Publ. Math. Debrecen
83/3 (2013), 329-352
DOI: 10.5486/PMD.2013.5516

Homotopy finiteness theorems for Finsler manifolds

By WEI ZHAO (Shanghai)

Abstract. In this paper, we consider generalized LGC spaces whose metrics are
nonreversible and show the compactness of such spaces in the generalized Gromov—
Hausdorff topology. On the basis of these, we derive some homotopy finiteness theorems
for Finsler manifolds, which are extensions of Yamaguchi’s results.

1. Introduction

Finiteness theorems are theorems giving bounds on certain geometrical quan-
tities such that the family of manifolds admitting metrics which satisfy the bounds
is finite up to homotopy equivalence, or homeomorphism, of diffeomorphism. The
finiteness problem in Riemannian geometry has been studied extensively (cf. [1],
), 18], [9). [10], [11], [26]).

In [26], YAMAGUCH considered the contractibility radius cps of a Riemannian
manifold M (cf. [11], [15]) and found that two Riemannian manifolds have the
same homotopy type if they are close enough in the Gromov—Hausdorff metric
and have the same lower bound for the contractibility radii (see [26, Theorem 2]).
Then he obtained the following homotopy finiteness results:

1. Given positive constants k, D and R, the class of closed Riemannian n-
manifolds (M, g) with Ricy; > —(n — 1)k?, diam(M) < D and c¢p; > R contains
at most finitely many homotopy types.
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2. Given positive constants ¢ and V, the class of closed Riemannian n-
manifolds with ip; > ¢ and Vol(M) < V contains at most finitely many homotopy
types.

In [10], GROVE, PETERSEN and WU considered LGC spaces (cf. [8], [16]) and
investigated the convergence of such spaces in the Gromov—Hausdorff topology.
Then they gave different proofs of Yamaguch’s results. See [8], [10], [15], [16] for
more details.

Finsler geometry is Riemannian geometry without quadratic restriction. Ins-
tead of a Euclidean norm on each tangent space one endows Minkowski norms
on every tangent space of a differentiable manifold. A reversible Finsler manifold
is a metric space in a usual sense. Using the Gromov—Hausdorff distance and
the theory of LGC spaces, SHEN in [22], [24] considered the topological finiteness
problem for a special class of reversible Finsler manifolds. The purpose of present
paper is to continue the discussion on this topic in the general case.

There are infinitely many nonreversible (or non-Riemannian) Finsler metrics.
For example, a Randers metric in the form F' = a+ f is non-reversible, where « is
a Riemannian metric and 3 is a 1-form. Nonreversible Finsler manifolds are not
metric spaces but general metric spaces (see Section 2), and therefore, one cannot
investigate their homotopy types by the ordinary Gromov—Hausdorff distance.

The reversibility Ar ([18]) and the uniformity constant Ar ([6]) of a Finsler
metric F' are defined by

gZ(X,X)
Ap:= sup F(—y), Ap:= su =
pi= osup Foy), A= sip XX

It is easy to see that 1 < A\p < /Ap. Ap = 1if and only if F is reversible; Ap = 1
if and only if F' is Riemannian.

We now extend the concept of contractibility radius to Finsler manifolds,
which is a natural generalization of the original definition ([7]). Given a forward
complete Finsler manifold (M, F), let d denote the general metric induced by F'.
A point ¢ € M is regular for r,(-) := d(p, -) if and only if there exists a unit vector
v € ;M and a n > 0 such that

Tp(Y0(t)) = 1p(70(0)) + 1 -t

for all sufficiently small ¢ > 0, where 7, () := exp,(tv). If p € M is not a regular
point for r,, then it is called a critical point. The contractibility radius cpr is
defined as the supremum of r such that every forward metric ball of radius r
contains no critical points of the distance function from the center. Let S be
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the S-curvature of a volume form and let p(M) denote either the Busemann—
Hausdorff volume or the Holmes-Thompson volume of M. Then we have the
following

Theorem 1.1. Given n and positive numbers k, D, R, J, the class of closed
Finsler n-manifolds (M, F) with Ricyy > —(n — 1)k?, diam(M) < D, cpr > R
and Ap < 4, contains at most finitely many homotopy types.

Theorem 1.2. Given n and positive numbers k, h, D, R, §, the class of
closed Finsler n-manifolds (M, F) with Ricy; > —(n — 1)k%, Sy > (n — 1)h,
diam(M) < D, ey > R and Ap < 6, contains at most finitely many homotopy
types.

Theorem 1.3. Given n and positive numbers i, V', d, the class of closed
reversible Finsler n-manifolds (M, F) with ipy > 4, (M) < V and Ap < 6,

contains at most finitely many homotopy types.

In the Riemannian case, A\r = Ap = 1 and Sj; = 0. Hence, Theorem 1.1,
1.2 and 1.3 imply Yamaguch’s results.

The arrangement of contents of this paper is as follows. In Section 2, we study
the properties of general metric spaces and the generalized Gromov-Hausdorff
distance. In Section 3, we extend Hausdorff dimension to general metric spaces
and discuss the relation between covering dimension and generalized Hausdorff
dimension. In Section 4, we consider general metric spaces which are LGC and
investigate the homotopy types and the convergence of such spaces in the generali-
zed Gromov—Hausdorff topology. On the base of these, we prove Theorem 1.1-1.3
in Section 5.

2. General metric space

To understand how geometric constraints on Finsler manifolds give rise to
topological constraints, we considered general metric spaces in [20]. In this sec-
tion, we continue to study the properties of such spaces. For more details we refer

o [3], [11], [20].

A general metric space is a pair (X, d), where X is a set and d: X x X —
R*T U {00}, called a metric, is a function, satisfying the following two conditions
for all z,y,z € X:

(i) d(z,y) > 0, with equality < z = y;
(i) d(z,y) +d(y, 2) = d(z, 2).
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All the spaces under our consideration are general metric spaces, and they
are simply called metric spaces. In a metric space X we define the forward (resp.
backward) e-ball, ¢ > 0, about z € X to be B} (¢) := {y € X | d(x,y) < €} (resp.
B (e) :={y € X | d(y,x) < €}). A subset U C X is said to be open if, for
each point « € U, there is an forward e-ball about z contained in U. Then we
get the topology on X. We always assume that the metric d of a metric space
(X, d) is continuous with respect to the product topology on X x X. Thus, every
backward e-ball is open and the metric space is a Hausdorff (T»-) space.

