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The Gysin sequence for S3-actions on manifolds

By JOSÉ IGNACIO ROYO PRIETO (Bilbao)
and MARTINTXO SARALEGI ARANGUREN (Lens)

Abstract. Given a smooth action of S3 on a manifold M , we are interested in the

relationship between the cohomologies of M and M/S3. If the action is free, we have

indeed a principal S3-bundle, and this relationship is described by the classical Gysin

sequence, which also exists when the action is semi-free (i.e., fixed points are allowed)

[2]. In this work, we obtain a Gysin sequence for the case of a general smooth action.

An exotic term appears, and we show that it is an obstruction for the duality of the

second term of the de Rham spectral sequence associated to the action.

Let us consider a smooth action Φ : G×M → M of a compact Lie group on

a manifold M . The action Φ induces naturally a filtration {F iΩ∗(M) | i ∈ N} of

the complex of de Rham differential forms Ω∗(M), defined by:

F iΩi+j(M) = {ω ∈ Ωj(M) | iX0 · · · iXjω = 0

for each family {X0, . . . , Xj} ⊂ XΦ(M)}.
Here, we have denoted by XΦ

(
M

)
the orbit distribution of TM formed by the

vector fields of M tangent to the orbits of Φ. This filtration defines the first

quadrant de Rham spectral sequence, which converges to H∗(M). The underlying

motivation of this paper is the study of the Poincaré duality of the second term

Es,t
2 of this spectral sequence.

When Φ is free, we have the duality Es,t
2

∼= En−s,`−t
2 , where n = dimM/G

and ` = dimG. This property is lost when the action is no longer free.
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Inspired by the work of Goresky and MacPherson, one expects to recover

the Poincaré duality by using intersection cohomology. This is the case when the

group G is the circle S1 (see [6]). The next natural group G to study is S3 (of

rank 1 and not abelian). It has been proved in [7] that Poincaré duality still holds

when the action Φ is semi-free.

What about the other S3-actions? Surprisingly, the second term of the above

spectral sequence has not been computed yet in this context. The main result of

this paper is in the following Gysin sequence, which computes this second term

· · · // Hi
(
M

) 2© // Hi−3
(
M/S3,Σ/S3

)
︸ ︷︷ ︸

Ei−3,3
2

⊕
(
Hi−2

(
MS1))−Z2

︸ ︷︷ ︸
Ei−2,2

2

3© //

3© // Hi+1
(
M/S3

)
︸ ︷︷ ︸

Ei+1,0
2

1© // Hi+1
(
M

)
// · · ·

with Ei,1
2 = 0, where

– Σ is the subset of points of M whose isotropy group is infinite;

– our choice of maximal torus, S1, is
{
a+ bi | a2 + b2 = 1

} ≤ S3;
– the Z2-action is induced by j ∈ S3,
– (−)−Z2 denotes the subspace of antisymmetric elements (cf. (6)),

– 1© is induced by the natural projection π : M → M/S3,

– 2© is induced by the integration along the fibers of π, and

– 3© involves the multiplication by the Euler class [e] ∈ H4
4
(M/S3) (cf. [7])

(cf. Theorem 2.2 and paragraph 2.3).

Notice that the first floor Ei,1
2 always vanishes (even for any perversity!) whe-

reas the second floor Ei,2
2 may not, as we show in Example 2.4. So, it follows that

Poincaré duality does not work in the generic case, even considering intersection

cohomology.

As a consequence, a new approach is needed in order to extend the Poincaré

duality for general actions, and, thus, for Singular Riemannian Foliations, as is

the partition induced by the orbits of a general S3-action. Results in this direction

are being explored.

In fact, in [5] the duality of the spectral sequence associated to a Singular

Riemannian Foliation is claimed for the special case of extreme perversities (which

is tantamount to working only in the regular stratum or relatively to the singular

strata). As the previous counterexample shows, a new approach is needed in order
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to extend the duality result for general perversities if one wants to consider the

usual cohomology (p = 0 ) case.

A different Gysin sequence relating the cohomology of M and the S3-equi-
variant cohomology of M was constructed in [3], also in the case of a general

smooth S3-action.
In the sequel M is a connected, second countable, Hausdorff, without boun-

dary and smooth (of class C∞) manifold. We fix a smooth action Φ : S3×M → M .

We wish to thank the referees for the indications given in order to improve

this paper.

1. Stratifications and differential forms

We describe the stratification arising from the action. We also introduce the

controlled differential forms, defined by Verona, in order to compute the singular

cohomology in this context.

