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Balancing numbers which are products of consecutive integers

By SZABOLCS TENGELY (Debrecen)

Abstract. In 1999 A. Behera and G. K. Panda defined balancing numbers as

follows. A positive integer n is called a balancing number if 1 + 2 + · · · + (n − 1) =

(n + 1) + (n + 2) + · · · + (n + k) for some k ∈ N. The sequence of balancing numbers

is denoted by Bm for m ∈ N. In this paper we show that the Diophantine equation

Bm = x(x + 1)(x + 2)(x + 3)(x + 4) has no solution with m ≥ 0 and x ∈ Z. We

follow the ideas described in [13], that is we combine Baker’s method and the so-called

Mordell–Weil sieve to obtain all solutions.

1. Introduction

A positive integer n is called a balancing number if

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ k)

for some k ∈ N. The sequence of balancing numbers is denoted by Bm for m ∈ N.
We note that usually the initial values B0 = 0, B1 = 1 of the balancing sequence

are used. Behera and Panda [3] proved many interesting results related to

the sequence Bm. They showed that the balancing numbers fulfill the following

recurrence relation

Bm+1 = 6Bm −Bm−1 (m ≥ 1)

where B0 = 0 and B1 = 1. Later several authors investigated balancing numbers

and their various generalizations. In [21] Liptai proved that there are no Fibo-

nacci balancing numbers and in [22] he showed that there are no Lucas balancing
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numbers. He used a method by Baker and Davenport [2]. Szalay [29] ob-

tained the same results by using different techniques. In [25] Panda introduced

the sequence balancing numbers. Let {sm}∞m=1 be a sequence such that sm ∈ R.
An element sm of this sequence is called a sequence balancing number if

s1 + s2 + · · ·+ sm−1 = sm+1 + sm+2 + · · ·+ sm+k

for some k ∈ N. Further generalization in this direction is due to Bérczes,

Liptai and Pink [4]. Now let a, b two non-negative coprime integers and recall

the following definition of [19]. A positive integer an + b is called (a, b)-type

balancing number if

(a+ b) + (2a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ k) + b)

for some k ∈ N. Denote by B
(a,b)
m the m-th positive integer an + b among the

(a, b)-type balancing numbers. Kovács, Liptai and Olajos [19] proved some

general finiteness results concerning the equation

B(a,b)
m = f(x),

where f is a monic polynomial with integral coefficients. They also resolved

some related Diophantine equations. Liptai, Luca, Pintér and Szalay [23]

introduced the concept of (k, l)-power numerical center as follows. Let y, k, l be

fixed positive integers with y ≥ 2. A positive integer x with x ≤ y − 2 is called a

(k, l)-power numerical center for y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

The authors of [23] obtained certain effective and ineffective finiteness results for

(k, l)-power numerical centers.

For positive integers k, x let

Πk(x) = x(x+ 1) · · · (x+ k − 1).

That is, Πk(x) is a polynomial in x of degree k. In [19] it was proved that the

equation

Bm = Πk(x)

for fixed k ≥ 2 has only finitely many solutions and for k ∈ {2, 3, 4} all solutions

were determined. We note that in [19] the “small” solutions of the above equation

with k ∈ {6, 8} were also computed.

In this paper we deal with the case k = 5. That is we consider the equation

Bm = x(x+ 1)(x+ 2)(x+ 3)(x+ 4).

We prove the following theorem.
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Theorem 1. The Diophantine equation

Bm = x(x+ 1)(x+ 2)(x+ 3)(x+ 4) m ≥ 1, x ∈ Z

has no solution.

2. Auxiliary results

Consider the hyperelliptic curve

C : y2 = F (x) := x5 + b4x
4 + b3x

3 + b2x
2 + b1x+ b0, (1)

where bi ∈ Z. Let α be a root of F and J(Q) be the Jacobian of the curve C. We

have that

x− α = κξ2

where κ, ξ ∈ K = Q(α) and κ comes from a finite set. By knowing the Mordell–

Weil group of the curve C it is possible to provide a method to compute such a

finite set. To each coset representative
∑m

i=1(Pi−∞) of J(Q)/2J(Q) we associate

κ =

m∏

i=1

(
γi − αd2i

)
,

where the set {P1, . . . , Pm} is stable under Galois action, all y(Pi) are non-zero

and x(Pi) = γi/d
2
i where γi is an algebraic integer and di ∈ Z≥1. If Pi, Pj are

conjugate, then we may suppose that di = dj and so γi, γj are conjugate. We

have the following lemma (Lemma 3.1 in [13]).

