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Generalized near-derivations and their applications
in Lie algebras

By YI-QIU DU (Siping) and YU WANG (Shanghai)

Abstract. Let L be a Lie algebra. The aim of this paper is to investigate gene-

ralized near-derivations of L, which is a generalization of near-derivation initiated by

Brešar in 2008. As an application we determine all linear maps f : L → L with the

property that [. . . [[f, δ1], δ2], . . . , δn] is a derivation whenever δ1, δ2, . . . , δn are deriva-

tions of L, where n is a fixed positive integer.

1. Introduction

Let n be a fixed positive integer. Let R be a not necessarily associative

algebra with multiplication · . Recall that a linear map δ : R → R is said to be a

derivation if δ(x · y) = δ(x) · y + x · δ(y) for all x, y ∈ R. A linear map f : R → R

is said to be a generalized derivation if there exist linear maps g, h : R → R such

that

f(x) · y = g(x · y) + x · h(y) for all x, y ∈ R.

Leger and Luks [4] investigated generalized derivations of Lie algebras. As it is

well known, [δ′, δ] = δ′δ − δδ′ is a derivation whenever δ and δ′ are derivations.

Is it possible to determine all linear maps f : R → R with the property that [f, δ]

is a derivation whenever δ is a derivation? Brešar [2] discussed this question in

Lie algebras. He answered this question by introducing an interesting concept of

near-derivations in Lie algebras.
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Let L be a Lie algebra over a field F. By adx we denote the inner derivation

induced by x ∈ L, i.e. (adx)(y) = [x, y] for all y ∈ L. A linear map f : L → L is

said to be a near-derivation of L if there exists a linear map g : L → L such that

(adx)f − g(adx)

is a derivation for every x ∈ L (see [2, Section 1]). Note that every generalized

derivation is a near-derivation. Brešar gave a description of f in certain Lie

algebras that arise from associative ones. The typical result in [2] states that a

near-derivation f of L is of the form f = δ + γI + τ , where δ is a derivation, γ is

an element in the center C of a certain associative algebra containing L, and τ is

a linear map from L into C.

It is natural for us to consider the following general question: How to deter-

mine all linear maps f : L → L with the property that [. . . [[f, δ1], δ2], . . . , δn] is a

derivation whenever δ1, δ2, . . . , δn are derivations of L?

We shall solve this problem on Lie algebras. For this purpose we shall ex-

tend the definition of near-derivations. Let Q be a unital associative algebra,

containing L as its Lie subalgebra (the Q always exists). First, we give a slight

generalization of near-derivations as follows: A linear map f : L → L is said to

be a near-derivation if there exists a linear map g : L → Q such that

(adx)f − g(adx)

is a derivation for every x ∈ L. It is easy to see that the typical result δ+ γI + τ

in [2] is a near derivation in the above sense. Now, we say that a linear map

f : L → L is a generalized near-derivation if there exists a linear map g : L → Q

such that

(adx)f − g(adx)

is a near-derivation for every x ∈ L. It is easy to see that every near-derivation

is a generalized near-derivation.

We shall apply the powerful theory of functional identities [3] to the descript-

ions of generalized near-derivations in certain Lie algebras that arise from associ-

ative ones.

2. Functional identities preliminaries

Let Q be a unital algebra and let S be a d-free subset of Q for some positive

integer d. Denote by P as the set of all quasi-polynomials. We refer the reader to
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the recent book [3] for the basic properties of d-free subsets and quasi-polynomials,

upon which the present paper heavily rests.

The following result is a slight generalization of [2, Lemma 2].

Lemma 2.1. Let Q be a unital algebra and let S be a subset of Q. Let

B : S × S → Q be a skew-symmetric map. Suppose that

[B(x, y), z] + [B(z, x), y] + [B(y, z), x] ∈ P

for all x, y, z ∈ S. If S is a 4-free subset of Q, then there exist λ ∈ C, the center

of Q, a linear map µ : S → C, and a skew-symmetric map ν : S2 → C such that

B(x, y) = λ[x, y] + µ(x)y − µ(y)x+ ν(x, y) for all x, y ∈ S.

Proof. Using [3, Theorem 4.13] it follows that B is a quasi-polynomial.

This means that there exist λ1, λ2 ∈ C and maps µ1, µ2 : S → C, ν : S2 → C

such that

B(x, y) = λ1xy + λ2yx+ µ1(x)y + µ2(y)x+ ν(x, y).