1.1. Thom–Mather structure. There are three possibilities for the dimension

of the isotropy subgroup1 S3x of a point x ∈ M , namely: 0,1 and 3. So, we have

the dimension-type filtration

F =
{
x ∈ M | dimS3x = 3

} ⊂ Σ =
{
x ∈ M | dimS3x ≥ 1

} ⊂ M

=
{
x ∈ M | dimS3x ≥ 0

}
.

In this section, we describe the geometry of the triple (M,Σ, F ). The subset Σ is

not necessarily a manifold, but the subsets F = MS3 , Σ\F = {x∈M | dimS3x=1}
and M\Σ = {x ∈ M | dimS3x = 0} are proper invariant submanifolds2 of M .

So, we can consider τ0 : T0 → F and τ1 : T1 → Σ\F two invariant tubular

neighborhoods in M . Over each connected component, the structure group is

the orthogonal group. Associated to these tubular neighborhoods we have the

following maps (k = 0, 1):

Ã The radius map νk : Tk → [0,∞[, defined fiberwise by u 7→ ‖u‖. It is an

invariant smooth map.

Ã The dilatation map ∂k : [0,∞[×Tk → Tk, defined fiberwise by (t, u) 7→ t·u.
It is a smooth equivariant map.

1We refer the reader to [2] for the notions related with compact Lie group actions, such as

isotropy, invariant tubular neighborhoods, . . .
2In fact, these manifolds may have connected components with different dimensions.
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The family of tubular neighborhoods TM = {T0, T1} is a Thom–Mather sys-

tem when:

(TM)

{
τ0 = τ0◦τ1
ν0 = ν0◦τ1

}
on T0 ∩ T1 = τ−1

1

(
T0 ∩ (Σ\F )

)
.

Lemma 1.1. Thom–Mather systems exist.

Proof. We fix an invariant tubular neighborhood τ0 : T0 → F . It exists

since F is an invariant closed submanifold of M . Since the isotropy subgroup of

any point of F is the whole S3, we can find3 an atlas A = {ϕ : U×Rn → τ−1
0 (U)}

of τ0, having O(n) as structure group, and an orthogonal action Ψ : S3×Rn → Rn

such that

ϕ(x,Ψ(g, v)) = Φ(g, ϕ(x, v)) ∀x ∈ U, ∀v ∈ Rn and ∀g ∈ S3. (1)

We write τ ′0 : S0 → F the restriction of τ0, where S0 is the submanifold ν−1
0 (1).

It is a fiber bundle. The restriction τ ′′0 : (S0 ∩ (Σ\F )) → F is also a fiber bundle

whose induced atlas is A′′ = {ϕ : U × Sn−1

Σ → τ ′′0
−1

(U)}, where Sn−1

Σ = {w ∈
Sn−1 | dimS3w = 1}.

The map L0 : T0\F → S0× ]0,∞[, defined by L0(x) = (∂0(ν0(x)
−1, x), ν0(x)),

is an equivariant diffeomorphism. Under L0:

Ã the map τ0 becomes (y, t) 7→ τ ′0(y),

Ã the map ν0 becomes (y, t) 7→ t, and

Ã the manifold T0 ∩ (Σ\F ) becomes (S0 ∩ (Σ\F ))× ]0,∞[.

Since the structure group of τ ′0 is a compact Lie group, condition (1) allows

us to construct an invariant Riemannian metric µ0 on S0 such that the fibers

of τ ′0 are totally geodesic submanifolds and (T (S0 ∩ (Σ\F )))⊥ ⊂ ker(τ ′0)∗. Then,
if we consider the associated tubular neighborhood τ ′1 : T ′

1 → S0 ∩ (Σ\F ) we have

τ ′0 ◦ τ ′1 = τ ′0.
We can construct now an invariant Riemannian metric µ on M\F such that

under L0:

Ã the metric µ becomes µ0 + dr2 on S0× ]0,∞[ .

We consider the associated tubular neighborhood τ1 : T1 → Σ\F . Verification of

the property (TM) must be done on T0 ∩ T1, where using L0, we get:

Ã T0 ∩ T1 becomes T ′
1× ]0,∞[.

Ã τ1 becomes (y, t) 7→ (τ ′1(y), t).
A straightforward calculation gives (TM) and ends the proof. ¤
3For each connected component of F .
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We fix a such system TM . For each k ∈ {0, 1}, we shall write Dk ⊂ M the

open subset ν−1
k ([0, 1[) and call it the soul of the tubular neighborhood τk. We

shall write ∆0 = D0 ∩ Σ.

