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Homotopy finiteness theorems for Finsler manifolds

By WEI ZHAO (Shanghai)

Abstract. In this paper, we consider generalized LGC spaces whose metrics are

nonreversible and show the compactness of such spaces in the generalized Gromov–

Hausdorff topology. On the basis of these, we derive some homotopy finiteness theorems

for Finsler manifolds, which are extensions of Yamaguchi’s results.

1. Introduction

Finiteness theorems are theorems giving bounds on certain geometrical quan-

tities such that the family of manifolds admitting metrics which satisfy the bounds

is finite up to homotopy equivalence, or homeomorphism, of diffeomorphism. The

finiteness problem in Riemannian geometry has been studied extensively (cf. [1],

[4], [8], [9], [10], [11], [26]).

In [26], Yamaguch considered the contractibility radius cM of a Riemannian

manifold M (cf. [11], [15]) and found that two Riemannian manifolds have the

same homotopy type if they are close enough in the Gromov–Hausdorff metric

and have the same lower bound for the contractibility radii (see [26, Theorem 2]).

Then he obtained the following homotopy finiteness results:

1. Given positive constants k,D and R, the class of closed Riemannian n-

manifolds (M, g) with RicM ≥ −(n− 1)k2, diam(M) ≤ D and cM ≥ R contains

at most finitely many homotopy types.
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2. Given positive constants i and V , the class of closed Riemannian n-

manifolds with iM ≥ i and Vol(M) ≤ V contains at most finitely many homotopy

types.

In [10], Grove, Petersen and Wu considered LGC spaces (cf. [8], [16]) and

investigated the convergence of such spaces in the Gromov–Hausdorff topology.

Then they gave different proofs of Yamaguch’s results. See [8], [10], [15], [16] for

more details.

Finsler geometry is Riemannian geometry without quadratic restriction. Ins-

tead of a Euclidean norm on each tangent space one endows Minkowski norms

on every tangent space of a differentiable manifold. A reversible Finsler manifold

is a metric space in a usual sense. Using the Gromov–Hausdorff distance and

the theory of LGC spaces, Shen in [22], [24] considered the topological finiteness

problem for a special class of reversible Finsler manifolds. The purpose of present

paper is to continue the discussion on this topic in the general case.

There are infinitely many nonreversible (or non-Riemannian) Finsler metrics.

For example, a Randers metric in the form F = α+β is non-reversible, where α is

a Riemannian metric and β is a 1-form. Nonreversible Finsler manifolds are not

metric spaces but general metric spaces (see Section 2), and therefore, one cannot

investigate their homotopy types by the ordinary Gromov–Hausdorff distance.

The reversibility λF ([18]) and the uniformity constant ΛF ([6]) of a Finsler

metric F are defined by

λF := sup
y∈SM

F (−y), ΛF := sup
X,Y,Z∈SM

gZ(X,X)

gY (X,X)
.

It is easy to see that 1 ≤ λF ≤ √
ΛF . λF = 1 if and only if F is reversible; ΛF = 1

if and only if F is Riemannian.

We now extend the concept of contractibility radius to Finsler manifolds,

which is a natural generalization of the original definition ([7]). Given a forward

complete Finsler manifold (M,F ), let d denote the general metric induced by F .

A point q ∈ M is regular for rp(·) := d(p, ·) if and only if there exists a unit vector

v ∈ SqM and a η > 0 such that

rp(γv(t)) ≥ rp(γv(0)) + η · t

for all sufficiently small t > 0, where γv(t) := expq(tv). If p ∈ M is not a regular

point for rp, then it is called a critical point. The contractibility radius cM is

defined as the supremum of r such that every forward metric ball of radius r

contains no critical points of the distance function from the center. Let S be



Homotopy finiteness theorems for Finsler manifolds 331

the S-curvature of a volume form and let µ(M) denote either the Busemann–

Hausdorff volume or the Holmes–Thompson volume of M . Then we have the

following

Theorem 1.1. Given n and positive numbers k, D, R, δ, the class of closed

Finsler n-manifolds (M,F ) with RicM ≥ −(n − 1)k2, diam(M) ≤ D, cM ≥ R

and ΛF ≤ δ, contains at most finitely many homotopy types.

Theorem 1.2. Given n and positive numbers k, h, D, R, δ, the class of

closed Finsler n-manifolds (M,F ) with RicM ≥ −(n − 1)k2, SM ≥ (n − 1)h,

diam(M) ≤ D, cM ≥ R and λF ≤ δ, contains at most finitely many homotopy

types.

Theorem 1.3. Given n and positive numbers i, V , δ, the class of closed

reversible Finsler n-manifolds (M,F ) with iM ≥ i, µ(M) ≤ V and ΛF ≤ δ,

contains at most finitely many homotopy types.

In the Riemannian case, λF = ΛF = 1 and SM = 0. Hence, Theorem 1.1,

1.2 and 1.3 imply Yamaguch’s results.

The arrangement of contents of this paper is as follows. In Section 2, we study

the properties of general metric spaces and the generalized Gromov–Hausdorff

distance. In Section 3, we extend Hausdorff dimension to general metric spaces

and discuss the relation between covering dimension and generalized Hausdorff

dimension. In Section 4, we consider general metric spaces which are LGC and

investigate the homotopy types and the convergence of such spaces in the generali-

zed Gromov–Hausdorff topology. On the base of these, we prove Theorem 1.1–1.3

in Section 5.

2. General metric space

To understand how geometric constraints on Finsler manifolds give rise to

topological constraints, we considered general metric spaces in [20]. In this sec-

tion, we continue to study the properties of such spaces. For more details we refer

to [3], [11], [20].

A general metric space is a pair (X, d), where X is a set and d : X ×X →
R+ ∪ {∞}, called a metric, is a function, satisfying the following two conditions

for all x, y, z ∈ X:

(i) d(x, y) ≥ 0,with equality ⇔ x = y;

(ii) d(x, y) + d(y, z) ≥ d(x, z).
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All the spaces under our consideration are general metric spaces, and they

are simply called metric spaces. In a metric space X we define the forward (resp.

backward) ε-ball, ε > 0, about x ∈ X to be B+
x (ε) := {y ∈ X | d(x, y) < ε} (resp.

B−
x (ε) := {y ∈ X | d(y, x) < ε}). A subset U ⊂ X is said to be open if, for

each point x ∈ U , there is an forward ε-ball about x contained in U . Then we

get the topology on X. We always assume that the metric d of a metric space

(X, d) is continuous with respect to the product topology on X ×X. Thus, every

backward ε-ball is open and the metric space is a Hausdorff (T2-) space.

The reversibility λX of X is defined by

λX := sup
x,y∈X,
x6=y

d(x, y)

d(y, x)
.

The metric spaces with reversibility 1 are called reversible (metric) spaces.

Let Mδ be the collection of compact metric spaces with reversibility ≤ δ.

Given a subset A in a metric space, the diameter of A is defined as diam(A) :=

supx,y∈A d(x, y). Then we have the following

Lemma 2.1. Given a metric space X ∈ Mδ, let {Uα} be a finite open cover-

ing of X. There exists η > 0 such that for each subset A ⊂ X with diam(A) < η,

A ⊂ Uα for some α.

