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On the powers of integers and conductors of quadratic fields

By NiHAL BIRCAN (Cankir, Berlin) and MICHAEL E. POHST (Berlin)

Abstract. We consider non-zero integers of the maximal order O = OpF of the
quadratic field F = Q(\/& ) where d € Z is square-free. Let p be an odd prime and
0 # « € Op. Using the embedding into GL(2,R) we obtain bounds for the first v € N
such that o = 1 mod p. For a conductor f, we then study the smallest positive integer
n = n(f) such that o™ € Of. We obtain bounds for n(f) and for n(fp*). The most
interesting case is where « is the fundamental unit of Q(\/a)

1. Introduction

We consider quadratic fields F' = Q(\/& ) where d € 7Z is square-free. We write
d = 4q + r with r € {1,2,3}. The algebraic integers « of Q(\/g) are given by

a+bVd, a,beZ ifr=2,3
(a+bVd), a,b€Z, a+be2Z ifr=1.

1 (L.1)
2
Throughout the paper o denotes a non-zero integer of F. Let p be an odd prime.
First we study the problem to find small exponents n such that o™ = 1 mod p.
We will extensively use Legendre symbols.

We adapt the classical Chebyshev polynomials T,, and U,, (for detailed in-
formation see [9] Section 5.7, [1] Chapter 22) by defining

tn(@) = to(x;s) = 25"/2T, (2\“}5) : (1.2)
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U () = up (25 5) = s/2U, < (1.3)

x
)
for n € Ny where s is the norm of a non-zero integer in the quadratic field F'. These
are unimodular polynomials with integer coefficients. For technical reasons we use
this modification of Chebyshev polynomials for treating the cases d = 1 mod 4
and d = 2,3 mod 4 simultaneously. In Section 6 we present all properties of these
adapted polynomials which we use for proving our results. Then we specialize the
results of the paper [2] about GL(2,Z) to quadratic fields. For previous works on
this subject see e.g. [4], [5], [6].

In Section 2, we consider 2 x 2 matrices over the rational integers and
show how the integers of any quadratic field F' = Q(\/Zi) can be embedded into
GL(2,R). We also prove that o™ = 1 mod p holds if and only if A™ = I mod p
where the matrix A is the image of a.. In the next sections we consider non-zero
integers o of F' and especially units «. In these sections we apply the results of
[2] to the case of quadratic fields. Let f denote a conductor for F'. In Section 5,
we give upper estimates for

n(f) :=min{r e N: a” € Oy}

and also for n(fp*) where k € N and p is an odd prime.

2. The embedding of algebraic integers of Q(\/&) into GL(2,R)

Let A € GL(2,C) , that is

A:(‘C’ 2) a,b,c,d € C, ad — be # 0. (2.1)

We always write
x:=trA=a+d, s:=detA=ad- bc. (2.2)

Proposition 2.1. For n € N we have

A" = up_1(2)A — sup_o(2)1, (2.3)
A" = %tn(:r)f + tp—1(z)(A— %II) (2.4)

This proposition is known in various forms. For instance, (2.3) with s = 1 is
Lemma 3.1.3 in [8] where p,, = u,—1 and ¢, = u,—2. The last matrix in (2.4) has
zero trace and it follows that

tr A" = ¢, (z). (2.5)
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With the notation (2.1) we can write (2.4) as

. Snl@) + 30— Dy 1(2) bt () )
Clp—1(2) %tn () — %(a — d)up—1(z)

Now, we consider algebraic integers o of Q(\/& ) in the notation (1.1). We define
a homomorphism ¢ of the multiplicative semigroup of non-zero integers a into
GL(2,R). For r = 2,3 we set (see e.g. [3, p. 38])

pla) == A= (bil Z) (2.7)

whereas for r = 1 we set

ola)=A= |2 1 . (2.8)
gb §(a —b)

It can be checked that this indeed defines an injective homomorphism. We have

a’® — b%d ifr=2,3

s =det A= Norm(a) = { (2.9)
—(a® —=v%d) ifr=1,
4
2a ifr=2,3
c=trA={" ""T% (2.10)
a ifr=1.

Since A™ = p(a™) and ¢ is injective, it follows from (2.6) that

1
§tn(2a) +up_1(2a)bVd ifr=2,3
a" =17 ) (2.11)
itn(a) + iun,l(a)b\/a if r=1.
Proposition 2.2. If p is an odd prime and oy, «,, are integers of Q(\/&)
then ay = ayy, mod p if and only if p(ay) = p(am,) mod p.