1.2. Verona’s differential forms. As it is shown in [8], the singular cohomo-

logy of M can be computed by using differential forms on M\Σ. This is the tool

we use in this work. The complex of controlled forms (or Verona’s forms) of M

is defined by

Ω∗
V (M) =




ω ∈ Ω∗(M\Σ) | ∃ω1 ∈ Ω∗(Σ\F ) and ω0 ∈ Ω∗(F )

with





(a) τ∗1ω1 = ω on D1\Σ
(b) τ∗0ω0 = ω on D0\Σ
(c) τ∗0ω0 = ω1 on ∆0\F









.

Following [8] we know that the cohomology of the complex Ω∗
V (M) is the singular

cohomology H∗(M)
.

We also use in this work the complex Ω∗
V (Σ) = {γ ∈ Ω∗(Σ\F ) | ∃γ0 ∈

Ω∗(F ) with τ∗0 γ0 = γ on ∆0\F} and the relative complexes Ω∗
V (M,Σ) = {ω ∈

Ω∗
V (M) | ω1 ≡ 0} and Ω∗

V (Σ, F ) = {γ ∈ Ω∗
V (Σ) | γ0 ≡ 0}.

Since M is a manifold, controlled forms are in fact differential forms on M .

Lemma 1.2. Any controlled form of M is the restriction of a differential

form of M .

Proof. First, we construct a section σ of the restriction ρ : Ω∗
V (M) →

Ω∗
V (Σ) defined by ρ(ω) = ω1. Let us consider a smooth function f : ] 0,∞[→ [0, 1]

verifying f ≡ 0 on [3,∞[ and f ≡ 1 on ]0, 2]. Notice that the compositions

f◦ν0 : M → [0, 1] and f◦ν1 : M\F → [0, 1] are smooth invariant maps. So, for

each γ ∈ Ω∗
V (Σ) we have

σ(γ) = (f◦ν0) · τ∗0 γ0 + (1− (f◦ν0)) · (f◦ν1)τ∗1 γ ∈ Ω∗(M). (2)

This differential form is a controlled form since

(a) Since (f◦ν1) ≡ 1 on D1, (f◦ν0) ≡ 0 on M\T0 and (TM) then we have

σ(γ) = (f◦ν0) · τ∗1 τ∗0 γ0 + (1− (f◦ν0)) · τ∗1 γ = τ∗1 ((f◦ν0) · τ∗0 γ0 + (1− (f◦ν0)) · γ)

on D1\Σ. This gives (σ(γ))1 = (f◦ν0) ·τ∗0 γ0+(1− (f◦ν0)) ·γ. Since τ∗0 γ0 = γ

on ∆0\F then (σ(γ))1 = (f◦ν0) · γ + (1− (f◦ν0)) · γ = γ.
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(b) Since (f◦ν0) ≡ 1 on D0 then we have σ(γ) = τ∗0 γ0 on D0\Σ. This gives

(σ(γ))0 = γ0.

(c) We have (σ(γ))1 = γ = τ∗0 γ0 = τ∗0 (σ(γ))0 on ∆0\F .

This map σ is a section of ρ since ρ(σ(γ)) = (σ(γ))1 = γ.

In particular, ρ(ω−σ(ρ(ω))) = 0 for each ω ∈ Ω∗
V (M). As σ(ρ(ω)) ∈ Ω∗(M)

(cf. (2)) and coincides with ω in the open set (D0 ∪D1)\Σ we conclude that ω

can be extended to M . ¤

1.3. Invariant forms. We fix {u1, u2, u3} a basis of the Lie algebra of S3 with

[u1, u2] = u3, [u2, u3] = u1 and [u3, u1] = u2. We denote by Xi ∈ XΦ

(
M

)
the

fundamental vector field associated to ui, i = 1, 2, 3.

A controlled form ω of M is an invariant form when LXiω = 0 for each

i = 1, 2, 3. The complex of invariant forms is denoted by Ω∗
V (M). The inclusion

Ω∗
V (M) ↪→ Ω∗

V (M) induces an isomorphism in cohomology. This is a standard

argument based on the fact that S3 is a connected compact Lie group (cf. [4,

Theorem I, Ch. IV, vol. II]). So,

H∗(Ω.
V (M)

)
= H∗(Ω.

V (M)
)
= H∗(M)

. (3)

1.4. Basic forms. A controlled form ω of M is a basic form when iXω =

iXdω = 0 for each X ∈ XΦ

(
M

)
. The complex of the basic forms is denoted by

Ω∗
V (M/S3). In a similar fashion we define Ω∗

V (Σ/S3). In this work, we shall use the

following relative versions of these complexes: Ω∗
V (M/S3,Σ/S3) = Ω∗

V (M/S3) ∩
Ω∗

V (M,Σ), as well as Ω∗
V (Σ/S3, F ) = Ω∗

V (Σ/S3) ∩ Ω∗
V (Σ, F ).

