 0. Since

& = Vanyy' + awysy® + 2ayty’

I _ s
= \/all D22 a? + aapy y® + 2a1bm05yba
from (b), we have

82

a0 + aay"y’ = K& + kakoy“y’, (3.9)
b? — s
~ 5 b b
albﬁy = kkby . (310)
From (3.9), we have
Gab = kakba b # a, (311)
~ 5° ~ 2 2
anm + Qgq = k + ka' (312)
From (3.10), we have
N S
albm = kbk (313)

Letting (3.12) x k7 and s = 0, and using (3.11) and (3.13), we check that
daoki = a2, a#b.
Similarly,
dbbk‘g = &31) a 75 b.
Thus
Aaalpbln, = Gup-
From the positive definiteness of &, we have
dab =0 a 75 b.

Thus from (3.11), there exists some a such that k, = 0. From (3.12), we have

82

1152 + Gaa = k? and dn% + ap = k2 + k%, for any b # a, which implies
k? = app — Gaq. Thus kp is independent of s. By taking s = 0 in (3.10), from
k > 0, we have ky = 0. Then & = k(z, s)a, which contradicts the condition. This
completes the proof of the theorem. O

From the proof above and Lemma 3.3, we have following proposition.
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Proposition 3.1. Let F' = a¢(s) be an (a, 8)-metric and F = &+ f3 be a
Randers metric on M with dimension n > 3. Suppose & # +/c1(x) + ca(2)s%a
Then F' is Douglas related to F' if and only if they are both Douglas metrics.

For two Randers metrics, they had already been considered in [6]. For ¢ =
5 kit+koy/14+kgt? dt
Ce’? 1+hat?+haty/1+k382  and I is non-Randers and ko # 0, we have

Theorem 3.2. Let F' = a¢(s) is a non-Randers type (a,)-metric and

F=a +B be a Randers metric on M with dimension n > 3, and
I kit+koy/1+kgt? dt
¢ = Ce % 1kt +haty/14kst? —  ywhere C, ky, ko and ks are constants with ko # 0.

Suppose ( is not parrel with respect to «. Then F' is Douglas related to F if and
only if the following conditions hold:

(a) F has isotropic S-curvature,
(b) & = erv/a? + k32,
(c) dB = ky\/crdp.

where ¢y is a scalar function on M.
First we need to prove the following lemmas.

Lemma 3.4. Let F' = ag¢(s),s = g, be an («, 8)-metric and
I kyt+ko/1+kgt? dt
¢ = Ce % vrt?+haty/14kst ywhere C, ky, ko and ks are constants with ko # 0.

Then F' is a Randers type metric if and only if ky = k3.

PRrROOF. If ky = k3, we have ¢ = C'v/1 + k152 + Ckys, which means that F
is of Randers type. On the contrary, if F' is of Randers type, we have

U= 1 kl\/ 1+ /43382 + kasS o 1 klz
T 2(1+ 02k )V F kss? + kos(1 4+ b2ks) 21+ k4b?’

for some constant k5. Since the right side of the above equation is independent
of s, we have ki = k3. O

Lemma 3.5. F' = a¢(s) Is a non-Randers type (o, 3)-metric on M with
fs kit+koy/1+kgt? dt
O 1tk +katy/ithst?  where C, ky, ko and k3 are any

constants with ko # 0. Then F' has isotropic S-curvature if and only if 3 satisfies

dimension n > 3 and ¢ = Ce

Too = O7 S0 = 0.
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PROOF. From Theorem 1 of [7], F has isotropic S-curvature if and only if
one of the following conditions hold

(l) ’I’j+8j:07 (I):O,

(11) rij = 5(b2aij - bibj), Sj = 0,

where € = () is a scalar function, and

PA?
(iii) roo =0, so =0,
where
A=1+45Q+ (" —-5°)Q,
and

®=—(Q—sQ){nA+1+sQ}— (b —s*)(1+5Q)Q".

From Lemma 3.4, we just need to prove that k; = k3 when ® = 0 or & =
IUS kttko/I+kgt? dt
1+

—2(n + 1)/{%. Since ¢ = Ce k1t thztVitkst? we have

kQS(]. -+ kgbz)

A=1+b%k + ,
and \/1+k382
—k2 2\ .2 2
O = —"—— (k1 + ks + (n+1)k1ksbd”)s” +n+ 14 (nki + k3)b
T T [ ket (0 Dkakal?) (nks + k)

+ (n+ ka1 + ksb?)sy/T + kss2 ]

If (b = O7 we get (k’l —+ nkg —+ (TZ —+ 1)k1]€3b2) = O, n + 1 —+ (nk:l —+ kg)b2 = 0 and
14 kzb® = 0. Thus ky = k3 = — 5.