PROOF. We prove only the more complicated case 7 = 1 (see (1.1)). The
statement can be proved in a similar way for r = 2, 3.
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First we assume ap = a;, mod p and we prove ¢(ay) = ¢(,) mod p. For
ak = a,, mod p with

ak:%(akerk\/g), am:%(am+bm\/g>.

we have ar, = a,, mod p and by, = b,, mod p. This implies ay+by = @, +b,, mod p
and ap — by = a,, — b, mod p. Since p is odd we obtain

1 1 1 1

5 (ak + bk) = 5 (am + bm) mod D, 5 (ak - bk) = 5 (am - bm) mod p-
Then (2.8) yields p(ax) = ¢(@,) mod p.

Now we assume ¢(ag) = p(ay,) mod p and prove oy = a,, mod p. Using
the definition in (2.8) we can write
1
5 (a5 +b;) bj

LP(%‘) = 1
qb; 5(a; = bj)

for j = k,m. We immediately see that by = b, mod p, %(ak +bp) = %(am +
by,) mod p and % (ap — br) = % (am — b)) mod p and obtain ar = a,, mod p,
hence oy = au, mod p.

Proposition 2.3. If p t b, p { d then o™ = 1 mod p if and only if A"
I mod p.

PROOF. (a) First, we assume o™ = 1 mod p. For r = 2, 3,
1
a” = étn(x) + Uy _1(2)bVd = 1 mod p
with p1b, ptd and x was defined in (2.10). Since u,—_1(z) = 0 mod p by (2.11)
we get +t,(z) =1 mod p. Hence, A" = 1t,,(2)I + u,—1(z)(A — 22I) = I mod p.
For r = 1, namely, o™ = 1t,,(z) + %un_l(x)b\/;l, the proof is similar.
(b We assume A™ = I mod p. Then

1 1
A" = §tn(m)l+ Up—1(2) <A - Qﬂ) = I mod p

and we want to prove a” = 3t,(2)+u,—_1(z)bv/d = 1 mod p for r = 2,3. By (2.6)
we have bu,,—1(2) = 0 mod p. Because of b # 0 mod p we get u,,—1 (x)(A—Fxl)v =
0 mod p and tr(A — %o:]) = 0 mod p, hence

b
Up—1(x) (bti *> = 0 mod p.

This implies u,—1(z)b = 0 mod p. From (2.6) we obtain $t,(z) = 1 mod p for
the cases r = 2,3 and r = 1, hence o = 1 mod p. (|
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3. Non-zero integers a of F

In this section, we specialize the results of [2] to the case of quadratic fields
using the embedding introduced in Section 2. We note that we allow d to be
negative. Again we write d = 4¢g + r and s = Norm(«) for non-zero integers « of

F = (@(\/&) as in (1.1).
Let p be an odd prime. We assume that p{d, ptb and that

a?—4s# 0mod p for r =2,3, a? — s 0mod p for r = 1. (3.1)

Throughout the rest of the paper let = be the trace and s be the norm of «
as defined in (2.10) and (2.9). Since ¢, and u, are polynomials with integer
coefficients the identities in Section 6 can be transferred into congruences. We let

£ be the Legendre symbol
2 — 48)
{ .= . 3.2
( p (3:2)

Then p — £ becomes = p F 1 for £ = £1.

Theorem 3.1. Let p be an odd prime with ptd, p{b and s = N(a) # 0.
Let ¢ be the Legendre symbol defined above. We set 0 =1 for £ = +1 and 0 = s
for ¢ = —1. Then

tp—e(x) =20 mod p, up—s—1(x) =0 mod p.

We sum up the further results in the following table.

r=2,3 r=1
tp—¢(2a)? = 40 mod p, tp—e(a)? = 40 mod p,
) = 41 ) 2
()
up%z_l(2a)20modp up%z_l(a)EOmodp
tp—¢(2a) =0 mod p, tp—e(a) =0mod p,

(a® — s)up%zfl@a)? =omodp| (a®— 4s)u%e71(a)2

= 40 mod p.

This is [2, Theorem 4.1] specialized to our present situation.

