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The difference quotient operator

By NICHOLAS A. MARTIN (Eger)

Introduction

In this paper we discuss the spectral properties of a linear operator
defined on a Hilbert space. Using the results of [1], we determine the
essential spectrum of our operator. This, together with the Berger–Shaw

theorem enables us to assert that the operator is question, which we will
call the difference quotient operator, and the adjoint of the multiplication
operator are both essentially normal.

Our main result is an application of the Brown–Douglas–Fillmore

theorem: we will show that the difference quotient operator is a compact
perturbation of the adjoint of the multiplication operator, defined on an
appropriately chosen space.

Preliminaries

We will define the difference quotient operator. We will be working
in the Hilbert space H2(G,µ), consisting of the L2 closure of the poly-
nomials in the independent complex variable z with respect to the usual
two-dimensional Lebesgue area measure µ, defined on an open, simply
connected, bounded subset of the complex plane, G, containing the origin,
such that Ḡ is also connected. To avoid some pathological boundaries, we
will further assume that ∂(G) = ∂(Ḡ). The difference quotient operator is
defined as follows:

T : H2(G,µ) → H2(G,µ), (Tf)(z) =
f(z)− f(0)

z
.
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Proposition 1. T is a bounded linear operator.

Proof. Linearity is obvious, so we will establish an upper bound for
the norm of T . Let R > 0 be the radius of the largest open disc around
the origin that is inside G; call this disc DR. By definition

‖T‖ = sup ‖Tf‖2 = sup

[∫

G

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣
2

dµ

]1/2

.

Then

‖T‖2 = sup

[∫

DR

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣
2

dµ +
∫

G\DR

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣
2

dµ

]
,

where the supremums are taken over the unit ball of H2(G,µ). Let

f(z) =
∞∑

k=0

akzk, then
f(z)− f(0)

z
=

∞∑

k=1

ak zk−1.

We obtain
∫

DR

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣
2

dµ =
∫ R

0

∫ 2π

0

( ∞∑

k=1

|ak|2 r2k−2

)
r drdθ,

where we made use of the standard z = reiθ change of variables. Carrying
on the computation we obtain

∫

DR

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣
2

dµ =
∞∑

k=1

(∫ R

0

∫ 2π

0

|ak|2 r2k−1 dr dθ

)

= π

( ∞∑

k=1

|ak|2 R2k

k

)
.

However,
∫

DR

|f(z)|2 dµ = π

( ∞∑

k=0

|ak|2 R2k+2

k + 1

)
.

and we notice that

(*)
∫

DR

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣
2

dµ ≤ 2
R2

∫

DR

|f(z)|2 dµ.
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For z ∈ G\DR, |z| ≥ R, so
∫

G\DR

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣
2

dµ ≤ 1
R2

∫

G\DR

|f(z)− f(0)|2 dµ.

We make use of the inequality

|a− b|2 ≤ 2(|a|2 + |b|2),
to obtain
(**)∫

G

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣
2

dµ ≤ 2
R2

[∫

G\DR

|f(z)|2 dµ + |f(0)|2
∫

G\DR

1 dµ

]
.

But
|f(0)| ≤ 1

R
√

π
‖f‖2 [4,p. 5],

so adding (∗) and (∗∗) yields
∫

G\DR

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣
2

dµ

≤ 2
R2

[∫

G\DR

|f(z)|2 dµ +
∫

DR

|f(z)|2 dµ +
µ(G)− πR2

πR2

]
=

2
R4

µ(G)
π

.

Thus ‖T‖ ≤ 1
R2

√
2µ(G)

π , proving that T is bounded.

The spectrum

Proposition 2. σ(T ) = {z : 1
z /∈ G}.

As a reminder, the spectrum of an operator T is the set of complex
numbers λ for which (T − λ) is not invertible. We will therefore try to
determine those λ for which (T − λ) is either not one-to-one or not onto.
We have (T − λ)f(z) = f(z)(1−λz)−f(0)

z , so the only possible candidate
for ker(T − λ) is C

1−λz . This function may or may not be in H2(G, µ)
depending on λ(C denotes an arbitrary constant).

Case 1. 1
λ /∈ Ḡ. In this case C

1−λz is analytic in G, and also square
integrable because in this case |1− λz| > d > 0 for some constant d, so

∫

G

1
|1− λz|2 dµ ≤ 1

d2

∫

G

1 dµ < ∞.
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Since 1
λ /∈ Ḡ, C

1−λz is analytic on an open set containing Ḡ as well, thus
by Runge’s theorem it is the uniform limit of polynomials on Ḡ. Thus

C
1−λz is indeed in H2(G,µ). We conclude that for 1

λ /∈ Ḡ, (T − λ) is not
one-to-one.