Proof. If not, there would be a sequence of subsets {Ai} with diam(Ai) <

1/i such that Ai is not contained in any Uα. Select a point xi ∈ Ai. By [20,

Theorem 2.11], we can suppose that {xi} converges to a point x ∈ X. Then there

exists some Uβ such that x ∈ Uβ . Since Uβ is open, r = d(x,X − Uβ) > 0. By

[20, Proposition 2.2], there is N > 0 such that for i > N , d(x, xi) + 1/i < r/2.

Hence, for i > N , Ai ⊂ B+
x (r/2) ⊂ Uβ , which is a contradiction. ¤

Proposition 2.2. Let X,Y be two metric spaces with X ∈Mδ and λY <∞.

If f : X → Y is a continuous map, then f is uniformly continuous.

Proof. Given ε > 0. For each x ∈ X, there exists ηx > 0 such that

f(B+
x (ηx)) ⊂ B+

f(x)

(
ε

2λY

)
. Since X is compact, there exists finitely many points

x1, . . . , xn such that {B+
xi
(ηxi)}ni=1 is an open covering of X. The conclusion now

follows from the lemma above. ¤

Given a metric space X and two subsets A,B ⊂ X, the Hausdorff distance

between A and B is defined by

dH(A,B) := inf{ε : A ⊂ B+(B, ε), B ⊂ B+(A, ε)}.
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where B+(A, ε) := {x ∈ X : d(A, x) < ε} and d(A,B) := inf{d(a, b) : a ∈ A,

b ∈ B}.
Given two metric spaces X, Y in Mδ. An admissible metric on the disjoint

unionXtY is a metric that extends the given metrics onX and Y . A δ-admissible

metric is an admissible metric with reversibility ≤ δ. The δ-Gromov–Hausdorff

distance between X and Y is defined as

dδGH(X,Y ) := inf{dH(X,Y ) : δ-admissible metrics on X t Y }.

By [20, Proposition 3.7], (Mδ, dδGH) is a pseudometric space. Moreover, if we

consider equivalence classes of isometric spaces, then it becomes a reversible met-

ric space.

A sequence {Xn}∞n=1 ⊂ M δ converges to a compact metric space X ∈ M δ if

dδGH(Xn, X) → 0 as n → ∞. In this case, we will write Xn
δ−GH−−−−→ X and call X

the δ-Gromov–Hausdorff limit of {Xn}. First, we have the following observation.

Proposition 2.3. If a sequence {Xn}∞n=1 ⊂ M δ converges to a compact

metric space X ∈ M δ, then there exists a δ-admissible metric d on Y = tiXitX

such that (Y, d) is forward complete.

Proof. Since Xi
δ−GH−−−−→ X, we can choose a sequence {εi} converging to 0

such that dδGH(Xi, X) < εi. Thus, for each i, there exists a δ-admissible metric

di on X tXi with diH(X,Xi) < εi. Define a δ-admissible metric d on Y by

d(xi, xj) := min
x∈X

{di(xi, x) + dj(x, xj)}, d(xj , xi) := min
x∈X

{dj(xj , x) + di(x, xi)},

for all xi ∈ Xi, xj ∈ Xj .

Given a forward Cauchy sequence {xα}. If some Xi (or X) contains infinitely

many xα, then {xα} must converge to some point x ∈ Xi (or x ∈ X) (see [20,

Theorem 2.11]). Hence, we assume that each Xi and X contain finitely many

xα. Then we can choose a subsequence {xαi} of {xα} such that xαi ∈ Xαi

and αi ↗ +∞. Since dH(Xi, X) < εi, there exists a sequence {zαi} ⊂ X with

d(zαi , xαi) < εαi . Without loss of generality, we can suppose that {zαi} converges

to a point z ∈ X. The triangle inequality yields d(z, xαi) → 0 as i → +∞. Hence,

{xα} converges to z. ¤

Moreover, we have the following theorem.

Theorem 2.4. The “metric space” (Mδ, d δ
GH) is complete.
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Proof. It suffices to show there exists a convergent subsequence in an arbit-

rary Cauchy sequence {Xn}. Select a subsequence {Xi} such that d δ
GH(Xi, Xi+1)

< 2−i for all i. Then choose δ-admissible metrics di,i+1 on Xi tXi+1 such that

its Hausdorff distance between Xi and Xi+1 is less than 2−i. Now define a metric

di,i+j on Xi tXi+j by

di,i+j(xi, xi+j) := min
{xi+k∈Xi+k}

(
j−1∑

k=0

di+k,i+k+1(xi+k, xi+k+1)

)
,

di,i+j(xi+j , xi) := min
{xi+k∈Xi+k}

(
j−1∑

k=0

di+k,i+k+1(xi+k+1, xi+k)

)
,

for all xi ∈ Xi, xi+j ∈ Xi+j . Clearly, di,i+j is a δ-admissible metric on XitXi+j .

In fact we have defined a δ-admissible metric, say d, on Y := tiXi. Let dH denote

the Hausdorff distance on Y induced by d. It is easy to check that dH(Xi, Xi+j) ≤
2−i+1 for all Xi, Xi+j ⊂ Y .

Let X̂ := {{xi} | xi ∈ Xi and d(xi, xj) → 0 as i, j → ∞}. This space has a

pseudometric defined by d({xi}, {yi}) := limi→∞ d(xi, yi). The definition is well-

defined. One can verify that d({xi}, {yi}) satisfies the triangle inequality and its

reversibility is ≤ δ. Define an equivalence relation ∼ on X̂ by

{xi} ∼ {yi} ⇔ d({xi}, {yi}) = 0.

Then we have a δ-admissible metric on the quotient space X := X̂/ ∼ and let X̄

be the completion of X. Now we can extend the metric on Y to one on X̄ t Y

by declaring

d(y, {xk}) := lim
k→∞

d(y, xk), d({xk}, y) := lim
k→∞

d(xk, y),

for all y ∈ Y and {xk} ∈ X. It is easy to check that this metric is a δ-admissible

metric on X̄ t Y . A similar argument to the one given in [15, Proposition 43]

yields limi→∞ d δ
GH(Xi, X̄) = 0. By [20, Theorem 2.11], one can easily show that

X̄ is compact. ¤

The above result in the reversible case is due to Petersen (cf. [15], [16]).

By [20, Proposition 3.7], if X,Y ∈ Mδ satisfy dδGH(X,Y ) = 0, then X is

isometric to Y . Furthermore, we have the following proposition.

Proposition 2.5. Let {Xi} and {Ai} be two sequences of metric spaces in

Mδ with Ai ⊂ Xi for all i. If Xi
δ−GH−−−−→ X and Ai

δ−GH−−−−→ A, then A is (isometric

to) a subset of X.
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Proof. We can select a sequence {εi} converging to 0 such that dδGH(Xi, X)

< εi and dδGH(Ai, A) < εi for all i. Hence, for each i, there exist δ-admissible

metrics d̂i, d̃i on Xi tX and Ai t A, respectively, such that d̂iH(Xi, X) < εi and

d̃iH(Ai, A) < εi. Let ιi : Ai ↪→ Xi be the injective map. Define a δ-admissible

metric d̄i on Ai tXi by

d̄i(x, y) = εi + d(ιi(x), y), d̄i(y, x) = εi + d(y, ιi(x)), ∀(x, y) ∈ Ai ×Xi.