The proof in [2] uses Chebyshev polynomials. In the present context of
quadratic fields, many of the previous formulas can be proved by other methods,
see for instance [3], [7, Theorem 1.7].
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4. Units of F

First we consider the case s = Norm(«) = +1. Again we let £ be the Legendre
symbol defined in (3.2), and « is defined in (2.10).

The following results are obtained by specializing the results in Sections 5
and 6 of [2]. The Legendre polynomials ¢,, and u,_; depend only on z and s as
defined in (2.9) and (2.10); the specific form (1.1) of « is not important.

Proposition 4.1. Let k € N divide p—¢ and we assume that { = (%) £0.

If x = tx(y) mod p for some y € Z then, with n = %,

to(x) =2modp, up—1(x) =0modp, a"=1modp. (4.1)

For a proof compare [2, Theorem 5.1].

For the special case that & = 27 we can say much more. We construct
%‘2) = —1 we set
m = 0 and stop. Now let (££2) = +1 and suppose that zq, ..., z; have already

been constructed such that 2% | (p — £) and
x, 1 =ta(x,) mod p, ((x2 —4)/p) =1 for1<v <k (4.2)

For 21 4 (p — ¢) or (9”’%2) = —1 we set m = k and stop. Otherwise we have
2+ | (p — ¢) and (‘”’“T”) = +1. Then there exists x4 subject to zp +2 =
27, mod p and thus xy, = to(xp41). It follows from (4.2) that

(2 = 2)/p) = ((2x +2)/p)(xx = 2)/p) = (2} — 4)/p) = ¢

and therefore ((27,,—4)/p) = ((xx—2)/p) = £ . This completes our construction.
We note that 2™ | (p — ¢).

Theorem 4.2. Let N(a) =1,¢ = (%) # 0 and xy, . . ., &,, be constructed
as above. Then

g, ..., T, recursively by the following rule. Let zg = z. For (
42
P

tp—y/ox(x) =2mod p fork=0,...,m, (4.3)
tp—ey/em+r(z) = —2mod p or 2" (p— 0). (4.4)
The proof is analogous to that of [2, Theorem 5.4].
Corollary 4.3. Let s = N(a) =1, ¢ = (%) # 0 and let xq,...,x,, be
constructed as above. Setting n = (p — £)/2™ we have
Unp—1(x) =0mod p, " =1mod p. (4.5)
For 2m*1 | (p — £) we additionally get
un_1(x) =0 mod p, o™/? = —1mod p. (4.6)

These bounds are best possible: 2™+ | (p — () implies ua 1 (z) # 0 mod p.
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PROOF. Because of s = 1 and 22—4 # 0 mod p it follows from (6.1) and (4.3)
that u,—1 = 0 mod p and therefore A” = I mod p by (2.4). By Proposition 2.3
we have o = 1 mod p. This proves (4.5). For 2™*! | (p — £) the congruences
(4.6) follow from (4.4) analogously. Finally, we let 272 | (p — £). Then it

follows from (4.4) that t,/5(x) = —2mod p so that t,,/4(x) = 0 mod p by the
recursion formula for ¢, (z) which is similar to that for u, (z) in Section 6. Hence,
uz_1(z) # 0 mod p. O

Now we consider the more complicated case of units with norm —1, i.e.q
to(x) = t,(x;—1). As before we set £ := (””2;45) and assume that (3.1) with
s = —1 holds. We set n = %_e. Because of (—1/p) = (—=1)?~1/2 Theorem 3.1
(with o = £) yields

ton(z) =20 mod p, t,(z)? =40 modp, u,_i(z)=0modp
forp=1mod4, (4.7
ton(z) =20 mod p, t,(z) =0modp, wup_1(x)#0modp
for p=3mod4. (4.8)
Then (6.3) implies that
to(p—e) () = 2 mod p. (4.9)
Hence, t,,(z) = £2 mod p if and only if p = 1 mod 4 and ¢ = +1. Assuming the
latter we obtain from (6.7) with ty(x; —1) = 22 + 2 that
ton(w;—1) = t,(x® +2;1) for n € N. (4.10)

Because of (%) = +1 there exists j € Z with j2 = —1 mod p. We now assume
that x # 0 mod p and = # £2j mod p. This implies

(2% 4+ 2)? —4 = 2%(2® +4) Z 0 mod p. (4.11)

Similar to Section 4, we construct numbers yq, . . . , Y, Subject to the initial condi-
tion yo = 2 +2 instead of g = z. It follows from (4.11) that also ((y2—4)/p) = L.
We have yo + 2 = 22 + 4 and therefore ((yo + 2)/p) = ¢ = +1. Hence, the first
step of our construction can always be carried out resulting in m > 1. The
construction stops if ((ym + 2)/p) = —1 or 2™+ § (p — 1).