Lemma 1.3.

H∗(Ω·
V (M/S3)) = H∗(M/S3

)
and H∗(Ω·

V (M/S3,Σ/S3)) = H∗(M/S3,Σ/S3
)
.

Proof. The orbit space M/S3 is a stratified pseudomanifold. The family of

tubular neighborhoods TM/S3 = {π(T0), π(T1)} is a Thom–Mather system. Here,

π : M → M/S3 denotes the canonical projection. Using this projection, we

identify the complex of controlled forms of M/S3 with Ω·
V (M/S3), and the same

holds for Σ.

Since H∗(Ω·
V (X)) = H∗(X)

for any stratified pseudomanifold X, then

H∗(Ω·
V (M/S3)) = H∗(M/S3

)
and H∗(Ω·

V (Σ/S3)) = H∗(Σ/S3) (cf. [8]). In fact,

the orbit spaces M/S3 and Σ/S3 are triangulable [9], and by [10], both of them

possess good coverings. Moreover, any open covering of M/S3 (resp. Σ/S3) pos-
sesses a subordinated partition of unity made up of controlled functions. So, we
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can proceed as in [1] and construct a commutative diagram

· · · //Hp(Ω·
V (M/S3,Σ/S3)) //Hp(Ω·

V (M/S3)) //

fM

²²

Hp(Ω·
V (Σ/S3)) //

fΣ

²²

Hp+1(Ω·
V (M/S3,Σ/S3)) // · · ·

· · · //Hp(M/S3,Σ/S3) //Hp(M/S3) //Hp(Σ/S3) ////Hp+1(M/S3,Σ/S3) // · · ·

where the vertical arrows are isomorphisms and the horizontal rows are the long

exact sequences associated to the pair (M/S3,Σ/S3). This gives
H∗(Ω·

V (M/S3,Σ/S3)) = H∗(M/S3,Σ/S3
)
4. ¤

2. Gysin sequence

We construct the long exact sequence associated to the action Φ : S3 ×M →M

relating the cohomology of M and M/S3. First of all, we shall use strongly that

Φ is almost free5 in M\Σ to get a better description of the controlled forms of M .

2.1. Decomposition of a differential form. We endow M\Σ with an S3-
invariant Riemannian metric µ0, which exists because S3 is compact. We also

fix a bi-invariant Riemannian metric ν on the Lie group S3. Consider now the

µ0-orthogonal S3-invariant decomposition T (M\Σ) = D ⊕ ξ, where D is the dis-

tribution generated by Φ. Since the action Φ is almost free on M\Σ, for each

point x ∈ M\Σ, the family {X1(x), X2(x), X3(x)} is a basis of Dx. We define the

S3-Riemannian metric µ on M\Σ by putting

µ(w1, w2) =





µ0(w1, w2) if w1, w2 ∈ ξx

0 if w1 ∈ ξx, w2 ∈ Dx

δi,j if w1 = Xi(x), w2 = Xj(x)

We denote by χi = iXiµ ∈ Ω1(M\Σ) the characteristic form associated to ui,

i = 1, 2, 3. Since χj(Xi) = µ(Xi, Xj) = δij , each differential form ω ∈ Ω∗(M\Σ)
possesses a unique writing,

ω = 0ω +

3∑
p=1

χp ∧ pω +
∑

1≤p<q≤3

χp ∧ χq ∧ pqω + χ1 ∧ χ2 ∧ χ3 ∧ 123ω,

where the coefficients •ω are horizontal forms, that is, they verify iX(•ω) = 0

for each X ∈ XΦ

(
M

)
. This is the canonical decomposition of ω. For example,

4Notice that this is not the five lemma.
5All the isotropy subgroups are finite groups.
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dβ = 0(dβ)+χ1∧LX1
β+χ2∧LX2

β+χ3∧LX3
β, for any horizontal form β (notice

that this formula is no longer true if β is not horizontal). Since LXiχj = χ[ui,uj ],

with 1 ≤ i, j ≤ 3, then

LX1
χ1 = LX2

χ2 = LX3
χ3 = 0, LX1

χ2 = −LX2
χ1 = χ3

LX1
χ3 = −LX3

χ1 = −χ2 LX2
χ3 = −LX3

χ2 = χ1, (4)

and we have the canonical decompositions





dχ1 = e1 − χ2 ∧ χ3

dχ2 = e2 + χ1 ∧ χ3

dχ3 = e3 − χ1 ∧ χ2.