Case 2. 1
λ ∈ G. In this case C

1−λz is neither analytic, nor square
integrable in G, so ker(T − λ) = 0, so (T − λ) is one-to-one if 1

λ ∈ G.

Case 3. 1
λ ∈ ∂G. As it turns out, the spectrum of T can be determined

even without analyzing this case.
We will determine now for which λ is (T − λ) onto.

Case 1. 1
λ /∈ Ḡ. In this case it was shown that (T − λ) is not one-

to-one, so a given g(z) ∈ H2(G,µ) may have several inverse images under
(T − λ).

Noticing that (T − λ)
(

zg(z)+C
1−λz

)
= g(z), we conclude that for 1

λ /∈
Ḡ, (T − λ) is onto, since for any constant C, zg(z)+C

1−λz us square integrable

and analytic in G. zg(z)+C
1−λz is a uniform limit of a bounded sequence of

polynomials on G because 1
1−λz is. It follows immediately that zg(z)+C

1−λz

belongs to H2(G,µ).

Case 2. 1
λ ∈ G. In this case (T − λ) in one-to-one. Given f(z) ∈

H2(G,µ), we show that h(z) = zf(z)− 1
λ f( 1

λ )

1−λz is the inverse image of f(z).
Since 1

λ ∈ G, f( 1
λ ) is defined. If f ∈ H2(G,µ) then zf(z) ∈ H2(G,µ). As

for a = 0 in Proposition 1, it can be shown that

(zf(z)− af(a))(z − a)−1 ∈ H2(G,µ),

whenever a ∈ G. Hence with a = λ−1 ∈ G, we obtain that

λ−1(zf(z)− λ−1f(λ−1))(z − λ−1)−1 = (zf(z)− λ−1f(λ−1)(1− λz)−1

∈ H2(G,µ).

We conclude that for 1
λ ∈ G, (T − λ) is onto.

Gathering the information obtained so far we conclude tha (T − λ) is
invertible if 1

λ ∈ G and it’s not invertible if 1
λ /∈ Ḡ. If σ(T ) denotes the

spectrum of T , this means, that
{

z :
1
z

/∈ Ḡ

}
⊂ σ(T ) and

{
z :

1
z
∈ G

}
∩ σ(T ) = ∅.
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The three sets {z : 1
z /∈ Ḡ}, {z : 1

z ∈ ∂G} and {z : 1
z ∈ G} partition the

complex plane. Let’s call these three sets A, B and C respectively. We
know that the spectrum of any operator is a compact set, thus σ(T ) is
closed. Since A ⊂ σ(T ), we have Ā ⊂ σ(T ) as well. (In general, for two
sets, X ⊂ Y implies X̄ ⊂ Ȳ because by definition X̄ is the intersection of
all closed sets containing X.) But it is easy to see that Ā = A ∪B = {z :
1
z /∈ G}. Thus, since C ∩ σ(T ) = ∅, we obtain Proposition 2.

We notice that, since G and Ḡ are simply connected, H2(G,µ) =
R2(G,µ) as a consequence of Runge’s theorem. Here we denote the L2

closure of rational functions by R2(G,µ). This means, that considering T
to be defined on R2(G,µ), the spectrum of T remains {z : 1

z /∈ G}.

The essential spectrum

We will now determine the essential spectrum of T .

Definition. The essential spectrum of an operator L, denoted σe(L),
is defined to be the set of all complex numbers λ such that L − λ is not
Fredholm. The left-essential spectrum of an operator L (respectively right
essential spectrum) denoted σle(L) respectively σre(L) is defined to be
the set of all numbers λ such that L − λ is not left (respectively right)
Fredholm.

The following theorem may be found in [4, p. 355, 373].

Theorem.

(1) σle(L) ∪ σre(L) = σe(L) ⊂ σ(L).
(2) If λ ∈ ∂σ(L) then either λ is an isolated point of σ(L) or

λ ∈ σle(L) ∩ σre(L).

Lemma 3. Let R be as in Proposition 1, M = sup{|z| : z ∈ Ḡ}. Then
σ(T ) contains an open disc around the origin of radius 1

M and, denoting

the spectral radius of T by r(T ), we have 1
M ≤ r(T ) ≤ 1

R . Also, σ(T ) has
no isolated points.