Ifd = —2(n+1)k%, we see that A? = 0 when s? = b2 for ® is a continuous
function. Thus 1 + b2k + ko (£b)vV1 + k3b? = 0, ie., ki = ks = — 5. O

PROOF OF THEOREM 3.2. =: Supposing & # v/¢1 + cas%a, from Proposit-
ion 3.1, we see that F' is a Douglas metric. From Lemma 2.4, we have

{1+ (K] + kys?)s® + kis* Yo" = (k] + kbs?) (¢ — s¢).
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I kit+koy/1+k3t? dt
Since ¢ = Ce’® 1+mt>+hatv/14k3t> " we get k; = k3. From Lemma 3.4, F is of
Randers type which contradicts the condition. Hence & = v/¢1 + 282, and F' is

not a Douglas metric.
Combining (3.4), (3.5) and (3.6) yields

/ 2 .2
Ny [Q Coqupp - 28 2QWs( s )] 5!

n+1 n+1
et
QHfa%_F%H {2\Ilr115+\11’(b2—82) [rui—i—ma (1)2;282)]} =0. (3.15)
Ver+ 5?5, = Qs) + Hiy 7 (3.16)
VE?I;%gZQ#—2Hﬂ%b¢a, (3.17)
rep =0, a#b and ryq =T (3.18)

Since F' is not a Douglas metric, we have SZ # 0 for some i, j. From (3.16),
(3.17) and @ = k15 + ka1 + kgs?, we have

\/agcll = kgsé, \/agg = kQSg, Co — kgCl. (319)

I kit+koy/14+kgt? dt
0 1t

Taking into account ¢ = Ce k1t2+katy/14k302 e have

U — 1 kl\/1+k382—|—k2k38
©2(1 4+ 02k VT F k38?4 k(1 4 b2k3)s’

and
ko(ks — k1)

VT F k382[(1+ b2k1 ) VT + k382 + ko(1 4 b2k3)s]2’

Since k1 # ks, from (3.14), considering the degree of s, we have sl = 31 = 0,

rie = 0, i.e,, 7o = s = 0. By taking s = 0 in (3.15), we have ¥/(0)r,, = 0,
hence r,, = 0. Substituting it into (3.15), we have r1; = 0. From Lemma 3.5,

/!

1
==
2

we see that F' has isotropic S-curvature. Since so = 0, (3.19) is equivalence to

dpB = kov/c1dp.
<
) _ 93 . . 93 .
Dy — Dy = W(GQSB —as)) = W(lﬁﬁsé) =0. g
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4. Examples

Ezample 1. F = ad(s), ¢ = e¥enhls) 5 = g and F = /o2 + 2 + 6.
F has isotropic S — curvature, then F is Douglas related to F. In this case,
w(x,s) =1+ s2.

Ezample 2. F = ad(s), ¢ = \/1—|—S+82€% arctan(%(s—i—%))’ s = g and
F = o+ . F has isotropic S — curvature, then F is Douglas related to F. In
this case, p(z,s) = 1.

Ezample 3. F = a+ f3, and F' = p(z)a + p(z)B, then F is Douglas related
to F. In this case, the condition of isotropic S — curvature can be removed.

5. On projective related metric

Since projectively related metrics have to be Douglas related metrics, from
Theorem 1.1 and Theorem 1.3, we only need to consider projectively related
Douglas metrics.

Theorem 5.1. Let F = a¢(s) and F = a¢(s) be two («, 3)-metrics on M
with dimension n > 3. Suppose they are Douglas metrics. Then F' is projectively
related to F' if and only if

Gi, = G + 0y’ — 7(k1a® + ko f2)b° + 7(k1G2 + ko B2,
where 7 = 7(x) and T = 7(x) are scalar functions and 6 is a 1-form on M.

PROOF. If one of the metrics is of Randers type or 3 is parallel with respect
to a, it is easy to get the conclution. Thus, we can assume (a) § is not parallel
with respect to o, (b) ¢ #v/1 + kgs? + kss for any constants k;, ko and k3. From
Lemma 2.4 and (2.5), we have

]Cl + k282
14 k102 + (k2b? + k3)s?’

1
T =-
2

and
roo = 2702 {1 + kyb* + (kob? + k3)s°}.

Then from equation (2.2), we have

G' =G +roo(TV' +0a 1y') = G, + 7(k1a? + ko f2)0" + ro0Oa 1y,
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and )
Gi = GL 4 7(k1&* + k2 f2)° + 7ooOa 1y
Thus F is projectively related to F' if and only if
Gl = GL + 0y — 7(k1a? + koAb + 7(k1 @2 + ko B2)b7. 0
From Theorem 1.1 and Theorem 5.1, we have the following

Theorem 5.2. Let F = ad(s) be an («a,)-metric and F = & + S be a

Randers metric on a manifold M with dimension n > 3. Suppose
5 kit+koy/1+kgt? .
¢ # Ce® 1kt +ioty/14ks where C, ki, ko and ks are constants and 3 is not

parallel with respect to a. Then F' is Projectively related to F if and only if the
following conditions hold:

{14 (ky + kos?)s® + kzs?}¢" = (k1 + kas?) (¢ — 5¢), (5.1)
bij = 27{(1 + k1b?)ai; + (kob® + ks)bb; }, (5.2)

dg =0, (5.3)

G, = Gy +0y' — 7(k1o® + ko )V, (5.4)

where 7 = 7(x) is a scalar function on M and k1, ko and ks are constants with
(ko, k3) # (0,0), 0 is a 1-form on M.

IS kitt+ko/1+k3t? d
0 Ty

t
Similarly, for ¢ = Ce Rit?+koty/1+k3t2 T and F is of non-Randers type and

ko # 0, we have

Theorem 5.3. Let F = a¢(s) be a («,)-metric of non-Randers type

and F = & + B be a Randers metric on M with dimension n > 3, and ¢ =
IS kit+koy/1+kgt? dt
Ce’® 1tk +roty/1tk3t?  where C, ky, ko and ks are constants with ko # 0. Sup-

pose B is not parrel with respect to . Then F' is projectively related to F if and
only if the following conditions hold:

(a) F has isotropic S-curvature,

(b) &= er\/a? + ks,

(c) df = ka\/c1dp.

(d) G = G% + k1s + 0y', where 0 is a 1-form on M

It is an immediate consequence of Theorem 1.4.
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