(5)

Here, the forms ei are basic for i = 1, 2, 3. Notice that e1 − χ2 ∧ χ3 is the Euler

form of the action of the maximal torus with fundamental vector X1, and that

e21 + e22 + e23 is the Euler form of the action Φ (see section (2.3)).

Consider U ⊂ M\Σ an equivariant open subset. If ω ∈ Ω∗(M\Σ, U)
then the

coefficients of its canonical decomposition are horizontal forms of Ω∗(M\Σ, U)
.

The following Lemma is the key for the construction of the Gysin sequence. Given

an action of Z2 on a vector space E generated by the morphism h : E → E, we

shall write

E−Z2 = {e ∈ E | h(e) = −e}, (6)

the subspace of antisymmetric elements. Notice that j ∈ S3 acts naturally onMS1 .

Lemma 2.1.

H∗
(

Ω·
V (M)

Ω·
V (M/S3)

)
= H∗−3

(
M/S3,Σ/S3

)⊕
(
H∗−2

(
MS1))−Z2

Proof. We consider the integration operator:

ffl
:

Ω∗
V (M)

Ω∗
V (M/S3)

−→ Ω∗−3
V (M/S3,Σ/S3),

given by: ffl
(〈ω〉) = (−1)degω iX3iX2iX1ω.

It is a well defined differential operator since

– the tubular neighborhoods of the Thom–Mather’s structure T are invariant,

– the operator iX3iX2iX1 vanishes on Σ, and
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– iX iX3
iX2

iX1
ω = iXdiX3

iX2
iX1

ω = 0 for each X ∈ XΦ

(
M

)
6.

Every form γ ∈ Ω∗−3
V (M/S3,Σ/S3) vanishes in a neighborhood of Σ. So, the

product χ1 ∧ χ2 ∧ χ3 ∧ γ belongs to Ω∗
V (M) (cf. (4)). Since iX3iX2iX1(χ1 ∧ χ2 ∧

χ3 ∧ γ) = γ then we have the short exact sequence

0 // Ker∗
ffl Â Ä // Ω∗

V (M)

Ω∗
V (M/S3)

ffl
// Ω∗−3

V (M/S3,Σ/S3) // 0 (7)

By Lemma 1.3, it suffices to prove the following:

(a) H∗(Ker∗
ffl )

=
(
H∗−2

(
MS1))−Z2

.

(b) The associated connecting homomorphism δ vanishes.

(a)

For the sake of simplicity we put A∗(M)
= Ker∗

ffl
. In fact we have A∗(M)

=
{ω∈Ω∗

V (M)|iX3 iX2 iX1ω=0}
Ω∗

V (M/S3) . Analogously, we defineA∗(M,Σ
)
, A∗(Σ) andA∗(Σ, F )

.

To get (a), it suffices to prove the following facts:

(a1) H∗(A∗(M))
= H∗(A∗(Σ)).

(a2) H∗(A·(Σ)) = H∗(A·(Σ, F ))
.

(a3) H∗(A·(Σ, F ))
=

(
H∗−2

(
MS1))−Z2

.

(a1)

Consider the inclusion L : A∗(M,Σ
) −→ A∗(M)

and the restriction R :

A∗(M) → A∗(Σ), which are differential morphisms. This gives the short sequ-

ence

0 // A∗(M,Σ
) L // A∗(M) R // A∗(Σ) // 0.

Notice that R ◦ L = 0. This short sequence is exact since:

• The operator R is an onto map. Consider γ ∈ Ω∗
V (Σ). We know that

σ(γ) ∈ Ω∗
V (M) (cf. Lemma 1.2). The result comes from:

Ã σ(γ) ∈ Ω∗
V (M). Since τ0, τ1 are equivariant and f◦ν0, f◦ν1 are invariant.

Ã iX3iX2iX1σ(γ) = 0. Since τ0, τ1 are equivariant and

rank{X1(x), X2(x), X3(X)} ≤ 2 for any x ∈ Σ.

Ã R (〈σ(γ)〉) = 〈(σ(γ))1〉 = 〈γ〉.
6LAiB = iBLA + i[A,B], ∀A,B ∈ X(M).
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• KerR ⊂ ImL. Consider ω ∈ Ω∗
V (M) with iX3

iX2
iX1

ω = 0 and iXj
ω1 = 0

for j ∈{1, 2, 3}. Since τ0 and τ1 are equivariant andXj =0 on F then iXjσ(ω1)= 0

for j ∈ {1, 2, 3}. This gives 〈σ(ω1)〉 = 0. Finally, we have 〈ω〉 = 〈ω − σ(ω1)〉 =
L(〈ω − σ(ω1)〉) since (ω − σ(ω1))1 = ω1 − (σ(ω1))1 = ω1 − ω1 = 0.