Since B(x, y) = −B(y, x) it follows that

(λ1 + λ2)(xy + yx) + (µ1 + µ2)(x)y + (µ1 + µ2)(y)x+ ν(x, y) + µ(y, x) = 0.

But then λ1 = −λ2, µ1 = −µ2 and ν is skew-symmetric [3, Lemma 4.4]. Setting

λ = λ1 and µ = µ1 we thus have

B(x, y) = λ[x, y] + µ(x)y − µ(y)x+ ν(x, y) for all x, y ∈ S. ¤

Let A be a prime associative algebra. By Qml(A) we denote the maximal

left ring of quotients of A (see [1, Chapter 2] or [3, Appendix A]). The center C

of Qml(A) is a field called the extended centroid of A. By deg(x) we denote the

degree of the algebraicity of x ∈ A over C. If x is not algebraic, then we write

deg(x) = ∞. Further, we set

deg(A) = sup{deg(x) | x ∈ A}.
The condition that deg(A) = ∞ is equivalent to the condition that A is not a PI-

algebra, while the condition that deg(A) = n < ∞ is equivalent to the condition

that A is a PI-algebra satisfying the standard polynomial identity of degree 2n,

but not satisfying a polynomial identity of degree < 2n. If A is a central simple

algebra, then deg(A) = ∞ is the same as saying that A is infinite-dimensional

over F, while deg(A) = n < ∞ is equivalent to dimFA = n2 [3, Appendix C]. If

deg(A) ≥ d + 1, then every noncommutative Lie ideal L of A is a d-free subset

of Qml(A) [3, Corollary 5.16]. If deg(A) ≥ 2d+ 3, A has an involution and K is

the set of skew elements in A, then every noncentral Lie ideal L of K is a d-free

subset of Qml(A) [3, Corollary 5.19].
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3. Generalized near-derivations on Lie algebras

We begin with the following crucial result.

Lemma 3.1. Let L be a Lie algebra with char(F) 6= 2, 3 and let Q be a unital

associative algebra, containing L as its Lie subalgebra. Let f be a generalized

near-derivation of L. Suppose L is a 4-free subset of Q. Then there exist γ ∈ C,

the center of Q, and a skew-symmetric bilinear map β : L2 → C such that
(f + γI)([x, y]) = [f(x), y] + [x, f(y)] + β(x, y) for all x, y ∈ L.

Proof. Our assumption is that there exists g : L → Q such that (adx)f −
g(adx) is a near-derivation for every x ∈ L. In view of [2, Lemma 3.1] we have

that there exists λx ∈ C (depending on x) such that

((adx)f − g(adx) + λxI)([y, z])− [((adx)f − g(adx))(y), z]

− [y, ((adx)f − g(adx))(z)] ∈ C.

That is,

[x, f([y, z])]− g([x, [y, z]]) + λx[y, z]− [[x, f(y)]− g([x, y]), z]

− [y, [x, f(z)]− g([x, z])] ∈ C (1)

for all x, y, z ∈ L. Now define θ : L → C by the rule

θ(x) = λx for all x ∈ L.

We claim that θ is well-defined. It is enough to show that x = 0 implies λx = 0.

Picking x = 0 in (1) we obtain λ0[y, z] ∈ C for all y, z ∈ L. Applying [3, Lem-

ma 4.4] we get λ0 = 0 as desired. Hence, the identity (1) can be rewritten as

[x, f([y, z])]− g([x, [y, z]]) + θ(x)[y, z]− [[x, f(y)]− g([x, y]), z]

− [y, [x, f(z)]− g([x, z])] ∈ C (2)

for all x, y, z ∈ L. In view of the Jacobi identity we have

g([x, [y, z]]) + g([z, [x, y]]) + g([y, [z, x]]) = 0;

according to (2) this can be rewritten as

[x, f([y, z])]− [[x, f(y)], z] + [g([x, y]), z]− [y, [x, f(z)]] + [y, g([x, z])]

+ [z, f([x, y])]− [[z, f(x)], y] + [g([z, x]), y]− [x, [z, f(y)]]

+ [x, g([z, y])] + [y, f([z, x])]− [[y, f(z)], x] + [g([y, z]), x]

− [z, [y, f(x)]] + [z, g([y, x])] + θ(x)[y, z]

+ θ(z)[x, y] + θ(y)[z, x] ∈ C.
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Rearranging the terms we get

[(2g − f)([y, z])− [f(y), z]− [y, f(z)], x]

+ [(2g − f)([x, y])− [f(x), y]− [x, f(y)], z]