The reversibility Ax of X is defined by

d(z,y)

Ax = sup
z,y€X, d(y, I)
TEY

The metric spaces with reversibility 1 are called reversible (metric) spaces.

Let M?® be the collection of compact metric spaces with reversibility < 4.
Given a subset A in a metric space, the diameter of A is defined as diam(A) :=
sup, ,e4 d(x,y). Then we have the following

Lemma 2.1. Given a metric space X € M?, let {U,} be a finite open cover-
ing of X. There exists > 0 such that for each subset A C X with diam(A4) < 7,
A c U, for some .

PrROOF. If not, there would be a sequence of subsets {4;} with diam(A4;) <
1/i such that A; is not contained in any U,. Select a point z; € A4;. By [20,
Theorem 2.11], we can suppose that {z;} converges to a point € X. Then there
exists some Ug such that x € Ug. Since Ug is open, r = d(z, X — Ug) > 0. By
[20, Proposition 2.2], there is N > 0 such that for ¢ > N, d(z,z;) +1/i < r/2.
Hence, for i > N, A; C B} (r/2) C Ug, which is a contradiction. O

Proposition 2.2. Let X,Y be two metric spaces with X € M? and \y < co.
If f : X =Y is a continuous map, then f is uniformly continuous.

PROOF. Given € > 0. For each z € X, there exists 1, > 0 such that
f(Bf(n.)) C Bj[(z) (ﬁ) Since X is compact, there exists finitely many points
T1,..., 2y, such that {B] (n.,)}7_; is an open covering of X. The conclusion now
follows from the lemma above. O

Given a metric space X and two subsets A, B C X, the Hausdorff distance
between A and B is defined by

dp(A,B) :=inf{e: A C BT(B,¢), BC BT(4,¢)}.
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where BT (A,¢) := {z € X : d(A,z) < €} and d(A, B) := inf{d(a,b) : a € A,
b e B}.

Given two metric spaces X, Y in M°. An admissible metric on the disjoint
union XUY is a metric that extends the given metrics on X and Y. A d-admissible
metric is an admissible metric with reversibility < 6. The §-Gromov—-Hausdorff
distance between X and Y is defined as

d%y(X,Y) == inf{dy(X,Y) : 5-admissible metrics on X LIY}.

By [20, Proposition 3.7], (M‘S,d‘SGH) is a pseudometric space. Moreover, if we
consider equivalence classes of isometric spaces, then it becomes a reversible met-
ric space.

A sequence {X,,}2°; C M? converges to a compact metric space X € M? if
d%p(Xn, X) — 0 as n — oo. In this case, we will write X, 22 X and call X
the §-Gromov—Hausdorff limit of {X,,}. First, we have the following observation.

Proposition 2.3. If a sequence {X,,}3°, C M?° converges to a compact
metric space X € M?, then there exists a 6-admissible metricd on Y = U; X; UX
such that (Y, d) is forward complete.

PROOF. Since X; O-GH, X, we can choose a sequence {¢;} converging to 0
such that d; (X;, X) < ¢;. Thus, for each i, there exists a §-admissible metric
d on X U X; with d% (X, X;) < €;. Define a §-admissible metric d on Y by

d(z;, ;) = min{d" (z;,2) + & (v, 7;)}, d(x;,2;) := min{d (z;,2) + d'(z,2;)},
zeX zeX
for all z; € X;, z; € Xj.

Given a forward Cauchy sequence {x,}. If some X; (or X) contains infinitely
many z,, then {z,} must converge to some point z € X; (or x € X) (see [20,
Theorem 2.11]). Hence, we assume that each X; and X contain finitely many
Zo. Then we can choose a subsequence {z,,} of {x,} such that z,, € X,,
and a;  +oo. Since dy(X;, X) < ¢, there exists a sequence {zo,} C X with
d(za;, Ta,) < €q,. Without loss of generality, we can suppose that {z,, } converges

to a point z € X. The triangle inequality yields d(z, z,,;) — 0 as i — +o00. Hence,
{zo} converges to z. O

Moreover, we have the following theorem.

Theorem 2.4. The “metric space” (M°,dSy;) is complete.
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PRrROOF. It suffices to show there exists a convergent subsequence in an arbit-
rary Cauchy sequence {X,,}. Select a subsequence {X;} such that dZ (X;, Xit1)
< 27 for all 4. Then choose d-admissible metrics di i1 on X; U X;4q such that
its Hausdorff distance between X; and X, is less than 27, Now define a metric
di,iJrj on Xz [ Xi+j by

-1

dijiyy(Ti, Tiy5) = o Hg}_ , (E di+k,i+k+1(xi+k,$i+k+1)> ,
i+k i+k k=0
-1

diigj(Tigj, ) = . Hélg . (E di+k,i+k+1(xi+k+laxi+k)> )
+k +k k=0

for all x; € X, wiy; € X;44. Clearly, d; ;4; is a 6-admissible metric on X; U X, ;.
In fact we have defined a J-admissible metric, say d, on Y := L; X;. Let dy denote
the Hausdorff distance on Y induced by d. It is easy to check that dg (X;, X;1;) <
211 for all X, XiJr]' cY.

Let X := {{z;} | i € X; and d(z;,x;) — 0 as i, j — oo}. This space has a
pseudometric defined by d({z;}, {y:}) := lim; 00 d(x;,y;). The definition is well-
defined. One can verify that d({z;}, {y;}) satisfies the triangle inequality and its
reversibility is < §. Define an equivalence relation ~ on X by

{zi} ~{yi} & d{zi}, {y:}) = 0.

Then we have a d-admissible metric on the quotient space X := X / ~ and let X
be the completion of X. Now we can extend the metric on Y to one on X UY
by declaring

d(y, {zy}) = lim d(y,zy), d({zi},y) = lim d(zy.y),

for all y € Y and {zx} € X. It is easy to check that this metric is a d-admissible
metric on X UY. A similar argument to the one given in [15, Proposition 43]
yields lim; o0 d& 5 (Xi, X) = 0. By [20, Theorem 2.11], one can easily show that
X is compact. (Il

The above result in the reversible case is due to PETERSEN (cf. [15], [16]).