Now, we will get (a1) by proving that H∗(A·(M,Σ
))

= 0. By definition of

Verona’s forms we have A∗(M,Σ
)
= A∗(M,D

) excision
=== A∗(M\Σ, D\Σ), where

D = D0 ∪D1. A straightforward calculation gives:

H∗(A·(M\Σ, D\Σ))

=
{ω ∈ Ω∗(M\Σ, D\Σ) | iX3

iX2
iX1

ω = 0 and iXj
dω = 0 for j ∈ {1, 2, 3}}

Ω∗((M\Σ)/S3, (D\Σ)/S3) + {dβ |β ∈Ω∗−1(M\Σ, D\Σ) and iX3iX2iX1β = 0}

Let ω be a differential form of Ω∗(M\Σ, D\Σ) verifying iX3iX2iX1ω = 0 and

iXjdω = 0 for j ∈ {1, 2, 3}. Then

ω = d (χ1 ∧ iX3iX2ω − χ2 ∧ iX3iX1ω + χ3 ∧ iX2iX1ω)︸ ︷︷ ︸
β

+−e1 ∧ iX3iX2ω + e2 ∧ iX3iX1ω − e3 ∧ iX2iX1ω + 0ω︸ ︷︷ ︸
α

(cf. (5)) with β ∈ Ω∗−1(M\Σ, D), verifying iX3iX2iX1β = 0, and

α ∈ Ω∗((M\Σ)/S3, D/S3). This implies H∗(A·(M\Σ, D\Σ)) = 0 and then

H∗(A·(M,Σ
))

= 0.

(a2)

Consider the inclusion L : A∗(Σ, F )
↪→ A∗(Σ) which is a differential morp-

hism. It suffices to prove that L is an onto map.

Let us consider a smooth function f :]0,∞[→ [0, 1] verifying f ≡ 0 on [3,∞[

and f ≡ 1 on ]0, 2]. Notice that the composition f◦ν0 : M → [0, 1] is a smooth

invariant map. So, for each γ ∈ Ω∗(F )
we have σ(γ) = (f◦ν0)τ∗0 γ ∈ Ω∗(M). This

differential form verifies

Ã σ(γ) ∈ Ω∗
V (Σ). Since (f◦ν0) ≡ 1 on ∆0 then σ(γ) = τ∗0 γ on ∆0\F . This

gives (σ0(γ))0 = γ.

Ã σ(γ) ∈ Ω∗
V (Σ). Since τ0 is an equivariant map and f◦ν0 is an invariant

map.

Ã iXjσ(γ) = 0 for j ∈ {1, 2, 3} since τ0 is an equivariant map and Xj = 0

on F .
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Then 〈σ(γ)〉 = 0 on A∗(Σ).
Let 〈ω〉 be a class of A∗(Σ). We can write: 〈ω〉 = 〈ω − σ((ω)0)〉 =

L(〈ω−σ((ω)0)〉) since (ω − σ((ω)0))0 = ω0−(σ(ω0))0 = ω0−ω0 = 0. This proves

that L is an onto map.

(a3)

By definition of Verona’s differential forms we have

A∗(Σ, F )
= A∗(Σ,∆0

) excision
=== A∗(Σ\F,∆0\F

)
=

Ω∗(Σ\F,∆0\F )

Ω∗((Σ\F )/S3, (∆0\F )/S3)
.

The isotropy subgroup of a point of Σ\F is conjugated to S1 or N(S1) (cf. [2, The-
orem 8.5, pag. 153]). We consider the manifold Γ = (Σ\F )S

1

. A straightforward

calculation gives that Σ\F is G-equivariant diffeomorphic to

S3 ×N(S1) Γ =
(
S3/S1

)×N(S1)/S1 Γ = S2 ×Z2 Γ.