Then we obtain a sequence of δ-admissible metrics {di} on A tX, where

di(x, y) := inf
z∈Ai, w∈Xi

(d̃i(x, z) + d̄i(z, w) + d̂i(w, y)),

di(y, x) := inf
z∈Ai, w∈Xi

(d̂i(y, w) + d̄i(w, z) + d̃i(z, x)), ∀(x, y) ∈ A×X.

Given a ∈ A. For each i, there are ai ∈ Ai and xi ∈ X such that d̃i(ai, a) ≤ εi
and d̂i(xi, ιi(ai)) ≤ εi. Thus, we obtain a sequence of points {xi}∞i=1 ⊂ X. Since

X is compact, there exists a subsequence of {xi} converging to a point x(a) ∈ X.

Let A := {x(a) : a ∈ A} ⊂ X. By the construction above, it is easy to check

that dδGH(A, A) = 0. Then the result follows from [20, Proposition 3.7]. ¤

Recall the covering Cov(X, ε) of a compact metric space X is minimum num-

ber of forward ε-balls it takes to cover X. Given an decreasing (possibly discon-

tinuous) function N : (0, β) → (0,∞). Let C (N) := {X ∈ Mδ : Cov(X, ε) ≤
N(ε) for all ε ∈ (0, β)}. Then we have the following result (compared [20, Propo-

sition 3.12]).

Theorem 2.6. The class C (N) is compact in the δ-Gromov–Hausdorff to-

pology.

Proof. Step 1: C (N) is precompact.

Given a sequence {Xi} ⊂ C (N) and a positive number ε. Since Cov(Xi, ε) ≤
N(ε) < ∞, we can select a positive number M ≤ N(ε) such that there is an

infinite subsequence {Xα} of {Xi} where each Xα is covered by exactly M for-

ward ε-balls. Denote by xs
α, s = 1, . . . ,M , the centers of these forward balls in

Xα. Since d(xi
α, x

j
α) ≤ diamXα ≤ (1 + δ)εM ≤ (1 + δ)εN(ε), using the Can-

tor diagonal procedure, we can obtain a subsequence {Xαβ
} of {Xα} such that

{d(xi
αβ

, xj
αβ

)}∞β=1 converge for all i, j. By [20, Proposition 3.8], there exists L > 0

such that β, γ ≥ L implies dδGH(Sε
αβ

, Sε
αγ

) < ε, where Sε
αβ

:= {xi
αβ

}Mi=1 is a for-

ward ε-net of Xαβ
. Thus, the triangle inequality yields dδGH(Xαβ

, Xαγ ) < 3ε.

The conclusion then follows from Theorem 2.4.
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Step 2: C (N) is closed.

Let {Xi} ⊂ C (N) be a sequence converging to a space X ∈ Mδ. Given

ε > 0, for each i, there exists a finite forward ε-net Sε
i of Xi with ]Sε

i ≤ N(ε).

Since N(ε) is a decreasing function, {Sε
i } ⊂ C (N ′), where N ′ := N |(0,ε). By

Step 1, {Sε
i } is precompact and therefore contain a subsequence {Sε

α} converging

to a space Sε.

Given η > 0, there exists Sε
α with dδGH(Sε

α, S
ε) < η. Thus, one can select

a δ-admissible metric d on Sε
α t Sε such that dH(Sε

α, S
ε) < η. Hence, for every

x ∈ Sε, there exists some xs
α ∈ Sε

α with x ∈ B+
xs
α
(η). Now we have shown that for

each η > 0, there exists a covering {Us} of Sε such that diam(Us) < (1+ δ)η and

]{Us} ≤ N(ε). This implies ]Sε ≤ N(ε).

By using Proposition 2.5, one can check that Sε is a forward ε-net of X.

Hence, X ∈ C (N). ¤

The theorem above in reversible case is due to Petersen (see [15], [16]).

3. Generalized Hausdorff dimension

In this section, we recall some definitions and properties of covering dimension

and extend Hausdorff dimension to general metric spaces. See [3], [13], [19] for

details. The covering dimension of a space is said to be ≤ n if for each open

covering, there is a refinement of order ≤ n + 1. The covering dimension of X,

denote by dim(X), is the smallest integer n such that X have covering dimension

≤ n.

Now, we generalize Hausdorff measure to general metric spaces.

Definition 3.1. Given a (general) metric space X and a non-negative real

number r, define

µr
ε(X) := inf

+∞∑

i=1

[diam(Ai)]
r
,

where the infimum is taken over all countable covering {Ai} ofX with diam(Ai)<ε

for all i, and

[diam(Ai)]
0 :=

{
0 Ai = ∅,
1 Ai 6= ∅.

Let

µr(X) := sup
ε>0

µr
ε(X) = lim

ε→0
µr
ε(X).

µr(X) is called r(-dimensional) generalized Hausdorff measure of X.
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By [19], it is easy to check that µr is a (outer) measure. Moreover, we have

the following proposition, whose proof is trivial.

Proposition 3.2. Given a metric space X.

(i) µr(X) = 0 for any r ≥ 0 iff X = ∅.
(ii) µ0(X) = n if X = {p1, . . . , pn}.
(iii) µ0(X) = ∞ if X is an infinite set.

(iv) If r1 < r2, then µr1(X) ≥ µr2(X). In fact, µr1(X) < ∞ implies µr2(X) = 0,

and 0 < µr2(X) implies µr1(X) = +∞.

Definition 3.3. Given a (general) metric space X, the generalized Hausdorff

dimension of X is defined by

dimH(X) := sup{r : r > 0, µr(X) > 0}.

By Proposition 3.2, we have the following corollary.

Corollary 3.4. For each metric space X, µr(X) = 0 for all r > dimH(X)

and µr(X) = +∞ for all r < dimH(X).

Proposition 3.5. For each compact metric space (X, d) ∈ Mδ, dimH(X) ≥
dim(X).

Proof. Define a reversible metric d̃ on X by

d̃(x, y) :=
d(x, y) + d(y, x)

2
, (3.1)

for all x, y ∈ X. Thus, we have

2

1 + δ
d̃(x, y) ≤ d(x, y) ≤ 2

1 + δ−1
d̃(x, y), ∀x, y ∈ X.

Hence, for each r ≥ 0,

(
2

1 + δ

)r

µr((X, d̃)) ≤ µr((X, d)) ≤
(

2

1 + δ−1

)r

µr((X, d̃)).

Corollary 3.4 then yields dimH((X, d)) = dimH((X, d̃)).

Note that (X, d) is separable (see [20, Corollary 2.12]) and (X, d) is homeo-

morphic to (X, d̃). Hence, by [13], we have

dim((X, d)) = dim((X, d̃)) ≤ dimH((X, d̃)) = dimH((X, d)). ¤
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The following result is an extension of a result due to Pontrjagin and

Schnirelmann (see [17]).