Proof. Let 0 < |z| < 1
M . Then | 1z | > M , so 1

z /∈ G, thus z ∈ σ(T ).
Clearly z = 0 is an element of σ(T ). Since r(T ) = sup{|z| : z ∈ σ(T )}, if
we suppose r(T ) > 1

R , this would mean the existence of a point z ∈ σ(T )
such that | 1z | < R. But, by definition of R, this implies that 1

z ∈ G, so
z /∈ σ(T ), contradiction. Finally σ(T ) has no isolated points because it is
the closure of an open set.

We are now in position to determine the essential spectrum of T .
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Proposition 4. σe(T ) = ∂σ(T ).

Proof. Denoting the resolvent set of T , i.e., the complement of the
spectrum of T by ρ(T ), we partition the complex plane into the union of
the three sets:

C = ρ(T ) ∪ int (σ(T )) ∪ ∂σ(T ).

By the first part of the theorem quoted above, σe(T ) ⊂ σ(T ), so clearly the
essential spectrum of T and the resolvent of T are disjoint. If λ ∈ int(σ(T ))
then we saw earlier that ker(T − λ) = C

1−λz , so dimker(T − λ) = 1, and
that (T − λ) is Fredholm and ind(T − λ) = 1. This means that λ is
not an element of the essential spectrum of T . Therefore we must have
σe(T ) ⊂ ∂σ(T ).

On the other hand, the second part of the theorem and Lemma 3
imply that ∂σ(T ) ⊂ σle(T )∪σre(T ) ⊂ σe(T ). Thus the desired conclusion
follows.

To proceed further, we have to introduce some definitions.

Definition. The set of trace-class operators, B1(H) consists of those
elements A of B(H) for which the sum

∑

i∈Λ

|〈Aei, ei〉| is finite for all orthonormal bases {ei}i∈Λ.

The following theorem is from [6, p. 16].

Theorem. Trace-class operators are compact.

For convenience we will state the Berger–Shaw Theorem [2, p. 1193].

Theorem. If A is an n-multicyclic hyponormal operator, then [A∗, A]
is trace class.

We are now ready to prove

Lemma 5. [T ∗, T ] = T ∗T − TT ∗ is trace class.

Proof. Consider the multiplication operator S on H2(G,µ) defined
by (Sf)(z) = zf(z). S is subnormal, having Mz : L2(G,µ) → L2(G,µ) as
its normal extension. Sn(1) = zn, so {Sk(1)}∞k=0 is a total set in H2(G,µ),
which means that {1} is a cyclic vector for S. S being subnormal, it is
also hyponormal, so the powerful Berger-Shaw theorem applies, and we
conclude that [S∗, S] is trace-class.
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It is easy to verify that
{

TS = I

ST = I + F
, where F is a rank one oper-

ator.
Therefore [T ∗, T ] = TT ∗[S∗, S]T ∗T − TF ∗ST ∗T + TT ∗F . (We made

use of the relations S∗T ∗ = I, T ∗S∗ = I + F ∗).
Since B1(H) is a two-sided ideal, and finite rank operators are trace

class, we conclude that [T ∗, T ] ∈ B1(H).

Definition. A is an essentially normal operator if [A∗, A] is compact.
Thus the difference quotient operator is essentially normal, and so is

the multiplication operator and its adjoint.
We will determine the essential spectrum of the operator S : H2(G, µ)

→ H2(G,µ) defined by (Sf)(z) = zf(z). This is actually done in [1,
p. 472]. Since G is simply connected and ∂(G) has no isolated points by
assumption, σe(S) = ∂(G).

Proposition 6.

ran(S − λ) =
{ {f : f(z) ∈ H2(G,µ), f(λ) = 0}, if λ ∈ G

H2(G, µ), if λ /∈ Ḡ
.

Proof. Denote Mλ = {f ∈ H2(G,µ) : f(λ) = 0}, λ ∈ G. Since
(S−λ)g(z) = (z−λ)g(z), f(z) = (z−λ)g(z) ∈ Mλ for all g(z) in H2(G,µ),
so ran(S − λ) ⊂ Mλ.

Conversely, let f(z) ∈ Mλ, then f(z) = (z−λ)g(z) for some g(z). We
will show that g(z) ∈ H2(G,µ). Choose R > 0 so that DR = {z : |z−λ| ≤
R} is contained in G.