Notice that Γ/Z2 = (Σ\F )/S3. Let Γ0 be the open subset Γ∩∆0 of Γ. Analogously

we have ∆0\F = S2 ×Z2 Γ0 and Γ0/Z2 = (∆0\F )/S3.
The Z2-action on S2 is generated by (x0, x1, x2) 7→ (−x0,−x1,−x2)

7. Then,

the Z2-action on H0
(
S2

)
(resp. H2

(
S2

)
) is the identity Id (resp. − Id). The

Z2-action on Γ is induced by Φ(j,−). The Künneth formula gives

H∗(Ω∗(Σ\F,∆0\F )
)
= H∗(Ω·(S2×Z2 Γ, S2 ×Z2 Γ0)

)
=H∗

(
Ω·(S2×Γ, S2×Γ0

)Z2)

= H∗(Ω·(S2 × Γ,S2 × Γ0)
)Z2

=
(
H∗(S2)⊗H∗(Γ,Γ0)

)Z2

=
(
H0(S2)⊗H∗(Γ,Γ0)

)Z2 ⊕ (
H2(S2)⊗H∗−2(Γ,Γ0)

)Z2

= (H∗(Γ,Γ0))
Z2 ⊕ (

H∗−2(Γ,Γ0)
)−Z2

= H∗(Γ/Z2,Γ0/Z2)⊕
(
H∗−2(Γ,Γ0)

)−Z2

= H∗((Σ\F )/S3, (∆0\F )/S3)⊕ (
H∗−2(Γ,Γ0)

)−Z2
,

and then

H∗(A·(Σ\F,∆0\F
))

= H∗( Ω·(Σ\F,∆0\F )

Ω·((Σ\F )/S3, (∆0\F )/S3)
)
=

(
H∗−2(Γ,Γ0)

)−Z2

=
(
H∗−2((Σ\F )S

1

, (∆0\F )S
1

)
)−Z2

excision
===

(
H∗−2(ΣS

1

,∆S
1

0 )
)−Z2 retraction

===
(
H∗−2(ΣS

1

, F S
1

)
)−Z2

.

7This map is induced by j : S3 → S3 defined by j(u) = u · j (see [1, Example 17.23]).
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Consider the long exact sequence associated to the Z2-invariant pair
(
ΣS

1

, F S
1)
:

· · ·→(
Hi−1(F S

1

)
)−Z2→(

Hi(ΣS
1

, F S
1

)
)−Z2→(

Hi(ΣS
1

)
)−Z2→(

Hi(F S
1

)
)−Z2→· · · .

Since the action of Z2 on F S
1

= F is trivial, then
(
Hi(F S

1

)
)−Z2

= 0. On the other

hand, we have ΣS
1

= MS1 . This gives
(
H∗−2(ΣS

1

, F S
1

)
)−Z2

=
(
H∗−2(MS1)

)−Z2
.

(b)

Notice that the connecting morphism δ is defined by

δ([ζ]) = ±[〈d(χ1 ∧ χ2 ∧ χ3) ∧ ζ〉]. We have δ ≡ 0 since ζ1 = 0 (cf. (a1)). ¤

Theorem 2.2. Given any smooth action Φ : S3 × M −→ M we have the

Gysin sequence

· · · // Hi
(
M

)
// Hi−3

(
M/S3,Σ/S3

)⊕ (
Hi−2

(
MS1))−Z2 //

// Hi+1
(
M/S3

)
// Hi+1

(
M

)
// · · ·

where Σ is the subset of points of M whose isotropy group is infinite, the Z2-

action is induced by j ∈ S3 and (−)−Z2 denotes the subspace of antisymmetric

elements.

Proof. Consider the short exact sequence

0 // Ω∗
V (M/S3) // Ω∗

V (M) // Ω∗
V (M)

Ω∗
V (M/S3)

// 0, (8)

take its associated long exact sequence and then, apply Lemma 1.3, (3) and

Lemma 2.1. ¤

2.2. Example. Consider the connected sum M = CP2 # CP2 ∼=
(
S3×[0, 1]

)
/ ∼,

with

((z1, z2), i) ∼ ((z · z1, z · z2), i), i = 0, 1,

for all z ∈ S1 and (z1, z2) ∈ S3 in complex coordinates. The product of S3 induces

on M the action:

g · [h, t] = [g · h, t], ∀g, h ∈ S3,∀t ∈ [0, 1].

For this action, we have:

Σ =
(
S3 × {0, 1})/ ∼ ∼= S2 × {0, 1}, F = ∅,

M/S3 ∼= [0, 1], Σ/S3 ∼= {0, 1}, MS1 ∼= {N,S} × {0, 1},
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where N and S stand for the North and South poles of S2. The Z2- action on

MS1 is determined by j ∈ S3, which induces the antipodal map on S2, and so,

interchanges its poles. Thus, the exotic term that appears in the central part of

the Gysin Sequence is not trivial:

H2(M)
∼=−−→ (

H0
(
MS1))−Z2 =

(
H0

({N,S} × {0, 1}))−Z2 ∼= R⊕ R.

2.3. Morphisms. We describe the morphisms of the Gysin sequence.

1© : H∗(M/S3
) −→ H∗(M)

It is the pull-back π∗ of the canonical projection π : M → M/S3 (cf. Lemma 1.3).