Theorem 3.6. For each metric space X ∈ Mδ,

dimH(X) ≤ lim inf
ε→0+

log Cov(X, ε)

− log ε
. (3.2)

Proof. The result is trivial if dimH(X) = 0. Hence, we suppose that

dimH(X) > 0. Given ε ∈ (0, 1), there exists a covering {B+
xi(ε)}Cov(X,ε)

i=1 of X.

For each r ≥ 0,

Cov(X,ε)∑

i=1

[
diam

(
B+

xi
(ε)

)]r ≤ Cov(X, ε) · [(1 + δ)ε]
r
,

which implies that

r +
r log(1 + δ)

log ε
+

log µr
(1+δ)ε(X)

− log ε
≤ log Cov(X, ε)

− log ε
.

It follows from Corollary 3.4 that µr(X) = +∞, for r < dimH(X). Hence, for all

r ∈ [0, dimH(X)),

lim inf
ε→0+

[
logµr

(1+λ)ε(X)

− log ε
+

r log(1 + δ)

log ε

]
≥ 0.

which implies (3.2). ¤

4. LGC spaces

In this section, we consider general metric spaces which are LGC and in-

vestigate the homotopy types and the compactness of such spaces in the δ-

Gromov–Hausdorff topology. See [8], [10], [16] for more details on reversible

metric spaces.

A contractibility function ρ : [0, r) → [0,+∞) is a function satisfying: (a)

ρ(0) = 0, (b) ρ(ε) ≥ ε, (c) ρ(ε) → 0, as ε → 0, (d) ρ is nondecreasing.

A metric space X is LGC(ρ) for some contractibility function ρ, if for every

ε ∈ [0, r) and x ∈ X, the forward ball B+
x (ε) is contractible inside B+

x (ρ(ε)). And

X is said to be LGC(n, ρ) for some integer n ≥ 0, if for each integer k ∈ {0, . . . , n},
ε ∈ [0, r), x ∈ X and a continuous map f : Sk → B+

x (ε), there exists an continuous
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map f̄ : Dk+1 → B+
x (ρ(ε)) which is an extension of f , where Sk = ∂Dk+1 is the

k-sphere bounding the k + 1-disk Dk+1. Clearly, if X is LGC(ρ), then X is

LGC(n, ρ) for all n.

A map f : X → Y between metric spaces is ε-continuous if there exists an

η > 0 such that d(x1, x2) < η implies d(f(x1), f(x2)) < ε. A map g : X → Y

between metric spaces is continuous at a subset A ⊂ X if for each x ∈ A and ε > 0,

there exists η = η(x) > 0 such that g(B+
x (η)) ⊂ B+

g(x)(ε), where B+
x (η) ⊂ X.

Given a contractibility function ρ, define ρ0(ε) := ρ(ε) and ρi(ε) := ρ(ε +

ρi−1(ε)) for i ≥ 1.

The following lemma is an extension of a result due to Petersen (cf. [16]).

Lemma 4.1. Let X and Y be two metric spaces where X ∈ Mδ and Y is

LGC(n− 1, ρ). Suppose that A ⊂ X is a closed subset with dim(X −A) ≤ n and

f : X → Y is a (possibly discontinuous) map satisfying

(i) f is continuous at A,

(ii) f is ε-continuous.

If ε + ρn−1(ε) < r, then there exists a continuous map g : X → Y with

g|A = f |A and for all x ∈ X, d(f(x), g(x)) ≤ ε+ ρn(ε).

Proof. Since f is ε-continuous, there exists η > 0 such that d(x1, x2) < η

implies d(f(x1), f(x2)) < ε. For each x ∈ X −A, set

r(x) := min

(
η

10δ
,
d(x,A)

10δ

)
.

Note that X is separable. Hence, X −A is a Lindelöf space. Since dim(X−A) ≤
n− 1, the covering {B+

x (r(x))}x∈X−A has a countable refinement {Uα} of order

≤ n. The triangle inequality yields

diam(Uα) ≤ min

(
1 + δ

10δ − 1
d(Uα, A),

1 + δ

10δ
η

)
, ∀α.

Let N denote the nerve of {Uα} and Φ : X−A → N be a barycentric map.

Define a map ι : X → N ∪A by

ι(x) :=

{
x x ∈ A,

Φ(x) x ∈ X −A.

Denote by dX the metric of X. Define a new metric d̃X on X by (3.1). Since the

topology of (X, dX) coincides with that of (X, d̃X), by [12], one can topologize

N ∪A so that ι is continuous.
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We now construct a continuous map ḡ : N ∪ A → Y by induction on the

skeleton N 0 ∪A, . . . ,N n ∪A = N ∪A.

For each vertex Uα ∈ N , select a point xα ∈ Uα and define ḡ0(Uα) := f(xα)

and ḡ0|A := f |A. By (i), ḡ0 : N 0∪A → Y is continuous. Moveover, if Uα∩Uβ 6= ∅,
then d(xα, xβ) < η for all xα ∈ Uα, xβ ∈ Uβ , which implies d(ḡ0(Uα), ḡ0(Uβ)) < ε.

Let 4α0,...,αk
denote the k-simplex of N spanned by Uα0 , . . . , Uαk

if Uα0 ∩
· · · ∩ Uαk

6= ∅. Suppose that we have constructed a continuous map ḡk : N k∪
A → Y satisfying

(1) ḡk|N i∪A = ḡi for all 0 ≤ i ≤ k,

(2) for each 4α0,...,αk
, ḡk(4α0,...,αk

) ⊂ B+
ḡk(Uαi

)(ρk(ε)), for all 0 ≤ i ≤ k.

Thus, for each (k + 1)-simplex 4α0,...,αk+1
of N , it is easy to check that

ḡk(∂4α0,...,αk+1
) ⊂ B+

ḡk(Uαi
)(ε+ ρk(ε)). Since ∂4α0,...,αk+1

≈ Sk and Y is

LGC(n− 1, ρ), there exists an extension ḡk+1 : N k+1 ∪A → Y of ḡk such that

ḡk+1(4α0,...,αk+1
) ⊂ B+

ḡk+1(Uαi
)(ρk+1(ε)), for all 0 ≤ i ≤ k + 1.

Now we obtain a continuous map ḡ(= ḡn) : N ∪ A → Y such that for each

4α0,...,αn ∈ N , ḡ(4α0,...,αn) ⊂ B+
ḡ(Uαi

)(ρn(ε)) for all 0 ≤ i ≤ n. Set g := ḡ ◦ ι.

Given x ∈ X − A, there is Uα such that ι(x) is contained in some simplex with

Uα as its vertex. Then d(f(x), g(x)) ≤ d(f(x), ḡ(Uα)) + d(ḡ(Uα), ḡ ◦ ι(x)) ≤
ε+ ρn(ε). ¤

Corollary 4.2. Let X ∈ Mδ have covering dimension ≤ n and let Y ∈
Mδ be LGC(n, ρ). Suppose fi : X → Y , i = 1, 2, are continuous maps with

d(f1, f2) < ε/δ. If ε + ρn(ε) < r, then f1 is 2ε + ρn+1(ε)-controlled homotopy

equivalent to f2.