+ [(2g − f)([z, x])− [f(z), x]− [z, f(x)], y]

+ θ(x)[y, z] + θ(z)[x, y] + θ(y)[z, x] ∈ C (3)

for all x, y, z ∈ L. That is,

[(2g − f)([y, z])− [f(y), z]− [y, f(z)], x]

+ [(2g − f)([x, y])− [f(x), y]− [x, f(y)], z]

+ [(2g − f)([z, x])− [f(z), x]− [z, f(x)], y] ∈ P

for all x, y, z ∈ L. We are now in a position to apply Lemma 2.1. Thus there

exist λ ∈ C, µ1 : L → C, and a skew-symmetric map ν : L2 → C such that

(2g − f)([x, y])− [f(x), y]− [x, f(y)] = λ[x, y] + µ1(x)y − µ1(y)x+ ν(x, y). (4)

Substituting (4) into (3) we obtain

(2µ1(x) + θ(x))[y, z] + (2µ1(z) + θ(z))[x, y] + (2µ1(y) + θ(y))[z, x] ∈ C.

Applying [3, Lemma 4.4] it follows that 2µ1(x)+θ(x) = 0 for all x ∈ L and hence

µ1 = − 1
2θ. Thus, the expression (4) becomes

(2g − f)([x, y])− [f(x), y]− [x, f(y)] = λ[x, y]− 1

2
θ(x)y +

1

2
θ(y)x+ ν(x, y). (5)

Set h = 2g − f − λI. Then

h([x, y])− [f(x), y]− [x, f(y)] = −1

2
θ(x)y +

1

2
θ(y)x+ ν(x, y). (6)

Since

h([x, [y, z]]) + h([z, [x, y]]) + h([y, [z, x]]) = 0

for all x, y, z ∈ L, we get from (6) that

[f(x), [y, z]] + [x, f([y, z])] + [f(z), [x, y]] + [z, f([x, y])] + [f(y), [z, x]]

+ [y, f([z, x])]− 1

2
θ(x)[y, z] +

1

2
θ([y, z])x− 1

2
θ(z)[x, y]

+
1

2
θ([x, y])z − 1

2
θ(y)[z, x] +

1

2
θ([z, x])y

+ ν(x, [y, z]) + ν(z, [x, y]) + ν(y, [z, x]) = 0.
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We rewrite this as

[f([y, z])− [f(y), z]− [y, f(z)], x] + [f([x, y])− [f(x), y]− [x, f(y)], z]

+ [f([z, x])− [f(z), x]− [z, f(x)], y]− 1

2
θ(x)[y, z] +

1

2
θ([y, z])x

− 1

2
θ(z)[x, y] +

1

2
θ([x, y])z − 1

2
θ(y)[z, x] +

1

2
θ([z, x])y

+ ν(x, [y, z]) + ν(z, [x, y]) + ν(y, [z, x]) = 0. (7)

That is,

[f([y, z])− [f(y), z]− [y, f(z)], x] + [f([x, y])− [f(x), y]− [x, f(y)], z]

+ [f([z, x])− [f(z), x]− [z, f(x)], y] ∈ P.

Applying Lemma 2.1 again we get

f([x, y])− [f(x), y]− [x, f(y)] = α[x, y] + µ2(x)y − µ2(y)x+ β(x, y) (8)

for some α ∈ C, µ2 : L → C, and skew-symmetric map β : L2 → C. It is clear

that the linearity of f implies the bilinearity of β.

Substituting (8) into (7) we obtain

(2µ2(x)− 1

2
θ(x))[y, z] + (2µ2(z)− 1

2
θ(z))[x, y] + (2µ2(y)− 1

2
θ(y))[z, x]

+
1

2
θ([y, z])x+

1

2
θ([x, y])z +

1

2
θ([z, x])y ∈ C.

Applying [3, Lemma 4.4] it follows that 2µ2(x) − 1
2θ(x) = 0 for all x ∈ L and

hence µ2 = 1
4θ. Thus, the expression (8) becomes

f([x, y])− [f(x), y]− [x, f(y)] = α[x, y] +
1

4
θ(x)y − 1

4
θ(y)x+ β(x, y) (9)

We claim that θ = 0. Indeed, subtracting (9) from (5) we get

2(g − f)([x, y]) = (λ− α)[x, y]− 3

4
θ(x)y +

3

4
θ(y)x+ ν(x, y)− β(x, y).