Theorem 4.4. Let N(a) = —1, p=1mod 4, a? +4 # 0 mod p, £ = +1 and
let yo,...,ym be constructed as above. Then m > 1 and

tp—1)/2x(r) =2mod p for k=0,...,m—1, (4.12)
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—2mod p for 2™ | (p—1),

(4.13)
Omodp  for 2™ (p—4).

tp—1)/2m () = {

See [2, Theorem 6.1] for the proof. The next result is not a surprise because
of N(a?) = 1. The proof is similar to that of Corollary 4.3, so we omit it.

Corollary 4.5. Under the assumptions of Theorem 4.4, we now write n =
(p—¥)/2™~1. Then (4.5) holds, and in case 2" | (p—¢) then (4.6) is also fulfilled.
These bounds are best possible: For 2™ | (p — () we have uxz () # 0 mod p.

Theorem 4.6. Let N(a) = —1 and k be odd with k | (p — ¢). We put
n=(p—40)/k. Ifz?+4# 0mod p and x = t;(y; —1) mod p for some y € Z then

ton(x) =2mod p, t,(z)=2¢modp, " =~modp. (4.14)

PROOF. This was shown more generally in [2]. d

5. Estimates for conductors

We continue to study the quadratic field F = Q(Vd) with d > 0 and r €
{1,2,3}. The order with conductor f € N is

{a' +V fVd:d b €7} ifr=2,3,
(5.1)

Or=1q71
{Q(a’+(f—1)b’)+%b’f\/&:a’,b’eZ, 2|a’—|—b’} if r =1.

We fix an integer a of Q(Vd) with s = N(a) # 0. Let x be given by (2.10).
Again we use the notation in (1.1). The most interesting case is that « is the
fundamental unit of Q(v/d). Following Halter-Koch we define

n(f) =n(f,a) :=min{r e N: o € Oy}. (5.2)
Lemma 5.1. Let b # 0 be given by (1.1) and s, x by (2.9). We write

Ci= ng(ba f>7b0 = b/C, fO = f/C (53)
Then we have

n(f) =n(fo) =min{r € N:u,_1(x;s) =0mod fo}. (5.4)
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PROOF. By (2.9) and (2.10) we have
o’ € Of < buy—1(xr) =0 mod f.
Since ged(bg, fo) = 1 it follows by (5.3) that
a” € Of & bouy—1(x) = 0mod fo < uy—1(z) = 0mod fy.

We note that b has not been replaced by byg. Therefore we still have u,_1(x) =
U, —1(z;s) with  and s unchanged. O

Let g € N and ged(b, g) = ged(f, g) = 1. Then it follows from (5.4) and (6.5)
that w,(f)n(g)—1(7; ) = 0 mod lem(f, g) f. Hence, we get

n(fg) <n(f)n(g) for ged(f,g) =1. (5.5)
For an odd prime p we define
q(p) = q(p; @) == min{r € N: u,_;1(x;s) =0 mod p}. (5.6)

The results of Sections 3 and 4 provide upper estimates for ¢(p). These results
depend explicitly on = and s, and implicitly on a, b and d in (1.1).
First let £ = (#?%45) # 0. For s = 1 it follows from Corollary 4.3 that

- .y
ap) < Fmy and q(p) < 25 for 27| (p - 0),

If s=—1, p=1mod 4 and ¢ = +1 then it follows from Corollary 4.5 that

4(p) < Gomp and q(p) < = for 27 [ (p— ).

Now let 22 — 4s = Omod p. Then for all v € N it follows from (6.1) that
2=y, 1 (x;5) = va¥~! mod p. We conclude that g(p) = p for p{ s and ¢(p) = 2
for p | s.