‖g(z)‖22 =
∫

DR

|g(z)|2 dµ +
∫

G\DR

|g(z)|2 dµ.

Now g(z) = f(z)
z−λ has a removable singularity at λ, and DR is closed, so

|g(z)| is bounded on DR, thus
∫

DR
|g(z)|2 dµ < ∞. On the other hand∫

G\DR
|g(z)|2 dµ < 1

R2

∫
G
|f(z)|2 dµ.

This shows that g(z) ∈ H2(G,µ), proving Mλ ⊂ ran(S − λ). We
conclude Mλ = ran(S − λ) for λ ∈ G. We will show that Mλ is closed in
H2(G,µ). Define the linear functional

Lλ : H2(G,µ) → C by Lλ(f) = f(λ).

Lλ is bounded, for

‖Lλ‖ = sup
|Lλ(f)|
‖f‖2 = sup

|f(λ)|
‖f‖2 ≤ 1

R
√

π
.
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The supremums are taken over H2(G,µ).
Mλ is closed, because it is the kernel of Lλ. Now if λ /∈ Ḡ, given

g(z) ∈ H2(G,µ), f(z) = g(z)
z−λ is a uniform limit of a bounded sequence

of polynomials on G because (1 − λz)−1 is, therefore f(z) ∈ H2(G,µ),
showing that (S − λ) is onto in this case.

It is a trivial observation that ker(S − λ) = {0} for all λ ∈ C.
We may write f(z) = (f(z) − f(λ)) + f(λ) for all f(z) ∈ H2(G,µ).

Here (f(z)− f(λ)) belongs to ran(S − λ) if λ ∈ G; f(λ) being a constant
function belongs to H2(G, µ). Thus H2(G,µ) = ran(S−λ)+C. Therefore
dim(ran(S − λ))⊥ = 1.

Summing up we coclude that (S − λ) is a Fredholm operator for λ /∈
∂G, and

ind(S − λ) =
{ −1 for λ ∈ G,

0 for λ /∈ Ḡ.

We are now ready to use the Brown–Douglas–Fillmore theorem.

Theorem. If T1 and T2 are essentially normal operators on a Hilbert

space H, then a necessary and sufficient condition that T1 be unitarily

equivalent to some compact perturbation of T2 is that T1 and T2 have the

same essential spectrum Λ, and ind(T1− λI) = ind(T2− λI) for all λ /∈ Λ.

We refer the reader to [3, p. 58-117] for a proof.

Let’s define now our operator S on the space H2(( 1̄
G∗ )

c, µ), where
1

G∗ = {z̄ : 1
z ∈ G}, 1̄

G∗ means the closure of 1
G∗ . Let ( 1̄

G∗ )
c = Ω. Then

σe(S∗) = (σe(S))∗ = (∂(Ω))∗ = ∂({ 1
z : z ∈ Ḡ}c) = {z : 1

z ∈ ∂G} = σe(T ).
We have used the fact that for any set A, ∂A = Ā ∩Ac = ∂(Ac).

Therefore T : H2(G,µ) → H2(G, µ) and S∗ : H2(Ω, µ) → H2(Ω, µ)
have the same essential spectrum,they are both essentially normal, and for
λ /∈ σe(T ) = σe(S∗),

ind(S∗ − λ) =

{
1, if λ ∈ (Ω)∗,

0, if λ /∈ (Ω)
∗
.

If λ ∈ (Ω)∗, we have

λ ∈
({

1
z

: z ∈ G

}c)∗
=

{
1
z

: z /∈ Ḡ

}∗
=

{
1
z

: z /∈ Ḡ

}
= int σ(T ).
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If λ /∈ ((Ω))∗, then

λ /∈
({

1
z

: z ∈ G

}c)∗
=

{
1
z

: z /∈ Ḡ

}∗
=

{
1
z

: z /∈ G

}∗

=
{

1
z

: z /∈ G

}
= σ(T ).

So we conclude

ind(S∗−λ) =
{

1, if λ ∈ intσ(T )
0, if λ /∈ σ(T )

= ind(T−λ) =
{

1, if λ ∈ intσ(T )
0, if λ /∈ σ(T )

.

Finally we are able to assert:

Theorem. T : H2(G,µ) → H2(G,µ) is unitarily equivalent to some
compact perturbation of S∗ : H2(Ω, µ) → H2(Ω, µ).
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