Set k = 2g − 2f − (λ− α)I. Then

k([x, y]) = −3

4
θ(x)y +

3

4
θ(y)x+ ν(x, y)− β(x, y). (10)
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Since

k([x, [y, z]]) + k([z, [x, y]]) + k([y, [z, x]]) = 0

by the Jacobi identity, we get from (10) that

−θ(x)[y, z] + θ([y, z])x− θ(z)[x, y] + θ([x, y])z − θ(y)[z, x] + θ([z, x])y ∈ C.

Applying [3, Lemma 4.4] it follows that θ(x) = 0 for all x ∈ L.

Setting γ = −α we can get from (9) that

(f + γI)([x, y]) = [f(x), y] + [x, f(y)] + β(x, y) for all x, y ∈ L.

This proves the lemma. ¤

We denote by H2(L,F) the second cohomology group of L. Applying Lem-

ma 3.1 we have the following:

Theorem 3.1. Let L be a Lie algebra with char(F) 6= 2, 3 and H2(L,F) = 0.

Let Q be a unital associative algebra, containing L as its Lie subalgebra. Let f be

a generalized near-derivation of L. Suppose L is a 4-free subset of Q. Then there

exist γ ∈ C, the center of Q, a derivation δ : L → Q and a linear map τ : L → C

such that f = δ + γI + τ .

Proof. By Lemma 3.1 the map d = f − γI : L → CL ⊆ Q satisfies

d([x, y])− [d(x), y]− [x, d(y)] = β(x, y) ∈ C

for all x, y ∈ L. Consequently,

β(x, [y, z]) = d([x, [y, z]])− [d(x), [y, z]]− [x, [d(y), z]]− [x, [y, d(z)]],

since [x, β(y, z)] = 0. Using the Jacobi identity it readily follows that

β(x, [y, z]) + β(z, [x, y]) + β(y, [z, x]) = 0.

Since H2(L,F) = 0 then exists a linear map τ : L → C such that β(x, y) = τ([x, y])

for all x, y ∈ L (see [2, P. 3769]). That is,

d([x, y])− [d(x), y]− [x, d(y)] = τ([x, y]).

It follows that δ = d− τ is a derivation from L into Q. ¤
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Let L be a Lie algebra over F. We denote End(L) by the F-linear space of

all F-linear transformations on L. Set

Cent(L) = {χ ∈ End(L) | χ([x, y]) = [χ(x), y] = [x, χ(y)] for all x, y ∈ L}.

We call Cent(L) the centroid of L. Applying Lemma 3.1 we also have the follo-

wing:

Theorem 3.2. Let L be a Lie algebra with char(F) 6= 2, 3. Let Q be a unital

associative algebra, containing L as its Lie subalgebra. Assume further that L

has trivial center and [L,L] = L. Let f be a generalized near-derivation of L.

Suppose that L is a 4-free subset of Q. Then there exist a derivation δ : L → L

and ζ ∈ Cent(L), the centroid of L, such that f = δ + ζ.

Proof. Lemma 3.1 implies that

γ[[x, y], z] = [[f(x), y], z] + [[x, f(y)], z]− [f([x, y]), z] ∈ L

for all x, y, z ∈ L. Since [L,L] = L, and hence also [[L,L], L] = L, it follows

that γL ⊆ L. That is, the map ζ : x 7→ γx maps L into L and so ζ ∈ Cent(L).

Further,

β(x, y) = f([x, y]) + γ[x, y]− [f(x), y]− [x, f(y)]

then lies in L ∩ C which is zero since L has trivial center. But then δ = f − ζ is

a derivation of L. ¤

Applying Lemma 3.1 and using the same arguments as in the corresponding

results in [2, Section 3], we can obtain the following results. We omit their proofs

for brevity.

Corollary 3.1. Let A be a central simple algebra with char(F) 6= 2, 3. Sup-

pose that one of the following conditions is satisfied:

(i) dimFA ≥ 25 and 1 ∈ L = [A,A];

(ii) Suppose that A has an involution of the first kind and dimFA ≥ 121. Let K

be the set of skew elements in A, and set L = [K,K].

Then every generalized near-derivation f of L is of the form f = δ + γI where δ

is a derivation of L and γ ∈ F;
Corollary 3.2. Let A be a prime algebra with char(F) 6= 2, 3, let C be the

extended centroid of A. Suppose that one of the following conditions is satisfied:

(i) Let L be a noncommutative Lie ideal of A. Suppose that deg(A) ≥ 5;
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(ii) Suppose that A has an involution and deg(A) ≥ 11. Let K be the skew

elements of A, and let L be a noncentral Lie ideal of K.