Proof. Let Z = [0, 1]×X and A = {0, 1}×X. The metric dZ is defined as

dZ := d[0,1] + dX . Thus, (Z, dZ) ∈ Mδ. Since X ∈ Mδ, X is a normal compact

space. Hence, dim(Z −A) ≤ n+ 1 (cf. [14]). Define a map h : Z → Y by

h(t, x) :=





f1(x) (t, x) ∈
[
0,

1

2

]
×X,

f2(x) (t, x) ∈
(
1

2
, 1

]
×X.

It follows from Proposition 2.2 that h is ε-continuous. Lemma 4.1 then yields a

continuous map H : [0, 1]×X → Y such that f1
H' f2 and d(h,H) ≤ ε+ ρn+1(ε).

It is easy to check that d(f2(x),H(t, x)) ≤ 2ε + ρn+1(ε) and d(f1(x),H(t, x)) ≤
(1+δ)ε

δ + ρn+1(ε) for all (t, x) ∈ [0, 1]×X. ¤
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Proposition 4.3. Suppose thatX,Y ∈ Mδ are LGC(n, ρ) and have covering

dimension ≤ n. If dδGH(X,Y ) < ε/δ and (2(1 + 2δ)ε+ 2δρn((1 + δ)ε/δ)) +

ρn((2(1 + 2δ)ε+ 2δρn((1 + δ)ε/δ))) < r, then X and Y are homotopy equivalent.

Proof. Since dδGH(X,Y ) < ε/δ, we can select a δ-admissible metric d on

X t Y such that dH(X,Y ) < η < ε/δ.

We now construct a (possibly discontinuous) map f̄ : X → Y . For each

x ∈ X, there exists y ∈ Y such that d(y, x) < η and define f̄(x) := y. Thus,

d(f̄ , idX) < η, where idX : X → X is the identity map of X. For every two points

x1, x2 ∈ X, if d(x1, x2) < ε/δ − η, then

d(f̄(x1), f̄(x2)) ≤ d(f̄(x1), x1) + d(x1, x2) + d(x2, f̄(x2)) <
(1 + δ)ε

δ
.

Lemma 4.1 now yields a continuous map f : X → Y with d(f̄ , f) ≤ (1+δ)ε
δ +

ρn
( (1+δ)ε

δ

)
. Hence, d(idX , f) ≤ (1+2δ)ε

δ + ρn
( (1+δ)ε

δ

)
. Similarly, one can obtain a

continuous map g : Y → X with d(idY , g) ≤ (1+2δ)ε
δ + ρn

( (1+δ)ε
δ

)
. Thus, for each

x ∈ X,

d(x, g ◦ f(x)) ≤ d(x, f(x)) + d(f(x), g ◦ f(x)) ≤ 2

[
(1 + 2δ)ε

δ
+ ρn

(
(1 + δ)ε

δ

)]
.

It follows from Corollary 4.2 that idX ' g ◦ f . Likewise, idY ' f ◦ g. ¤

From above, we have the following results for LGC general metric spaces.

In the reversible case, these results are due to Grove, Petersen and Wu (see

[10], [16]).

Theorem 4.4. Let {Xi} be a sequence in (Mδ, dδGH) converging to X in the

δ-Gromov–Hausdorff topology. If Xi is LGC(n, ρ) for all i, then X is LGC(n, ρ)

as well.

Proof. Since Xi
δ−GH−−−−→ X, we can choose a sequence {εi} with εi ↘ 0 and

dδGH(Xi, X) < εi/δ. By Proposition 2.3, there exists a δ-admissible metric d on

Y := tiXi tX such that (Y, d) is forward complete.

Given a point p ∈ X, ε > 0 and a map f : Sk → B+
p (ε) ⊂ X for 0 ≤ k ≤ n.

Since dH(X,Xi) < εi/δ, there exists pi ∈ Xi with d(pi, p) < εi/δ. Select η < ε

such that f(Sk) ⊂ B+
p (η). Using the argument in the proof of Proposition 4.3,

one can find a continuous map fi : Sk → Xi such that d(f, fi) ≤ (1+2δ)εi
δ +

ρn
( (1+δ)εi

δ

) → 0, as i → +∞. For simplicity, set εi :=
(1+2δ)εi

δ + ρn
( (1+δ)εi

δ

)
.

From above, we obtain a sequence of points {pi} and a sequence of continuous

maps {fi : Sk → Xi} with d(pi, p) <
εi

1+2δ and d(f, fi) ≤ εi. Thus, there is N > 0
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such that (3+δ)εN +ρk((3+δ)εN ) ≤ r and i ≥ N implies fi(Sk) ⊂ B+
pi
(η). Since

XN is LGC(n, ρ), there is an extension f̄N : Dk+1 → B+
pN

(ρ(η)) of fN .

Now, we extend f over Dk+1 inside B+
p (ρ(η)).

Since dH(XN , XN+1) <
2εN
1+2δ , for each t ∈ Int(Dk+1), there exists yt ∈ XN+1

with d(yt, f̄N (t)) < 2εN
1+2δ . Define a map gN+1 : Dk+1 → XN+1 by

gN+1(t) :=

{
fN+1(t) t ∈ Sk,
yt t ∈ Int(Dk+1).

Using Proposition 2.2 and the triangle inequality, one can verify that gN+1 is

(3 + δ)εN -continuous map.

By Lemma 4.1 and (3+δ)εN+ρk((3+δ)εN ) ≤ r, we obtain a continuous map

f̄N+1 : Dk+1 → XN+1 such that d(gN+1, f̄N+1) ≤ (3 + δ)εN + ρk+1((3 + δ)εN )

and f̄N+1|Sk = gN+1|Sk = fN+1. Hence, f̄N+1 is an extension of fN+1. And

d(f̄N , gN+1) ≤ (1 + δ)εN implies

d(f̄N , f̄N+1) ≤ d(f̄N , gN+1) + d(gN+1, f̄N+1) ≤ (4 + 2δ)εN + ρk+1((3 + δ)εN ).

Using d(pN+1, pN ) ≤ (1 + δ)εN and f̄N (Dk+1) ⊂ B+
pN

(ρ(η)), we obtain

f̄N+1(Dk+1) ⊂ B+
pN+1

(ρ(η) + (5 + 3δ)εN + ρk+1((3 + δ)εN )) .

After possibly passing to a subsequence of {Xi}, we can suppose that

+∞∑

s=N

((5 + 2δ)εs + ρk+1((3 + δ)εs)) ≤ min{ε− η, r, ρ(ε)− ρ(η)}.

Then we can construct inductively the extensions

f̄i : Dk+1 → B+
pi

(
ρ(η) +

i∑

s=N

(5 + 3δ)εs + ρk+1((3 + δ)εs))

)

of fi : Sk → B+
p (η) for all i ≥ N . In particular, for j > i ≥ N ,

d(f̄i, f̄j) ≤
j∑

s=i

((4 + 2δ)εs + ρk+1((3 + δ)εs)) .