Theorem 5.2. For ged(f,b) =1 and p1 f we have

n(pf) < q(p)p"~n(f) forall k > 1. (5.7)
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PRrROOF. We use induction on k. By (5.4) and (6.5) we have
Ug(pyn(f)—1(z;s) = 0mod f. By (5.6) and (6.5) this congruence also holds mo-
dulo p. Since ged(f,p) = 1 it follows that the congruence is true also modulo pf.
Hence (5.7) holds for k =1 in view of (5.4).

Now let (5.7) hold for k. We write v = q(p)p*~'n(f) and have, by (5.7),

u,_1(2;8) = 0 mod pFf. (5.8)

We apply (6.1) with n = p and with s” instead of s. The binomial coefficients in
the sum are divisible by the prime p. Because of 27! = 1 mod p we get for z € Z

up_1(2;8") = (22 — 4s)P~1/2 mod p.

For z = t,(x; s) we obtain by (6.2) that

-1

Up—1(ty(z;8);8") = [(2* — ds)uy—1(z; 5)] " = 0mod . (5.9)

Here we used (5.8) for £k > 1. Now we apply (6.4) with m = p and n = v. By
(5.8) and (5.9) we obtain

Ug(pypk—1 (T3 8) = Upy—1(w;8) = 0 mod pErLf.
Hence, it follows from (5.4) that n(pk*1f) < q(p)p*. O

Theorem 5.3. Let f € N be odd and let fy be defined as in (5.3). We write
"
fo= le,’” (k, € N) (5.10)
v=1
with different primes p,,. Then

n(f) < [T (alo)p,* ). (5.11)

v=

[

PROOF. Let gg =1l and for 1 < A< p
A
gr = Hpuk” (I<A<p).
v=1

Then gy = p**ga_1 and py { gr_1. Hence we obtain from Theorem 5.2 applied to
fo that

n(fx) < apa)p™ (o).
Hence, (5.11) with f replaced by fo follows by induction. Finally, we use that
Lemma 5.1 implies n(f) = n(fo). O
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6. Addendum: useful formulas for Chebyshev polynomials

We present several formulas which we need in proving our results. We put
our emphasis on the polynomials u,, defined in (1.3) (see [9, Section 5.7 | and [2]).
For odd n and z,s € C, we have

(n—3)/2
. 1 n n—2k—1, 2 k 1 9 n—1
Up—1(258) = o1 kE_O <2k+ 1)3? (x°—4s) +2n71 (x*—4s) 2z . (6.1)

The recursion formula u,1(z) = zu,(x) — su,—_1(z) shows that

Uo(m) = 17 u1<:r’) =T, UQ(.T) = 1‘2 -5 Ug(l’) = 'Tg - 25'1:’
ug(x) = 2t — 3s2? + 5%, wus(x) = 2° — dsx® + 25%.

Furthermore, t,(z; s) and uy(z;s) are polynomials in Z[z, s]. For n € N we have

(22 — 48)upy_1(2;8)% = t,(2;8)% — 45" (6.2)

tn(x;8)% = ton(x;8) + 25™. (6.3)
We need a relation for products which involves different parameters.
Umn—1(2; 8) = Um—1(tn(2;8); 8™) un—1(z;8) (m,n €N). (6.4)

It follows that for p € N and x,s € Z

Up—1(2;8) = 0mod p = Umpn—1(z;s) =0 mod p. (6.5)
To prove (6.4) it is sufficient to consider 75 = cosf with real 6. Then it follows

from (1.2), (1.3) and the properties [9, p. 257] of the T}, and U,, that

to(z;5) = 25% cos(nf), um_1(z;8) = e sin(mf)

(6.6)

sin 0

By (1.3) and (1.2) we therefore have

m—1 ].
umfl(tn(‘r; S); Sn) =s"z Umfl ()

25/2t,, (z; 8)

_ Snm,gl Umil(cos(ne)) _ SnLann Sln(mne)

sin nfé
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Now we multiply by u,_1(z;s). Using (6.6) we obtain

mn_1 sin(mnf)

Um—1(tn (25 8); 8™ )up—1(z;8) = s = Umn—1(x;8)

sin nf
using (6.6) again.

In Section 4 we use the following relation between the polynomials ¢, (x;s)
with different parameters s. If s # 0 and m,n € N then

tmn (23 8) = tn(tm (23 5); s™). (6.7)

Indeed, (1.2) and the composition property Ty, = Ty, © Ty, imply that

=7, 5 35)) (e () )

from which (6.7) follows using (1.2).
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