If f is a generalized near-derivation of L, then there exist an (associative) de-

rivation δ : 〈L〉 → 〈L〉C + C, γ ∈ C, and a linear map τ : L → C such that

f = δ + γI + τ .

4. An application of generalized near-derivations

As an application of generalized near-derivations we shall answer the question

posed in Section 1. More precisely, we have the following result.

Theorem 4.1. Let L be a Lie algebra with char(F) 6= 2, 3 and H2(L,F) = 0.

Let f be a linear maps of L with the property that

[. . . [[f, δ1], δ2], . . . , δn]

is a derivation whenever δ1, δ2, . . . , δn are derivations of L. Suppose there exists

a unital associative algebra Q, containing L as its Lie subalgebra, such that L

is a 4-free subset of Q. Then there exist γ ∈ C, the center of Q, a derivation

δ : L → Q and a linear map τ : L → C such that f = δ + γI + τ .

Proof. For every x1, x2, . . . , xn ∈ L we get from our assumption that

[. . . [[f, adx1], adx2], . . . , adxn]

is a derivation and so a near derivation. That is

[. . . [[f, adx1], adx2], . . . , adxn−1]

is a generalized near-derivation. By Theorem 3.1 we get that

[. . . [[f, adx1], adx2], . . . , adxn−1]

is also a near derivation. Following the same process we finally obtain that f is a

near-derivation. Then the result follows from Theorem 3.1. ¤

Similarly, applying the corresponding results in the above section we can

obtain the following results. We omit their proofs for brevity.

Theorem 4.2. Let L be a Lie algebra with char(F) 6= 2, 3 such that L has

trivial center and [L,L] = L. Let f be a linear maps of L with the property that

[. . . [[f, δ1], δ2], . . . , δn]

is a derivation whenever δ1, δ2, . . . , δn are derivations of L. Suppose that there
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exists a unital associative algebra Q , containing L as its Lie subalgebra, such

that L is a 4-free subset of Q. Then there exist a derivation δ : L → L and

ζ ∈ Cent(L), the centroid of L, such that f = δ + ζ.

Corollary 4.1. Let A be a central simple algebra with char(F) 6= 2, 3. Sup-

pose that one of the following conditions is satisfied:

(i) dimFA ≥ 25 and 1 ∈ L = [A,A];

(ii) Suppose that A has an involution of the first kind and dimFA ≥ 121. Let K

be the set of skew elements in A, and L = [K,K].

If f is a linear map of L with the property that

[. . . [[f, δ1], δ2], . . . , δn]

is a derivation whenever δ1, δ2, . . . , δn are derivations of L, then f = δ+γI where

δ is a derivation of L and γ ∈ F.
Corollary 4.2. Let A be a prime algebra with char(F) 6= 2, 3, let C be the

extended centroid of A. Suppose that one of the following conditions is satisfied:

(i) Suppose that L is a noncommutative Lie ideal of A and deg(A) ≥ 5;

(ii) Suppose that A has an involution with deg(A) ≥ 11, K is the skew elements

of A and let L be a noncentral Lie ideal of K.

If f is a linear map of L with the property that

[. . . [[f, δ1], δ2], . . . , δn]

is a derivation whenever δ1, δ2, . . . , δn are derivations of L, then there exist an

(associative) derivation δ : 〈L〉 → 〈L〉C + C, γ ∈ C, and a linear map τ : L → C

such that f = δ + γI + τ .

Let us show that there exists a generalized near-derivation that is not a

near-derivation.

Let L be the usual Lie algebra of all 4 × 4 strict upper triangular matrices

over F, i.e.,
L =

{ ∑

1≤i<j≤4

aijeij | aij ∈ F
}
.

Let ϕ be a linear functional on L such that ϕ(e14) = 1. Now define f : L → L

by f(y) = ϕ(y)e24. We claim that f is not a near-derivation of L. Indeed, for

every linear map g : L → L we have

((ad e12)f − g(ad e12))([e13, e34]) = e14.
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On the other hand, we have

[((ad e12)f − g(ad e12))(e13), e34] + [e13, ((ad e12)− g(ad e12))(e34)] = 0.

This implies that (ad e12)f − g(ad e12) is not a derivation of L. However, since

(adx)(ad y)f = 0 for all x, y ∈ L, we get that (ad y)f is a near-derivation for

every y ∈ L and so f is a generalized near-derivation.
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