By [20, Proposition 3.7], if X,Y € M? satisfy d%;(X,Y) = 0, then X is
isometric to Y. Furthermore, we have the following proposition.

Proposition 2.5. Let {X;} and {A;} be two sequences of metric spaces in
MO with A; € X; for alli. If X; 2= X and A; =555 A, then A is (isometric
to) a subset of X.
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PROOF. We can select a sequence {¢; } converging to 0 such that dZ, ; (X;, X)
< € and d%;(A;, A) < ¢ for all i. Hence, for each 4, there exist d-admissible
metrics df,d" on X; U X and A; LI A, respectively, such that cZ’H (Xi, X) < ¢ and
cfiH(Ai,A) < €;. Let 1; : A; — X; be the injective map. Define a d-admissible
metric d* on A4; L X; by

d'(z,y) = & +d(i(z),y), d'(y,2) = e +d(y, ui(z)), V(z,y) € A x X;.
Then we obtain a sequence of §-admissible metrics {d'} on A LI X, where

inf  (d'(z,2) + d'(z,w) + d'(w,y)),

d'(wy) = _ inf
di(y,z) = zeAmiex(‘Zi(y’ w) + d'(w, z) + d'(z,z)), Y(z,y) € Ax X.

Given a € A. For each i, there are a; € A; and x; € X such that cii(ai, a) < ¢
and d'(z;,1;(a;)) < €;. Thus, we obtain a sequence of points {x;}32, C X. Since
X is compact, there exists a subsequence of {z;} converging to a point z(a) € X.

Let A:={z(a):a € A} C X. By the construction above, it is easy to check
that d%, (A, A) = 0. Then the result follows from [20, Proposition 3.7]. O

Recall the covering Cov(X, €) of a compact metric space X is minimum num-
ber of forward e-balls it takes to cover X. Given an decreasing (possibly discon-
tinuous) function N : (0,8) — (0,00). Let €(N) := {X € M°® : Cov(X,e) <
N(e) for all € € (0,5)}. Then we have the following result (compared [20, Propo-
sition 3.12]).

Theorem 2.6. The class € (N) is compact in the §-Gromov-Hausdorff to-
pology.

PROOF. Step 1: €(N) is precompact.

Given a sequence {X;} C (V) and a positive number €. Since Cov(X;,€) <
N(e) < oo, we can select a positive number M < N(e) such that there is an
infinite subsequence {X,} of {X;} where each X, is covered by exactly M for-
ward e-balls. Denote by x5, s = 1,..., M, the centers of these forward balls in
X,. Since d(z%,2)) < diam X, < (1 +d)eM < (1 + 6)eN(e), using the Can-
tor diagonal procedure, we can obtain a subsequence {X,,} of {X,} such that
{d(xgﬂ ) xgﬁ)}fle converge for all ¢, j. By [20, Proposition 3.8], there exists L > 0
such that 8,7 > L implies d‘éH(Sgﬁ,Sgw) < €, where S, = {z,, M. is a for-
ward e-net of X,,. Thus, the triangle inequality yields d‘SGH(XaB,X%) < 3e.
The conclusion then follows from Theorem 2.4.
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Step 2: € (N) is closed.

Let {X;} C %(N) be a sequence converging to a space X € M. Given
€ > 0, for each 4, there exists a finite forward e-net Sf of X; with £S5 < N(e).
Since N(e) is a decreasing function, {S5} C € (N’), where N’ := NJ,. By
Step 1, {Sf} is precompact and therefore contain a subsequence {S¢} converging
to a space S°€.

Given n > 0, there exists S¢ with d%,(S<,S¢) < 7. Thus, one can select
a d-admissible metric d on S U S€ such that di (S¢S, S¢) < n. Hence, for every
x € S, there exists some z € S with x € B:ﬂ (n). Now we have shown that for
each 1 > 0, there exists a covering {U,} of S€ such that diam(Us) < (14 d)n and
#{Us} < N(e). This implies $5¢ < N (e).

By using Proposition 2.5, one can check that S¢ is a forward e-net of X.
Hence, X € €(N). O

The theorem above in reversible case is due to PETERSEN (see [15], [16]).

3. Generalized Hausdorff dimension

In this section, we recall some definitions and properties of covering dimension
and extend Hausdorff dimension to general metric spaces. See [3], [13], [19] for
details. The covering dimension of a space is said to be < n if for each open
covering, there is a refinement of order < n + 1. The covering dimension of X,
denote by dim(X), is the smallest integer n such that X have covering dimension
<n.

Now, we generalize Hausdorff measure to general metric spaces.

Definition 3.1. Given a (general) metric space X and a non-negative real
number 7, define

“+o0
pl(X) = infz [diam(A4;)]",

where the infimum is taken over all countable covering { 4;} of X with diam(A;)<e
for all 4, and
0 A, =0,
[diam(A4;)]° :=
1 A #0.
Let

W(X) = sup pf (X) = T ().
e>0 e—0

u"(X) is called r(-dimensional) generalized Hausdorff measure of X.



Homotopy finiteness theorems for Finsler manifolds 337

By [19], it is easy to check that " is a (outer) measure. Moreover, we have
the following proposition, whose proof is trivial.
Proposition 3.2. Given a metric space X.
) u"(X) =0 for any r >0 iff X = (.
(i) p2(X)=nif X ={p1,...,pn}
(iii) p°(X) = oo if X is an infinite set.
(iv) If ry < rg, then p™(X) > pm(X). In fact, p™ (X) < oo implies pu™(X) =0,
and 0 < p™(X) implies p™ (X) = +o0.

(i

Definition 3.3. Given a (general) metric space X, the generalized Hausdorff
dimension of X is defined by

dimy (X) :=sup{r:r >0, p"(X) > 0}.

By Proposition 3.2, we have the following corollary.

Corollary 3.4. For each metric space X, u"(X) = 0 for all r > dimy(X)
and p"(X) = +oo for all r < dimp (X).