Proposition 2.3 together with [20, Theorem 2.16, Theorem 2.15] implies that the

sequence {fs}s≥N converges uniformly to a continuous map f̄ : Dk+1 → Y . The

proof of Proposition 2.3 yields f̄(Dk+1) ⊂ X. Since f̄i|Sk = fi and fi ⇒ f , f̄ is

an extension of f . From above,

f̄(Dk+1) ⊂ B+
p

(
ρ(η) +

∞∑

s=N

(5 + 2δ)εs + ρk+1((3 + δ)εs))

)
⊂ B+

p (ρ(ε)),

which implies that X is LGC(n, ρ). ¤
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Theorem 4.5. Given a covering function N : (0, α) → (0,∞) with

lim supε→0+ εnN(ε) < ∞ and a contractibility function ρ : [0, r) → [0,∞). Then

the class

C (N,n, ρ) := {X ∈ Mδ : X is LGC(n, ρ), Cov(X, ε) ≤ N(ε) for all ε ∈ (0, α)}

is compact and contains only finitely many homotopy types.

Proof. Proposition 3.5 together with Theorem 3.6 furnishes

dimX ≤ dimH(X) ≤ lim sup
ε→0+

log Cov(X, ε)

− log ε
≤ lim sup

ε→0+

logN(ε)

− log ε
≤ n,

for each X ∈ C (N,n, ρ). The conclusion now follows from Theorem 2.6, The-

orem 4.4 and Proposition 4.3. ¤

Corollary 4.6. Fix a covering function N : (0, α) → (0,∞) with

lim sup ε → 0+εnN(ε) < ∞ and a contractibility function ρ : [0, r) → [0,∞). The

class

C (N, ρ) := {X ∈ Mδ : Xis LGC(ρ), Cov(X, ε) ≤ N(ε) for all ε ∈ (0, α)}

contains only finitely many homotopy types.

5. Finsler manifold

In this section, we show Theorem 1.1-Theorem 1.3. We recall some definitions

and properties of Finsler manifolds first. See [2], [22] for more details.

Let (M,F ) be a (connected) Finsler manifold with Finsler metric F : TM →
[0,∞). Let (x, y) = (xi, yi) be local coordinates on TM , and π : TM → M be

the natural projection. Define

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
, Aijk(x, y) :=

F

4

∂3F 2(x, y)

∂yi∂yj∂yk
,

γi
jk :=

1

2
gil

(
∂gjl
∂xk

+
∂gkl
∂xj

− ∂gjk
∂xl

)
,

N i
j :=

(
γi
jk`

j −Ai
jkγ

k
rs`

r`s
)
F, `i :=

yi

F
.

The Chern connection is defined on the pulled-back bundle π∗TM and its forms

are characterized by the following structure equations:
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(1) Torsion freeness: dxj ∧ ωi
j = 0;

(2) Almost g-compatibility: dgij − gkjω
k
i − gikω

k
j = 2

Aijk

F (dyk +Nk
l dx

l).

From above, it’s easy to obtain ωi
j = Γi

jkdx
k, and Γi

jk = Γi
kj .

The curvature form of the Chern connection is defined as

Ωi
j := dωi

j − ωk
j ∧ ωi

k =:
1

2
Ri

j kldx
k ∧ dxl + P i

j kldx
k ∧ dyl +N l

sdx
s

F
.

Given a non-zero vector V ∈ TxM , the flag curvature K(y, V ) on (x, y) ∈ TM\0
is defined as

K(y, V ) :=
V iyjRjikly

lV k

gy(y, y)gy(V, V )− [gy(y, V )]2
,

where Rjikl := gisR
s
j kl. And the Ricci curvature of y is defined by

Ric(y) :=
∑

i

K(y, ei),

where e1, . . . , en is a gy-orthonormal base on (x, y) ∈ TM\0.
Let dµ be the volume form on M . In a local coordinate system (xi), express

dµ = σ(x)dx1 ∧ · · · ∧ dxn. For y ∈ TxM\0, define the distortion of (M,F ) as

τ(y) := log

√
det(gij(x, y))

σ(x)
.

And we define S-curvature S as

S(y) :=
d

dt
[τ(γ̇(t))]|t=0,

where γ(t) is the geodesic with γ̇(0) = y.

By [2], [24], the admissible paths of a Finsler manifold (M,F ) are all Lipschitz

continuous paths γ : [a, b] → M , and the length structure

d(p, q) := inf

∫ b

a

F (γ̇(t)),

where the infimum is taken over all Lipschitz continuous paths γ : [a, b] → M with

γ(a) = p and γ(b) = q. Then d is an intrinsic metric and the manifold topology

coincides with the metric topology.

The reversibility λF of (M,F ) is defined by ([18])

λF := sup
(x,y)∈TM\0

F (x,−y)

F (x, y)
.
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Clearly λF ≥ 1 and λF = 1 if and only if F is reversible. From above, it is easy

to see that if λF < ∞, then λd ≤ λF , where λd is the reversibility of (M,d).

According to [6], the uniformity constant of (M,F ) is defined by

ΛF := sup
X,Y,Z∈SM

gX(Y, Y )

gZ(Y, Y )
.

Clearly, λF ≤ √
ΛF and ΛF = 1 if and only if F is Riemannian.

Now we extend the concept of critical point of distance function to Finsler

manifolds. We refer to [7], [15] for more details in the Riemannian case. Let

(M,F ) be a forward complete Finsler manifold. Given a point p ∈ M , we define

rp(·) := d(p, ·) and

Γp(x) := {w ∈ SxM : there is a unit speed minimal geodesic γ : [0, rp(x)] → M,

such that γ(0) = p, γ(rp(x)) = x, γ̇(rp(x)) = w}.

In the case where rp is smooth at x, we have Γp(x) = {∇rp(x)}. At other points,
Γp(x) may contain more vectors (cf. [2], [22]).

Definition 5.1. rp is noncritical, or regular, at x if there exists a vector v ∈
SxM , such that

gw(w, v) > 0, ∀w ∈ Γp(x). (5.1)

When F is Riemannian, (5.1) holds if and only if Γp(x) is contained in an

open hemisphere of SxM , which is the definition of regular point in Riemann

geometry (cf. [7], [15]).

Remark 1. A simple argument based on the first variation of arc length

formula (see [2]) and Proposition 5.3 shows Definition 5.1 is equivalent to the

following.

A point q ∈ M is regular for rp if and only if there exists a unit vector

v ∈ SqM and a η > 0 such that

rp(γv(t)) ≥ rp(γv(0)) + η · t

for all sufficiently small t > 0, where γv(t) := expq(tv).

Firstly, we have the following Finsler version of Berger’s lemma.

Proposition 5.2. If rp has a local maximum at q, then q is a critical point.
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Proof. Select an arbitrary C1-curve γ(t) : [0, ε] → M such that f(s) =

rp ◦ γ(s) has maximum at q = γ(0). For each unit speed minimal geodesic c(s)

from p to q, one can construct a variation c : [0, ε] × [0, rp(q)] → M such that

c(s, 0) = p, c(0, t) = c(t) and cs(t) = c(s, t) is a minimal geodesic from p to γ(s).