Lemma 1. Let K be a set of κ values associated as above to a complete set

of coset representatives of J(Q)/2J(Q). Then K is a finite subset of OK and if

(x, y) is an integral point on the curve (1) then x− α = κξ2 for some κ ∈ K and

ξ ∈ K.

As an application of his theory of lower bounds for linear forms in logarithms,

Baker [1] gave an explicit upper bound for the size of integral solutions of hy-

perelliptic curves. This result has been improved by many authors (see e.g. [5],

[7], [10], [28] and [30]).

In [13] an improved completely explicit upper bound was proved by combining

ideas from [10], [11], [12], [20], [24], [26], [30], [31]. Now we will state the theorem

which gives the improved bound. We introduce some notation. Let K be a
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number field of degree d and let rK be its unit rank further RK its regulator. For

α ∈ K we denote by h(α) the logarithmic height of the element α. Let

∂K =





log 2

d
if d = 1, 2,

1

4

(
log log d

log d

)3

if d ≥ 3

and

∂′
K =

(
1 +

π2

∂2
K

)1/2

.

Define the constants

c1(K) =
(rK !)2

2rK−1drK
, c2(K) = c1(K)

(
d

∂K

)rK−1

,

c3(K) = c1(K)
drK

∂K
, c4(K) = rKdc3(K),

c5(K) =
rrK+1
K

2∂rK−1
K

.

Let

∂L/K = max

{
[L : Q], [K : Q]∂′

K ,
0.16[K : Q]

∂K

}
,

where K ⊆ L are number fields. Define

C(K,n) := 3 · 30n+4 · (n+ 1)5.5 d2 (1 + log d).

The following theorem will be used to get an upper bound for the size of the

integral solutions of our equation. It is Theorem 3 in [13].

Theorem 2. Let α be an algebraic integer of degree at least 3 and κ be an

integer belonging to K. Denote by α1, α2, α3 distinct conjugates of α and by κ1,

κ2, κ3 the corresponding conjugates of κ. Let

K1 = Q(α1, α2,
√
κ1κ2 ), K2 = Q(α1, α3,

√
κ1κ3 ), K3 = Q(α2, α3,

√
κ2κ3 ),

and

L = Q(α1, α2, α3,
√
κ1κ2,

√
κ1κ3 ).

In what follows R stands for an upper bound for the regulators of K1, K2 and

K3 and r denotes the maximum of the unit ranks of K1, K2, K3. Let

c∗j = max
1≤i≤3

cj(Ki), N = max
1≤i,j≤3

∣∣NormQ(αi,αj)/Q(κi(αi − αj))
∣∣2 ,
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and

H∗ = c∗5R+
logN

min1≤i≤3[Ki : Q]
+ h(κ).

Define

A∗
1 = 2H∗ · C(L, 2r + 1) · (c∗1)2∂L/L ·

(
max
1≤i≤3

∂L/Ki

)2r

·R2,

and

A∗
2 = 2H∗ +A∗

1 +A∗
1 log{(2r + 1) ·max{c∗4, 1}}.

If x ∈ Z\{0} satisfies x− α = κξ2 for some ξ ∈ K then

log|x| ≤ 8A∗
1 log(4A

∗
1) + 8A∗

2 +H∗ + 20 log 2 + 13 h(κ) + 19 h(α).

To obtain a lower bound for the possible unknown integer solutions we are

going to use the so-called Mordell–Weil sieve. The Mordell–Weil sieve has been

successfully applied to prove the non-existence of rational points on curves (see

e.g. [8], [9], [17] and [27]).

Let C/Q be a smooth projective curve (in our case a hyperelliptic curve) of

genus g ≥ 2. Let J be its Jacobian. We assume the knowledge of some rational

points on C, so let D be a fixed rational point on C and let  be the corresponding

Abel–Jacobi map:

 : C → J, P 7→ [P −D].

Let W be the image in J of the known rational points on C and D1, . . . , Dr

generators for the free part of J(Q). By using the Mordell–Weil sieve we are

going to obtain a very large and smooth integer B such that

(C(Q)) ⊆ W +BJ(Q).

Let

φ : Zr → J(Q), φ(a1, . . . , ar) =
∑

aiDi,

so that the image of φ is the free part of J(Q). The variant of the Mordell–

Weil sieve explained in [13] provides a method to obtain a very long decreasing

sequence of lattices in Zr

BZr = L0 ) L1 ) L2 ) · · · ) Lk

such that

(C(Q)) ⊂ W + φ(Lj)

for j = 1, . . . , k.

The next lemma [13, Lemma 12.1] gives a lower bound for the size of rational

points whose image are not in the set W . Let h be the logarithmic height on J

and ĥ be the canonical height on J .
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Lemma 2. Let W be a finite subset of J(Q) and L be a sublattice of Zr.