Proposition 3.5. For each compact metric space (X,d) € M?, dimg(X) >
dim(X).

PROOF. Define a reversible metric d on X by

dN({E, y) = d(SL‘, y) ;— d(y7 LL’) ,

for all z,y € X. Thus, we have

2 - 2 -
1+5d(x,y) <d(z,y)

Hence, for each r > 0,

2V ey < i) < (2 ) (e,
-

Corollary 3.4 then yields dimy ((X, d)) = dimp ((X, d)).
Note that (X, d) is separable (see [20, Corollary 2.12]) and (X, d) is homeo-

morphic to (X, d). Hence, by [13], we have

dim((X,d)) = dim((X, d)) < dimp((X,d)) = dimg((X, d)). O
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The following result is an extension of a result due to PONTRJAGIN and
SCHNIRELMANN (see [17]).

Theorem 3.6. For each metric space X € M?,

dimg (X) < lim inf M.

3.2
e—0+ —loge (3:2)

PROOF. The result is trivial if dimg(X) = 0. Hence, we suppose that
dimp (X) > 0. Given € € (0,1), there exists a covering { B, (¢)}=2V %9 of X.
For each r > 0,

Cov(X,e)
> [diam (B, (¢))]" < Cov(X,e) - [(1+6)e]",

i=1
which implies that

n rlog(1+ 9) n 10g {1 1) (X) < log Cov(X, e).
loge —loge —loge

It follows from Corollary 3.4 that u"(X) = +o0, for r < dimg(X). Hence, for all
r € [0,dimyg (X)),

log 7 X
i inf g#(1+>\)5( ) rlog(l+9)

> 0.
e—0+ —loge log e

which implies (3.2). O

4. LGC spaces

In this section, we consider general metric spaces which are LGC and in-
vestigate the homotopy types and the compactness of such spaces in the o-
Gromov-Hausdorff topology. See [8], [10], [16] for more details on reversible
metric spaces.

A contractibility function p : [0,7) — [0,+00) is a function satisfying: (a)
p(0) =0, (b) p(e) > ¢, (c) p(e) = 0, as e = 0, (d) p is nondecreasing.

A metric space X is LGC(p) for some contractibility function p, if for every
e € [0,r) and x € X, the forward ball B;f () is contractible inside B, (p(¢)). And
X is said to be LGC(n, p) for some integer n > 0, if for each integer k € {0,...,n},
€ €[0,7), * € X and a continuous map f : S¥ — B (¢), there exists an continuous
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map f : D**1 — B} (p(e)) which is an extension of f, where S¥ = 9D**! is the
k-sphere bounding the k + 1-disk D**!. Clearly, if X is LGC(p), then X is
LGC(n, p) for all n.

A map f: X — Y between metric spaces is e-continuous if there exists an
n > 0 such that d(z1,22) < n implies d(f(x1), f(z2)) <e. Amapg: X =Y
between metric spaces is continuous at a subset A C X if foreach x € A and € > 0,
there exists 7 = n(x) > 0 such that g(B} (n)) C B;(m)(e), where B (n) C X.

Given a contractibility function p, define py(e) := p(e) and p;(e) := p(e +
pi—1(e)) for i > 1.

The following lemma is an extension of a result due to PETERSEN (cf. [16]).

Lemma 4.1. Let X and Y be two metric spaces where X € M® and Y is
LGC(n —1,p). Suppose that A C X is a closed subset with dim(X — A) < n and
f: X =Y is a (possibly discontinuous) map satisfying
(i) f is continuous at A,
(ii) f is e-continuous.

If € + pn—1(€e) < 7, then there exists a continuous map g : X — Y with
gla = fla and for all x € X, d(f(z),g(x)) < €+ pn(e).

PROOF. Since f is e-continuous, there exists 7 > 0 such that d(z1,z2) < 7
implies d(f(z1), f(x2)) < e. For each z € X — A, set

r(z) == mm< I d(z’A)> .

1067 108

Note that X is separable. Hence, X — A is a Lindelof space. Since dim(X — A) <
n — 1, the covering { B (r(z))}zcx—a has a countable refinement {U,} of order
< n. The triangle inequality yields

, : 146 1+6
< _— .
diam(U,) < min (10(5 — ld(UouA)) 105 77) , Vo

Let .4 denote the nerve of {Uy} and ® : X — A — .4 be a barycentric map.
Define a map ¢ : X — A4 U A by

T T €A,
(o) = {@(az) re X — A

Denote by dx the metric of X. Define a new metric dx on X by (3.1). Since the
topology of (X,dx) coincides with that of (X, dx), by [12], one can topologize
A U A so that ¢ is continuous.
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We now construct a continuous map g : A4 U A — Y by induction on the
skeleton /O UA,...,. #/"UA= 4 UA.

For each vertex U € N, select a point z, € U, and define §o(Uy) := f(z4)
and go|a := f|a. By (i), go : #°UA — Y is continuous. Moveover, if U,NUg # 0,
then d(zqa,25) < nfor all z, € Uy, xg € Up, which implies d(go(Ua), Go(Ug)) < €

Let Aq,,....a,, denote the k-simplex of .4 spanned by Uy, ..., Uy, if Us, N

N Uy, # 0. Suppose that we have constructed a continuous map gy : A4 *U

A — Y satisfying

(1) grl ysua =i forall 0 <i <k,

(2) for each Ngy.....ons Gu(Loag.....an) C B;(Uai)(pk(e)), forall 0 <i <k.

Thus, for each (k4 1)-simplex A, .. a,., of A, it is easy to check that
k(0. ans1) C ng(U )(e + pr(€)). Since 0Ny, apsy ~ S¥ and Y is
LGC(n — 1, p), there exists an extension g1 : A *T1 U A — Y of g such that

Ik+1(Dag,..anis) C B;;H(U )(pk+1(6)), forall 0 <i<k+1.