By the first variation formula, we obtain

0 ≥ d

ds

∣∣∣∣
s=0

L(cs) = gċ(ċ, γ̇(0)),

which implies that q is a critical point. ¤

Define Grp(x) := {v ∈ TxM : gw(w, v) > 0, ∀w ∈ Γp(x)}. Given a subset

U ⊂ M , a vector field X is call gradient-like for rp on U , if X(x) ∈ Grp(x) for all
x ∈ U .

Proposition 5.3. Let (M,F ) and rp(·) = d(p, ·) be as above. Then

(1) ∪x∈KΓp(x) is compact, for any compact set K ⊂ M .

(2) The set of regular points is open in M .

(3) Grp(x) is convex.
(4) If U is an open set of regular points, then there exists a unit gradient-like

vector field X on U . Furthermore, given a compact subset K ⊂ U , there

exists a small positive constant ε such that for each integral curve γ : [a, b] →
K of X,

rp(γ(t))− rp(γ(s)) > (t− s) cos
(π
2
− ε

)
, ∀a ≤ s < t ≤ b.

Proof. (1) Let {wn} be a sequence of unit vectors in ∪q∈KΓp(q) converging

to some unit vector w. Set xn := π1(wn) and x := π1(w), where π1 : SM → M

is the natural projection. Thus, for each wn, there exits a unit speed minimal

geodesic σn : [0, rp(xn)] → M from p to xn with σ̇n(rp(xn))=wn. Since {xn}⊂K,

there is a constant C such that LF (σn) = rp(xn) < C for all n. Set vn :=

σ̇n(0). Then σn(t) = expp(t · vn). Without loss of generality, we assume {vn}
converges to some vector v. Thus, by the generalized Arzelá–Ascoli theorem

([21, Theorem 6.1]), σ(t) = expp(t · v), 0 ≤ t ≤ rp(x), is the limit of σn. Since

rp(xn) ≤ ivn , rp(x) ≤ iv. Hence, σ(t) = expp(t · v), 0 ≤ t ≤ rp(x) is a unit speed

minimal geodesic from p to x. Note that

w = lim
n→∞

wn = lim
n→∞

(
expp

)
∗rp(xn)·vn vn =

(
expp

)
∗rp(x)·v v.

Thus, w ∈ Γp(x), which implies ∪q∈KΓp(q) is closed and therefore compact.
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(2) Let {xn} be a sequence of critical points with xn → x. We show x is a

critical point as well. For each vector v ∈ SxM , we can choose a sequence of unit

vectors {vn} such that vn ∈ Sxn
M and vn → v. By Definition 5.1, for each n,

there exists wn ∈ Γp(xn) with gwn
(wn, vn) ≤ 0. Without loss of generality, we

assume that wn converges to some unit vector w ∈ SxM . Thus, gw(w, v) ≤ 0. It

follows from (1) that w ∈ Γp(x). Therefore, x is a critical point.

(3) Given v1, v2 ∈ Grp(x) and t ∈ [0, 1]. For each w ∈ Γp(x), we have

gw(w, (1− t)v1 + tv2) = (1− t)gw(w, v1) + tgw(w, v2) > 0,

which implies that (1− t)v1 + tv2 ∈ Grp(x).
(4) For each point x ∈ U , there exists v ∈ Grp(x). It follows from the

proof of (2) that one can obtain a gradient-like vector field Vx on a small open

neighborhood Ux of x by extending v. Now, let {Ui} be a locally finite collection

of Ux’s and {ρi} be a corresponding partition of unit. Define a vector field on U

by Y =
∑

ρiVi. It follows from (3) that X = Y/F (Y ) is also gradient-like.

By (1), there exists a small constant ε > 0 such that for any x ∈ K

gw(w,X) > cos
(π
2
− ε

)
, ∀w ∈ Γp(x). (5.2)

Set λ(K) := supx∈K λ(x) = supy∈SK F (−y) < ∞. Let γ be a integral curve

for X. Clearly,

d(γ(t1), γ(t2)) ≤ λ(K) · |t1 − t2|, ∀t1, t2 ∈ [a, b].

This implies that rp ◦ γ is differentiable almost everywhere. By the proof of

Proposition 5.2 and (5.2), we have

d

dt
rp ◦ γ(t) > cos

(π
2
− ε

)
,

for almost every t ∈ [a, b]. ¤

From above, we have the following important lemma.

Lemma 5.4. Let (M,F ) and rp(·) be as above. Suppose that all the points in
r−1
p ([a, b]) are regular. Then r−1

p ((−∞, b]) deformation retracts onto r−1
p ((−∞, a]).

Proof. Note that r−1
p ([a, b]) is compact. Thus, by (Proposition 5.3, (2)),

there exist two bounded open subsets Ω and U of M such that Ū is a set of regular

points and

r−1
p ([a, b]) ⊂ Ω ⊂ Ω̄ ⊂ U.
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(Proposition 5.3, (4)) furnishes a unit gradient-like X on U . Since p /∈ U , we can

assume that there is a small open subset O such that r−1
p ((−∞, a]) − Ū ⊃ O.

Choose a cut-off function ψ : M → [0, 1] such that ψ|Ω̄ ≡ 1 and ψ|M−U ≡ 0.

Now, we define a vector field V on M by V (x) = ψ(x) ·X(x), for all x ∈ M . Let

ϕt denote the flow for V . For each x ∈ r−1
p ([a, b]), there exists a maximum ηx > 0

such that ϕt(x) ∈ Ω̄ for t ∈ [−ηx, 0]. Note that ϕt(x) is an integral curve for X

for t ∈ [−ηx, 0]. By (Proposition 5.3, (4)), one can select a constant ε > 0 such

that

rp(ϕt(x))− rp(ϕs(x)) > (t− s) · cos
(π
2
− ε

)
, ∀ − ηx ≤ s < t ≤ 0. (5.3)

Denote by tx ∈ [0, ηx] the first time on ϕ−t(x) to hit r−1
p (a). Since ε is

independent of x (see Proposition 5.3, (4)),

0 ≤ tx ≤ b− a

cos
(
π
2 − ε

) , ∀x ∈ r−1
p ([a, b]). (5.4)

We now claim that the function

t : r−1
p ([a, b]) → R, x 7→ tx

is continuous. If tx is discontinuous at some point q, then there would be a

constant δ > 0 and a sequence of points {qn} ⊂ r−1
p ([a, b]) such that qn → q

and |tqn − tq| ≥ δ. (5.4) implies that there exists a convergent subsequence of

{tqn}. Without loss of generality, we suppose that {tqn} converges themselves

to T . Thus,

ϕ−T (q) = lim
n→∞

ϕ−tqn (qn) ∈ r−1
p (a).

Since {ϕs·(−tqn )(qn) : s ∈ [0, 1]} ⊂ r−1
p ([a, b]),

{ϕ−t(q) : t ∈ [0, T ]} = {ϕs·(−T )(q) : s ∈ [0, 1]} ⊂ r−1
p ([a, b]). (5.5)

It follows from (5.3) and (5.5) that T is first time for which ϕ−T (q) ∈ r−1
p (a),

i.e., T = tq. We get a contradiction.