2© : H∗(M) −→ H∗−3
(
M/S3,Σ/S3

)⊕
(
H∗−2

(
MS1))−Z2

We have already seen that the first component of this morphism is indu-

ced by
ffl
S3 [ω] = [iX3iX2iX1ω]. For the second component we keep track of the

isomorphisms given by Lemma 2.1 and we get that it is defined by: [ω] 7→
class

(ffl
S2 (ω1 − σ(ι∗ω1))

)
.

3© : H∗−3
(
M/S3,Σ/S3

)⊕
(
H∗−2

(
MS1))−Z2 −→ H∗+1

(
M/S3

)

A straightforward calculation using sequences (7) and (8) gives that the connec-

ting morphism 3© of the Gysin sequence sends:

• [ζ] ∈ H∗−3
(
M/S3,Σ/S3

)
to -

[
(e21 + e22 + e23) ∧ ζ

]
, and

• [ξ] ∈ (
H∗−2

(
MS1))−Z2 =

(
H∗−2(ΣS

1

, F S
1

)
)−Z2

to [dσ ∧ ε ∧ τ∗1 ξ] where ε is

an Euler form of the restriction Φ1 : S1×(
τ−1
1 (ΣS

1

)\ΣS1) → (
τ−1
1 (ΣS

1

)\ΣS1)

of Φ.

Since e21 + e22 + e23 is not a Verona’s form, then it does not define a class of

H4
(
M/S3

)
. Nevertheless, it does generate a class in the intersection cohomology

group H4
4
(M/S3) (as in the semi-free case of [7]).

2.4. Remarks. (a) We have
(
H∗(MS1))−Z2 = H∗(MS1)/H∗(MS1/Z2

)
. Let us

see that. The correspondence ω 7→ (
ω+j∗ω

2 , ω−j∗ω
2

)
establishes the isomorphism

Ω∗(MS1) = (
Ω∗(MS1))Z2 ⊕ (

Ω∗(MS1))−Z2 = Ω∗(MS1/Z2

)⊕ (
Ω∗(MS1))−Z2 and

hence, H∗(MS1) = H∗(MS1/Z2

)⊕ (
H∗(MS1))−Z2 . This gives the claim.

(b) Let us suppose that the action is semi-free, almost free or free. Then, j

acts trivially on MS1 = F , and hence, we have a long exact sequence

· · · → Hi
(
M

) → Hi−3
(
M/S3, F

) → Hi+1
(
M/S3

) → Hi+1
(
M

) → · · · .
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(c) Let us suppose that there is not a point of M whose isotropy subgroup

is conjugated to S1. Then, we have a long exact sequence

· · · → Hi
(
M

) → Hi−3
(
M/S3,Σ/S3

) → Hi+1
(
M/S3

) → Hi+1
(
M

) → · · · .

since j acts trivially on MS1 =
{
x ∈ M | S3x = S3 or N(S1)

}
.

2.5. Actions over S1. Using the Gysin sequence we have constructed, we now

give a list of all the different cohomologies of a S3-manifold M having the circle

as orbit space8. By geometrical reasons, the orbit space is composed by just one

stratum, the whole circle. Following the nature of the orbits, we distinguish four

cases.

(a) All orbits are of dimension 3. We have PM = 1 + t+ t3 + t4. This is the

case of the manifold S3 × S1, where S3 acts by multiplication on the left factor.

(b) All orbits are isomorphic to S2. We distinguish two cases following wether

the covering MS1 → MS1/Z2 = M/MS1 is trivial or not. In the first case we have

PM = 1 + t+ t2 + t3. This is the case of the manifold S2 × S1, where S3 acts by

multiplication on the left factor. In the second case we have PM = 1+ t, as is the

case of the manifold S2×Z2S1 where S3 acts by multiplication on the left factor.

(c) All orbits are isomorphic to RP2. In this case, we have PM = 1+ t. This

is the case of the manifold RP2 × S1 where S3 acts by multiplication on the left

factor.

(d) All orbits are points. We have PM = 1 + t. This corresponds to the

manifold S1 where S3 acts ineffectively.
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E. Garćıa-Ŕıo), eds.), World Scientific, 2009, 102–103.

[6] J. I. Royo Prieto, Estudio Cohomológico de flujos riemannianos, Ph.D. Thesis, University
of the Basque Country UPV/EHU, 2003.

[7] M. Saralegi, A Gysin sequence for semi-free actions of S3, Proc. Amer. Math. Soc. 118,
no. 4 (1993), 1335–1345.
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