Now we obtain a continuous map g(= g,) : & U A — Y such that for each
Dog,...oon € N, §(Da,.. 7%)CBJr (n(e)fora110<z<n Set g :=gout.
Given z € X — A, there is U, such that t(z) is contained in some simplex with
U, as its vertex. Then d(f(z),g(x)) < d(f(x),g(Us)) + d(g(Uys),g o t(x)) <
€+ pn(€). O

Corollary 4.2. Let X € M?® have covering dimension < n and let Y €
M? be LGC(n, p). Suppose f; : X — Y, i = 1,2, are continuous maps with
d(f1, f2) < €/6. If €+ pp(e) < r, then fi is 2¢ + p,11(€)-controlled homotopy
equivalent to f.

PRrROOF. Let Z =[0,1] x X and A = {0,1} x X. The metric d is defined as
dz := dj1) +dx. Thus, (Z,dz) € M?. Since X € M?®, X is a normal compact
space. Hence, dim(Z — A) < n + 1 (cf. [14]). Define a map h: Z — Y by

) filz) (t,z) € {0, ﬂ x X,

folz) ()€ (;1] ‘X,

It follows from Proposition 2.2 that h is e-continuous. Lemma 4.1 then yields a
continuous map H : [0,1] x X — Y such that f; 2 foand d(h, H) < e+ ppt1(e).
It is easy to check that d(f2(x), H(t,z)) < 2€ + pn11(€) and d(f1(z), H(t,x)) <
Q£ 4 i1 (e) for all (t,2) € [0,1] x X. O
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Proposition 4.3. Suppose that X,Y € M?® are LGC(n, p) and have covering
dimension < n. If d%;(X,Y) < ¢/§ and (2(1 + 26)e + 25p,,((1 + 0)€/5)) +
pn((2(1 4+ 20)e 4+ 25p, ((1 4+ 9)e/d))) < r, then X and Y are homotopy equivalent.

PROOF. Since d%,;(X,Y) < €/§, we can select a §-admissible metric d on
X UY such that dy(X,Y) <n < ¢€/d.

We now construct a (possibly discontinuous) map f : X — Y. For each
r € X, there exists y € Y such that d(y,z) < 7 and define f(z) := y. Thus,
d(f,idx) < n, where idx : X — X is the identity map of X. For every two points
x1,x9 € X, if d(1,22) < €/6 — 1, then

(1+06)c

d(f(z1), f(22)) < d(f(z1), 1) 4 d(21, 22) + d(22, f(22)) < 5

Lemma 4.1 now yields a continuous map f : X — Y with d(f, f) < % +
pn(%). Hence, d(idy, f) < % + pn(%). Similarly, one can obtain a
continuous map ¢ : Y — X with d(idy, g) < (H(?&)E + pn((l?)e). Thus, for each
reX,

d(z,go f(z)) <d(z, f(x)) +d(f(z),go f(x)) <2 {(1‘225)6 + o ((1 -;5)6)] .

It follows from Corollary 4.2 that idx ~ g o f. Likewise, idy ~ fog. O

From above, we have the following results for LGC general metric spaces.
In the reversible case, these results are due to GROVE, PETERSEN and WU (see
[10], [16]).

Theorem 4.4. Let {X;} be a sequence in (M°,d%,;) converging to X in the
0-Gromov—-Hausdorff topology. If X; is LGC(n, p) for all i, then X is LGC(n, p)
as well.

PRrROOF. Since X; o-CGH, X, we can choose a sequence {¢;} with ¢; N\, 0 and
d%(Xi, X) < €/5. By Proposition 2.3, there exists a §-admissible metric d on
Y :=1; X; U X such that (Y,d) is forward complete.

Given a point p € X, € > 0 and a map f : S* — B (¢) C X for 0 <k < n.
Since di (X, X;) < €;/9, there exists p; € X; with d(p;,p) < €;/5. Select n < e
such that f(S¥) C Bjf(n). Using the argument in the proof of Proposition 4.3,
one can find a continuous map f; : S¥ — X; such that d(f, f;) < % +
pn((l';&) — 0, as ¢ — +o00. For simplicity, set ¢; := (1+§6)6i + pn((l—i_;)ei).

From above, we obtain a sequence of points {p; } and a sequence of continuous

maps {f; : S¥ — X;} with d(p;, p) < 155 and d(f, fi) <e&;. Thus, thereis N >0
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such that (3+68)eny +pr((3+0)en) < rand i > N implies f;(S*) C B (n). Since
Xy is LGC(n, p), there is an extension fy : D*™ — Bf (p(n)) of fu.

Now, we extend f over ID)’“‘Irl inside B;f (p(n)).

Since C{H(XNa Xni1) < 1+25, for each ¢ € Int(D*+1), there exists y; € Xn 11
with d(ye, fn (1)) < 225, Define a map gy41 : DFY!1 — X1 by

1426
fna(t) tesk,
m t € Int(D*+1).

gn+1(t) = {

Using Proposition 2.2 and the triangle inequality, one can verify that gy is
(3 + d)ey-continuous map.
By Lemma 4.1 and (3+0)en +pr((3+0)en) < r, we obtain a continuous map

fN+1 Dk X N1 such that d(gN+1 fN+1) < (3 +d)eny + pk+1((3 +d)en)
and fyiilss = gniilss = fvi1. Hence, fyy1 is an extension of fyii. And

d(fn,gn+1) < (14 8)en implies
d(fn, fve1) < d(fn,gn+1) +d(gnsn, fyver) < (44 20)en + prra((3 + 6)en).
Using d(px41,px) < (14 8)ey and fy(D¥1) € B (p(n)), we obtain
I @) € By (p(n) + (5+ 38)en + prya (3 + 6)en)) -

PN+1
After possibly passing to a subsequence of {X;}, we can suppose that

—+oo

S (5 + 20)e, + prs(3+ 0)ey)) < minfe —m,7, ple) — p(n)}-
s=N

Then we can construct inductively the extensions

fi: DM — B (p(n) + ) (5+30)es + prera((3+ 6)53))>

s=N
of fi : S¥ — B} (n) for all i > N. In particular, for j >4 > N,
P

Z (44 20)es + pr+1((340)es))

Proposition 2.3 together w1th [20, Theorem 2.16, Theorem 2.15] implies that the
sequence { fs}s>n converges uniformly to a continuous map f:DF 5 Y. The
proof of Proposition 2.3 yields f(D**!) ¢ X. Since fi|sx = f; and f; = f, f is
an extension of f. From above,