Now, we define the retraction ρs : r
−1
p ((−∞, b]) → r−1

p ((−∞, a]) by

ρs(x) :=

{
x x ∈ r−1

p ((−∞, a]),

ϕ−s·tx(x) x ∈ r−1([a, b]).
¤

Remark 2. Given a compact subset A ⊂ M . Let γA(·) := d(A, ·). Similar

arguments show that Proposition 5.2, Proposition 5.3 and Lemma 5.4 are still

true for rA(·).
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The contractibility radius cp at p is defined by

cp := inf{rp(x) : x is a critical point of rp},

It is easy to see that a critical point of rp lies in the cut locus of p. Hence, cp ≥ ip.

Define the contractibility radius cM of (M,F ) by cM := infp∈M cp.

Lemma 5.4 then yields the following theorem, whose proof is trivial.

Theorem 5.5. Let (M,F ) be a forward complete Finsler manifold with

cM ≥ R > 0. Then (M,F ) is LGC(ρ), where ρ : [0, R) → [0, R) is the identity

map.

To prove Theorem 1.1, we need the following lemma ([27, Remark 3.1])

Lemma 5.6 ([27]). Let (M,F, dµ) be a forward Finsler manifold, where dµ

is an arbitrary volume form on M . Suppose that Ric ≥ (n− 1)k and a ≤ τ ≤ b,

where τ is the distortion of dµ. Then for each p ∈ M , we have

µ(B+
p (r))

µ(B+
p (R))

≥ ea−b

∫ r

0
sn−1
k (t)dt

∫ R

0
sn−1
k (t)dt

,

for any 0 < r ≤ R.

Recall the capacity Cap(X, ε) of a compact metric space X is the maximum

number of disjoint forward ε/2-balls in X. Then we have the following

Theorem 5.7. Given n and positive numbers k,D,R, δ, the class of closed

Finsler n-manifolds (M,F ) with RicM ≥ −(n − 1)k2, diam(M) ≤ D, cM ≥ R

and ΛF ≤ δ, contains at most finitely many homotopy types.

Proof. Given a Finsler manifold (M,F ) satisfying the above assumptions.

By [25], we have

maxy∈SxM det gij(x, y)

miny∈SxM det gij(x, y)
≤ δn, δ−n/2 ≤ cn−1∫

SxM
dνx(y)

≤ δn/2,

for each x ∈ M . Let τHT denote the distortion of Holmes–Thompson volume

form dµHT . Thus, δ
−n ≤ eτHT (y) ≤ δn for all y ∈ SM .

Given any ε > 0. Since M is compact, there exists only finitely many disjoint

forward ε-balls inside M . Suppose B+
x1
(ε), . . . , B+

xk
(ε) are disjoint. Let B+

xα
(ε) be

the forward ball with the smallest Holmes–Thompson volume. Clearly, B+
xα

(D) ⊃
B+

xi
(ε) for all 1 ≤ i ≤ k. Hence, it follows from Lemma 5.6 that

k ≤ µHT (B
+
xα

(D))

µHT (B
+
xα(ε))

≤ δ2n
∫D

0
sinhn−1(kt)dt∫ ε

0
sinhn−1(kt)dt

.
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This implies that Cap(M, 2ε) ≤ N(ε), where N(ε) := δ2n
∫ D
0

sinhn−1(kt)dt∫ ε
0
sinhn−1(kt)dt

. Note

that Cap(M, 2ε) ≥ Cov(X, 2
√
δε) (see [20, Proposition 3.11]). Now the conclusion

follows from Corollary 4.6 and Theorem 5.5. ¤

Likewise, the proof of [20, Theorem 6.3] together with Theorem 5.5 and

Corollary 4.6 furnishes the following theorem.

Theorem 5.8. Given n and positive numbers k, h,D,R, δ, the class of closed

Finsler n-manifolds (M,F ) with RicM ≥ −(n−1)k2, SM ≥ (n−1)h, diam(M) ≤
D, cM ≥ R and λF ≤ δ, contains at most finitely many homotopy types.

Theorem 4.5 implies that every limit point of the class of Finsler manifolds

satisfying the assumptions of Theorem 5.8 (or Theorem 5.7) is a LGC space. The

uniform upper bound on reversibility (or uniform constant) is very important to

the convergence as the following example shows.

Example 1 ([23], [18]). Consider a sequence of compact Finsler 2-manifolds

{(Mi, Fi)}, where Mi ≡ S2 and in geodesic polar coordinates (r, φ) ∈ (0, π) ×
[0, 2π],

Fi =

√
(1− ε2i sin

2 r)dr2 + sin2 rdφ2 − εi sin
2 rdφ

1− ε2i sin
2 r

, εi = e−
1
i .

Note that Fi is defined on S2 (see [23]). It follows from [23] that KMi = 1 and

SMi = 0, where SMi is the S-curvature of the Busemann–Hausdorff volume form.

By [18, Theorem 11.1], we have π = diam(Mi) ≥ cMi ≥ iMi = π and

√
Λi ≥ λi =

1 + e−
1
i

1− e−
1
i

↗ ∞, as i → +∞,

where Λi is the the uniform constant and λi is the reversibility of Fi.

Thus, {(Mi, Fi)} are LGC spaces and satisfy all the conditions of Theorem

5.8 (or Theorem 5.7) except the reversibility (or uniform constant) condition. But

(S2, F∞) is not a metric space.

In the Riemannian case, Theorem 5.7 and Theorem 5.8 are due to Yamagu-

chi (cf. [26]).

Let dµ denote either the Busemann–Hausdorff volume form or the Holmes–

Thompson volume form. In [27], we showed the following proposition, which is

an extension of a result due to Croke [5].
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Proposition 5.9 ([27]). Let (M,F ) be a closed reversible Finsler n-manifold.

For any p ∈ M and 0 < r ≤ rp (or r ≤ iM/2), we have

µ(Bp(r)) ≥ Cn(n,ΛF )

nn
rn,

where C(n,ΛF ) :=
cn−1

Λ
(6n+5)/2
F (cn/2)1−1/n

and cn := Vol(Sn).

Then we obtain the following finiteness theorem, which is an extension of

[26, Corollary 2].

Theorem 5.10. For any n and positive numbers i, V, δ, the class of closed

reversible Finsler n-manifolds (M,F ) with injectivity radius iM ≥ i, ΛF ≤ δ and

µ(M) ≤ V , contains at most finitely many homotopy types.

Proof. Since cM ≥ iM ≥ i, (M,F ) is LGC(ρ), where ρ is the identity map

of [0, i). By Proposition 5.9, µ(Bp(ε)) ≥ C(n, δ)εn for all p ∈ M and ε ≤ i/2.

Since Cov(M, ε) ≤ Cap(M, ε),

Cov(M, ε) ≤ µ(M)

C(n, δ)(ε/2)n
= C ′(n, δ, V )ε−n.

Define the covering function N(ε) := C ′(n, δ, V )ε−n, ε ∈ (0, i/2). The conclusion

now follows from Corollary 4.6. ¤
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