Suppose that (C(Q)) ⊂ W + φ(L). Let µ1 be a lower bound for h− ĥ and

µ2 = max

{√
ĥ(w) : w ∈ W

}
.

Denote by M the height-pairing matrix for the Mordell–Weil basis D1, . . . , Dr

and let λ1, . . . , λr be its eigenvalues. Let

µ3 = min
{√

λj : j = 1, . . . , r
}

and m(L) the Euclidean norm of the shortest non-zero vector of L. Then, for any

P ∈ C(Q), either (P ) ∈ W or

h((P )) ≥ (µ3m(L)− µ2)
2
+ µ1.

3. Proof of Theorem 1

It was shown by Liptai that the integers Bm satisfy the following equation

z2 − 8y2 = 1

for some integer z. So one has to determine all solution of the equation

z2 = 8(x(x+ 1)(x+ 2)(x+ 3)(x+ 4))2 + 1.

Rewrite the latter equation as follows

z2 = 8(x2 + 4x)2(x2 + 4x+ 3)2(x2 + 4x+ 4) + 1.

Let X = 2x2 + 8x. We obtain that

C : Y 2 = X2(X + 6)2(X + 8) + 4, (2)

where Y = 2z. It remains to find all integral points on C. The rank of the Jacobian

of C is 3, so classical Chabauty’s method [14], [15], [16] cannot be applied. In this

paper we combine Baker’s method and the so-called Mordell–Weil sieve to obtain

all integral solutions of equation (2).

Lemma 3. The only integral solutions to the equation (2) are

(0,±2), (−6,±2), (−8,±2).
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Proof. Let J(Q) be the Jacobian of the genus two curve (2). Using magma

[6] we determine a Mordell–Weil basis which is given by

D1 = (0, 2)−∞,

D2 = (−6, 2)−∞,

D3 = (ω,−ω − 10) + (ω,−ω − 10)− 2∞,

where ω is a root of the polynomial x2 + 7x + 4. Let f = x2(x + 6)2(x + 8) + 4

and α be a root of f . We will choose for coset representatives of J(Q)/2J(Q) the
linear combinations

∑3
i=1 niDi, where ni ∈ {0, 1}. We have

x− α = κξ2,

where κ belongs to a finite set (having 8 elements). This set can be constructed

as described in Lemma 1. We apply Theorem 2 to get a large upper bound for

log |x|. A magma code was written by Gallegos–Ruiz [18] to obtain bounds

for such equations. We used the above magma functions to compute an upper

bound for log |x|, the results are summarized in the following table

κ bound for log |x|
1 4.17 · 10204
−α 1.59 · 10411

−6− α 3.11 · 10430
4 + 7α+ α2 1.59 · 10411
−8 + 6α+ α2 3.11 · 10430
13 + 9α+ α2 1.59 · 10411

6α+ α2 3.11 · 10430
−10 + 5α+ α2 3.11 · 10430

The set of known rational points on the curve (2) is {∞,(0,±2),(−6,±2),(−8,±2)}.
Let W be the image of this set in J(Q). Applying the Mordell–Weil sieve imple-

mented by Bruin and Stoll we obtain that

(C(Q)) ⊆ W +BJ(Q),
where

B=26· 34 · 53 · 73 · 112 · 132 · 17 · 192 · 29 · 31 · 41 · 43 · 47 · 61 · 67 · 73 · 79 · 83 · 89 · 97 · 107 · 109 · 113,

that is

B = 46247720065121846143591520774334300410472000.
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Now we use an extension of the Mordell–Weil sieve due to Samir Siksek to

obtain a very long decreasing sequence of lattices in Z3. After that we apply

Lemma 2 to obtain a lower bound for possible unknown rational points. We get

that if (x, y) is an unknown integral point, then

log |x| ≥ 1.03× 10580.

This contradicts the bound for log |x| we obtained by Baker’s method. ¤

The statement of the Theorem now easily follows. It is enough to find the

values of X = 2x2 + 8x. Afterwards the values for x and m are recovered imme-

diately.
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C. R. Acad. Sci. Paris 212 (1941), 882–885.

[16] R. F. Coleman, Effective Chabauty, Duke Math. J. 52(3) (1985), 765–770.

[17] E. V. Flynn, The Hasse principle and the Brauer–Manin obstruction for curves, Ma-
nuscripta Math. 115(4) (2004), 437–466.

[18] H. R. Gallegos-Ruiz, S-integral points on hyperelliptic curves, Int. J. Number Theory
7(3) (2011), 803–824.
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