FOR) € B (o) + 30 (5 28020 + puaa(3-+9122)) ) € B ple)

s=N
which implies that X is LGC(n, p). O



Homotopy finiteness theorems for Finsler manifolds 343

Theorem 4.5. Given a covering function N : (0,a) — (0, 00) with
limsup,_, o+ €"N(€) < oo and a contractibility function p : [0,7) — [0,00). Then
the class

€(N,n,p):={X € M°: X is LGC(n, p), Cov(X,e) < N(e) for all ¢ € (0,)}

is compact and contains only finitely many homotopy types.
PRrROOF. Proposition 3.5 together with Theorem 3.6 furnishes

1 X log N
dim X < dimpg(X) < limsup log Cov(X, €) < 1imsup0g7(€) <n

e—0+ —loge e—0+ —loge
for each X € ¥ (N,n,p). The conclusion now follows from Theorem 2.6, The-
orem 4.4 and Proposition 4.3. ([

Corollary 4.6. Fix a covering function N : (0,«) — (0, 00) with
limsupe — 07" N(e) < oo and a contractibility function p : [0,7) — [0,00). The
class

€ (N,p) :={X € M°: Xis LGC(p), Cov(X,e) < N(e) for all € € (0, )}

contains only finitely many homotopy types.

5. Finsler manifold

In this section, we show Theorem 1.1-Theorem 1.3. We recall some definitions
and properties of Finsler manifolds first. See [2], [22] for more details.

Let (M, F) be a (connected) Finsler manifold with Finsler metric F' : TM —
[0,00). Let (z,y) = (2%, y') be local coordinates on TM, and 7 : TM — M be
the natural projection. Define

102F%(z,y) F O3F?(z,y)
i (1 9) = 5 dy' oy’ (@9) = 7 Ay Oyl Oyk
(O Oma O
RELE oxk ~ Oxi oxt )’
i i i i r s i yi
Nj = (’ijéj - Ajk’sté ¢ )F7 0= ok

The Chern connection is defined on the pulled-back bundle 7#*T M and its forms
are characterized by the following structure equations:
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(1) Torsion freeness: dz? A wj— =0;

(2) Almost g-compatibility: dg;; - gkj“{f — girw} :‘2%((@’“ + NFdat).
From above, it’s easy to obtain wj = I‘;kdxk, and e =T

The curvature form of the Chern connection is defined as

dy' + Nldz®

; ; ; 1
— k _.
O} = dw) —wj Nwy, =: &

j 2 ;kldxkAdxl +P;kld$k A
Given a non-zero vector V € T, M, the flag curvature K(y,V) on (z,y) € TM\0
is defined as o -
V' Rjiy'V
K(y,V):= y ,
9y 9) gy (V,V) = gy (y, V)]?
where Rji; := gist o+ And the Ricci curvature of y is defined by

Ric(y) := Z K(y,ei),

where eq, ..., e, is a gy-orthonormal base on (z,y) € TM\0.
Let du be the volume form on M. In a local coordinate system (x?), express
dp = o(x)dxt A--- Ada™. For y € T, M\0, define the distortion of (M, F) as

o Vetlgii(@,y)
T(y) :=1 g—a(x) )

And we define S-curvature S as

8(y) = IGO0

where 7(t) is the geodesic with 4(0) = y.
By [2], [24], the admissible paths of a Finsler manifold (M, F) are all Lipschitz
continuous paths v : [a,b] — M, and the length structure

b
dm@:M/me

where the infimum is taken over all Lipschitz continuous paths v : [a, ] — M with
~v(a) = p and v(b) = q. Then d is an intrinsic metric and the manifold topology
coincides with the metric topology.

The reversibility A\p of (M, F') is defined by ([18])

F —
T it O
(x,y)€TM\0 F(x,y)



Homotopy finiteness theorems for Finsler manifolds 345

Clearly Ap > 1 and Ap = 1 if and only if F is reversible. From above, it is easy
to see that if A\p < 0o, then Ay < Ap, where A4 is the reversibility of (M, d).
According to [6], the uniformity constant of (M, F) is defined by

gx (Y, Y)
A = su v e—
v X,Y,ZIG)SM gz(Y,Y)

Clearly, A\ < v/Ar and Ap =1 if and only if F is Riemannian.

Now we extend the concept of critical point of distance function to Finsler
manifolds. We refer to [7], [15] for more details in the Riemannian case. Let
(M, F) be a forward complete Finsler manifold. Given a point p € M, we define

rp(+) :=d(p,-) and
I'p(z) :={w € S;M : there is a unit speed minimal geodesic v : [0, 7r,(z)] — M,
such that v(0) = p, y(rp(z)) =z, ¥(rp(x)) = w}.

In the case where 7, is smooth at =, we have I'y,(z) = {Vr,(x)}. At other points,
I'p(z) may contain more vectors (cf. [2], [22]).

Definition 5.1. r, is noncritical, or regular, at x if there exists a vector v €
S, M, such that
guw(w,v) >0, YweTp(z). (5.1)

When F' is Riemannian, (5.1) holds if and only if I',(x) is contained in an
open hemisphere of S, M, which is the definition of regular point in Riemann
geometry (cf. [7], [15]).

Remark 1. A simple argument based on the first variation of arc length
formula (see [2]) and Proposition 5.3 shows Definition 5.1 is equivalent to the
following.

A point ¢ € M is regular for r, if and only if there exists a unit vector
v € S¢M and a n > 0 such that

rp(70(t)) 2 1p(70(0)) + 1 - 8

for all sufficiently small ¢ > 0, where 7, (t) := exp,(tv).
Firstly, we have the following Finsler version of Berger’s lemma.

Proposition 5.2. Ifr, has a local maximum at q, then q is a critical point.
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PROOF. Select an arbitrary C'-curve ~(t) : [0,e] — M such that f(s) =
rp ©y(s) has maximum at ¢ = y(0). For each unit speed minimal geodesic ¢(s)
from p to ¢, one can construct a variation ¢ : [0,¢] x [0,7,(q)] = M such that
c(s,0) = p, ¢(0,t) = ¢(t) and ¢s(t) = ¢(s,t) is a minimal geodesic from p to v(s).
By the first variation formula, we obtain

0> dii Les) = g2(é,4(0)),
s=0

which implies that ¢ is a critical point. O

Define Gr,(z) := {v € T, M : gy(w,v) > 0,Vw € T'y(x)}. Given a subset
U C M, a vector field X is call gradient-like for r, on U, if X (z) € Gr,(x) for all
zeU.

Proposition 5.3. Let (M, F) and ry(-) = d(p,-) be as above. Then
(1) UgekTp(x) is compact, for any compact set K C M.
(2) The set of regular points is open in M.
(3) Grp(x) is convex.
(4) If U is an open set of regular points, then there exists a unit gradient-like
vector field X on U. Furthermore, given a compact subset K C U, there
exists a small positive constant e such that for each integral curve «y : [a, b] —
K of X,

rp(y(t)) — rp(y(s)) > (t — s) cos (g - e) , Va<s<t<b.

PROOF. (1) Let {w,} be a sequence of unit vectors in Uge xI'p(¢q) converging
to some unit vector w. Set z, := m(w,) and x := 71 (w), where m : SM — M
is the natural projection. Thus, for each w,, there exits a unit speed minimal
geodesic oy, : [0, rp(xy)] — M from p to x,, with &, (rp(2y,)) =wy. Since {z,} C K,
there is a constant C' such that Lp(o,) = rp(x,) < C for all n. Set v, :=
6,,(0). Then o, (t) = exp,(t - v,). Without loss of generality, we assume {vy,}
converges to some vector v. Thus, by the generalized Arzeld—Ascoli theorem
([21, Theorem 6.1]), o(t) = exp,(t-v), 0 < t < rp(x), is the limit of o,,. Since
Tp(Tn) <y, Tp(x) <y Hence, o(t) = exp,(t-v), 0 <t <rp(x) is a unit speed
minimal geodesic from p to z. Note that

w= lim w, = lim (ex
n—oo n nﬁoo( pp)*rp(mn)'vn

Up = (epr)* (

rp(z)-v

Thus, w € T'y(x), which implies Uge xT',(q) is closed and therefore compact.
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(2) Let {x,} be a sequence of critical points with =, — x. We show z is a
critical point as well. For each vector v € S, M, we can choose a sequence of unit
vectors {v,} such that v, € S;, M and v,, — v. By Definition 5.1, for each n,
there exists w, € I'y(xy,) with gy, (wy,v,) < 0. Without loss of generality, we
assume that w,, converges to some unit vector w € S, M. Thus, g, (w,v) <0. It
follows from (1) that w € I'y(z). Therefore, x is a critical point.

(3) Given vy, v2 € Gryp(x) and t € [0,1]. For each w € I'y(z), we have

gw(w, (1 — t)vy + tvg) = (1 — t) g (w,v1) + tgw(w, va) > 0,

which implies that (1 — t)vy + tvg € Gry(x).

(4) For each point x € U, there exists v € Gry(z). It follows from the
proof of (2) that one can obtain a gradient-like vector field V, on a small open
neighborhood U, of = by extending v. Now, let {U;} be a locally finite collection
of U,’s and {p;} be a corresponding partition of unit. Define a vector field on U
by Y =3 p;V;. It follows from (3) that X = Y/F(Y) is also gradient-like.

By (1), there exists a small constant € > 0 such that for any z € K

guw(w, X) > cos (% — e) , Yw eTp(x). (5.2)

Set A\(K) := sup,cx A(r) = sup,cgx F'(—y) < oo. Let 7 be a integral curve
for X. Clearly,

d(r}/(tl)f}/(tZ)) < )‘(K) : |t1 - t2|7 Vtth € [a7b]'

This implies that r, o v is differentiable almost everywhere. By the proof of
Proposition 5.2 and (5.2), we have

%rp o~(t) > cos (g - e) ,

for almost every ¢ € [a, b]. O
From above, we have the following important lemma.

Lemma 5.4. Let (M, F') and ry(-) be as above. Suppose that all the points in
—1

7, ' (la, b)) are regular. Thenr,

(=00, b]) deformation retracts ontor, *((—oc0, a]).

PRrOOF. Note that r,'([a,b]) is compact. Thus, by (Proposition 5.3, (2)),
there exist two bounded open subsets Q and U of M such that U is a set of regular

points and
ry ([a,b]) cQCQCU.
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(Proposition 5.3, (4)) furnishes a unit gradient-like X on U. Since p ¢ U, we can
assume that there is a small open subset O such that r,*((—o0,a]) = U D O.
Choose a cut-off function ¢ : M — [0, 1] such that 9| = 1 and ¢|y -y = 0.
Now, we define a vector field V on M by V(z) = ¢(z) - X (z), for all x € M. Let
¢+ denote the flow for V. For each z € r;l([a, b)), there exists a maximum 7, > 0
such that ¢¢(z) € Q for ¢ € [—n,,0]. Note that ¢;(x) is an integral curve for X
for ¢ € [—n,,0]. By (Proposition 5.3, (4)), one can select a constant € > 0 such
that

ro(pi(@)) = rplpa(@) > (t=5)-cos (F =€) Vom<s<t<0 (53)

Denote by t, € [0,n,] the first time on ¢_;(x) to hit r,'(a). Since € is
independent of x (see Proposition 5.3, (4)),

b,
0<t, < ——"— Vaer, (ab). (5.4)

- _cos(gfe)

We now claim that the function
t: r;l([a,b]) =R, i,

is continuous. If ¢, is discontinuous at some point ¢, then there would be a
constant § > 0 and a sequence of points {g,} C r,'([a,b]) such that ¢, — ¢
and |tg, —tq] > . (5.4) implies that there exists a convergent subsequence of
{tq.}. Without loss of generality, we suppose that {4, } converges themselves
to 7. Thus,

p-7(q) = lim oy, (g0) €75 (a).
Since {@g.(—t, 1(qn) 1 5 € [0,1]} C r;([a,b]),
{o—1(q) :t€[0,T]} = {ps.—m(q) : s €0,1]} C " ([a,b]). (5.5)

It follows from (5.3) and (5.5) that 7 is first time for which ¢_7(q) € 7, '(a),
ie., T =t,;. We get a contradiction.
Now, we define the retraction p : 7! ((—00,b]) = 7, ' ((—00,a]) by

T x €1, ((—00,d]),
S(z) = P O
() {w—m(z) v e ([a,8]).

Remark 2. Given a compact subset A C M. Let ya(:) := d(A,-). Similar
arguments show that Proposition 5.2, Proposition 5.3 and Lemma 5.4 are still
true for r4(-).
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The contractibility radius c, at p is defined by
¢p = inf{ry(z) : x is a critical point of r,},

It is easy to see that a critical point of r, lies in the cut locus of p. Hence, ¢, > i,,.
Define the contractibility radius cpr of (M, F') by car = infear cp.
Lemma 5.4 then yields the following theorem, whose proof is trivial.

Theorem 5.5. Let (M, F) be a forward complete Finsler manifold with
ey > R > 0. Then (M, F) is LGC(p), where p : [0, R) — [0, R) is the identity
map.

To prove Theorem 1.1, we need the following lemma ([27, Remark 3.1])

Lemma 5.6 ([27]). Let (M, F,du) be a forward Finsler manifold, where du
is an arbitrary volume form on M. Suppose that Ric > (n — 1)k and a < 7 < b,
where T is the distortion of du. Then for each p € M, we have

u(By (1)) S ga—b o Sp(t)dt
n(By (R)) ~ HanL(tydt’

for any 0 < r < R.

Recall the capacity Cap(X,¢€) of a compact metric space X is the maximum
number of disjoint forward e/2-balls in X. Then we have the following

Theorem 5.7. Given n and positive numbers k, D, R, 6, the class of closed
Finsler n-manifolds (M, F) with Ricyy > —(n — 1)k?, diam(M) < D, cpr > R
and Ap < 6, contains at most finitely many homotopy types.

PROOF. Given a Finsler manifold (M, F') satisfying the above assumptions.
By [25], we have

maxyeg, m det gi; (z,y)

< 5" 57n/2 < Cn—1 < 577./2
minyes, v det gi;(z,y) 7 B ’

- ISIZV[ dvz(y)
for each z € M. Let Tyt denote the distortion of Holmes—Thompson volume
form dpgp. Thus, 6~ < e™#7W) < §" for all y € SM.

Given any € > 0. Since M is compact, there exists only finitely many disjoint
forward e-balls inside M. Suppose B (e), ..., B (€) are disjoint. Let B (e) be
the forward ball with the smallest Holmes-Thompson volume. Clearly, By (D) D
B (e) for all 1 <4 < k. Hence, it follows from Lemma 5.6 that

< puT (B3, (D)) < §2n foD Sinhnil(kt)dt
= pur(Bi, () ~ N sinh™ ! (kt)dt
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D _. n—1
This implies that Cap(M,2¢) < N(e), where N(e) := 52”%. Note

that Cap(M, 2¢) > Cov(X,2v/d¢) (see [20, Proposition 3.11]). Now the conclusion
follows from Corollary 4.6 and Theorem 5.5. ]

Likewise, the proof of [20, Theorem 6.3] together with Theorem 5.5 and
Corollary 4.6 furnishes the following theorem.

Theorem 5.8. Given n and positive numbers k, h, D, R, §, the class of closed
Finsler n-manifolds (M, F) with Ricy > —(n—1)k?, Sy > (n—1)h, diam(M) <
D, cpy > R and Ap < 6, contains at most finitely many homotopy types.

Theorem 4.5 implies that every limit point of the class of Finsler manifolds
satisfying the assumptions of Theorem 5.8 (or Theorem 5.7) is a LGC space. The
uniform upper bound on reversibility (or uniform constant) is very important to
the convergence as the following example shows.

Ezample 1 ([23], [18]). Consider a sequence of compact Finsler 2-manifolds
{(M;, F;)}, where M; = S? and in geodesic polar coordinates (r,¢) € (0,7) x
[0, 27],

\/(1 — €Zsin? r)dr? + sin® rdp? — ¢; sin® rdg
Fi = , € =€ .
1 —ésin’r

Note that F; is defined on S? (see [23]). It follows from [23] that Ky, = 1 and
Sar; = 0, where Sy, is the S-curvature of the Busemann-Hausdorff volume form.
By [18, Theorem 11.1], we have m = diam(M;) > cpy, > ip, = 7 and

l+e i
\/AiZ}\i:ﬁiel/lOO, aS’l:*)+OO,

where A; is the the uniform constant and \; is the reversibility of F;.

Thus, {(M;, F;)} are LGC spaces and satisfy all the conditions of Theorem
5.8 (or Theorem 5.7) except the reversibility (or uniform constant) condition. But
(S?, F,) is not a metric space.

In the Riemannian case, Theorem 5.7 and Theorem 5.8 are due to YAMAGU-
cHI (cf. [26]).

Let dp denote either the Busemann—Hausdorff volume form or the Holmes—
Thompson volume form. In [27], we showed the following proposition, which is
an extension of a result due to CROKE [5].
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Proposition 5.9 ([27]). Let (M, F) be a closed reversible Finsler n-manifold.
For anype M and 0 <r <r, (orr <ip/2), we have

C™(n,Ar) ,
p(By(r) = A
n
where C(n,Ap) : o=t and ¢, := Vol(S").

- A;fm+5)/2(c"/2)1_1/"

Then we obtain the following finiteness theorem, which is an extension of
[26, Corollary 2].

Theorem 5.10. For any n and positive numbers i, V., the class of closed
reversible Finsler n-manifolds (M, F) with injectivity radius ip; > i, Ap < § and
w(M) <V, contains at most finitely many homotopy types.

PROOF. Since ¢y > iy > ¢, (M, F) is LGC(p), where p is the identity map
of [0,4). By Proposition 5.9, u(By(e)) > C(n,d)e™ for all p € M and € < i/2.
Since Cov(M,¢€) < Cap(M,e),

N(M) —C'(n e
Cov(M,e) < Cln, (/2" C'(n,8,V)e ™.

Define the covering function N(e) := C’(n,d,V)e ™, € € (0,i/2). The conclusion
now follows from Corollary 4.6. (]
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