
Publ. Math. Debrecen

83/3 (2013), 353–358

DOI: 10.5486/PMD.2013.5528

On fixed point of a Ljubomir Ciric quasi-contraction mapping
in generalized metric spaces

By LULJETA KIKINA (Gjirokastra) and KRISTAQ KIKINA (Gjirokastra)

Abstract. The aim of this paper is to present a correct proof of the Ciric’s theorem

in generalized metric spaces presented by B. K. Lahiri and P. Das in [8].

1. Preliminaries

In 2000 Branciari [1] introduced the concept of generalized metric spaces

(gms) where the triangular inequality of a metric space has been replaced with

the tetrahedral inequality:

Definition 1.1 ([1]). Let X be a set and d : X2 → R+ a mapping such that

for all x, y ∈ X and for all distinct points z, w ∈ X, each of them different from x

and y, one has

(a) d(x, y) = 0 if and only if x = y,

(b) d(x, y) = d(y, x),

(c) d(x, y) ≤ d(x, z) + d(z, w) + d(w, y) (Tetrahedral inequality).

Then d is called a generalized metric and (X, d) is a generalized metric space

(or shortly gms).

The following example shows that: in a gms, contrary to the case of a metric

space, the “open” balls B(a, r) = {x ∈ X : d(x, a) < r} are not always open

sets and, moreover, the generalized metric d is not always necessarily continuous
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with respect to its variables. Also, the generalized metric space is not always a

Hausdorff space and a convergent sequence {xn} in gms is not always a Cauchy

sequence. In these circumstances, not every theorem of fixed points for metric

spaces can be extended in gms as well. Even in the cases it may be done, the

proof of theorem is more complicated and it may require additional conditions.

Example 1.2. Let X =
{
1− 1

n : n = 1, 2, . . .
}∪{1, 2}. Define d : X×X → R

as follows:

d(x, y) =





0 for x = y

1

n
for x ∈ {1, 2} and y = 1− 1

n
or y ∈ {1, 2} and x = 1− 1

n
, x 6= y

1 otherwise

Then it is easy to see that (X, d) is a generalized metric space and is not a

metric space because it lacks the triangular inequality:

1 = d

(
1

2
,
2

3

)
> d

(
1

2
, 1

)
+ d

(
1,

2

3

)
=

1

2
+

1

3
=

5

6
.

Note that the sequence {xn} = {1− 1
n} converges to both 1 and 2 and it is

not a Cauchy sequence: d(xn, xm) = d(1− 1
n , 1− 1

m ) = 1, ∀n,m ∈ N .

Since B(1, r) ∩ B(2, r) 6= φ for all r > 0, the (X, d) is not a Hausdorff

generalized metric space.

The function d is not continuous distance in a sense presented in [1], since

although limn→∞
(
1− 1

n

)
= 1, we have 1 = limn→∞ d

(
1− 1

n ,
1
2

) 6= d
(
1, 1

2

)
= 1

2 .

In the papers [1], [3], [4], [8], the properties of metric spaces mentioned above,

are considered true for gms too which consequently resulted in incorrect proofs.

For example, although the generalized distance d may be not continuous, the

proof of the main theorem in [8] is done considering d to be continuous in two

moments:

1. At last of page 593, where with m → ∞ in (5), the inequality (7) is

obtained and

2. In the beginning of page 594 where with n → ∞ the following inequality

is obtained

d(Tu, u) ≤ qd(Tu, u).

In the following section we present a correct proof of the Ciric’s quasi-

contraction principle in a generalized metric space presented by B. K. Lahiri

and P. Das [8].
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2. Ciric’s quasi-contraction principle in a generalized metric space

Definition 2.1 ([8]). A mapping T : X → X where X is a gms is said to be

a quasi-contraction if and only if there exists a number q, 0 ≤ q < 1 such that

d(Tx, Ty) ≤ qmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} (1)

hold for all x, y ∈ X.

Theorem 2.2 ([8]). Let T : X → X a quasi-contraction on X((X, d) is a

gms) and let X be T -orbitally complete. Then

(a) T has a unique fixed point α in X,

(b) limn→∞ Tnx = α, for every x ∈ X and

(c) d(Tnx, α)) ≤ qn

1−q max{d(x, Tx), d(x, T 2x)}, for all n ∈ N .

Proof. The proof is the same as in [8] until the following inequality is

obtained:

d(Tnx, Tmx)) ≤ qn

1− q
max{d(x, Tx), d(x, T 2x)}. (2)

Then it must be continued as follows:

We divide the proof into two cases:

Case I : Suppose xm = xn for some m,n ∈ N,m 6= n. Let m > n. Then

Tmx = Tm−nTnx = Tnx i.e. T kα = α where k = m − n and Tnx = α. Now, if

k > 1, then we have α = T kα = T rkα, r ∈ N and by (2), we get

d(α, Tα) = d(T kα, T k+1α) = d(T rkα, T rk+1α) = d(T rk+nx, T rk+n+1x)

≤ qrk+n

1− q
max{d(x, Tx), d(x, T 2x)}, ∀r ∈ N.

Since limr→∞ qrk+n = 0, d(α, Tα) = 0. So Tα = α and hence α is a fixed point

of T .

Case II : Assume that xn 6= xm for all n 6= m. Then {xn} = {Tnx} is a

sequence of distinct points. By (2), we have

d(xn, xn+m) = d(Tnx, Tn+mx) ≤ qn

1− q
max{d(x, Tx), d(x, T 2x)}.

Therefore,

lim
n→∞

d(xn, xn+m) = 0. (3)

It implies that {xn} is a Cauchy sequence in X. Since (X, d) is T -orbitally comp-
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lete, there exists a α ∈ X such that

lim
n→∞

xn = α. (4)

We now prove that the limit α is unique. Suppose on the contrary that lim
n→∞

xn =

α′ also where α′ 6= α.

Since xn 6= xm for all n 6= m, there exists a subsequence {xnk
} of {xn} such

that xnk
6= α and xnk

6= α′ for all k ∈ N . Without loss of generality, assume that

{xn} is this subsequence. Then, by tetrahedral inequality, we obtain

d(α, α′) ≤ d(α, xn) + d(xn, xn+1) + d(xn+1, α
′).

Letting n tend to infinity we get d(α, α′) = 0 and so α = α′.
Let we prove now that α is a fixed point of T . In contrary, if α 6= Tα, then

there exists a subsequence {xnk
} such that xnk

6= Tα and xnk
6= α for all k ∈ N .

By tetrahedral inequality, we obtain

d(α, Tα) ≤ d(α, xnk−1
) + d(xnk−1

, xnk
) + d(xnk

, Tα).

Then, if k → ∞, we get

d(α, Tα) ≤ lim
k→∞

d(xnk
, Tα). (5)

From (1),

d(xn, Tα) = d(Txn−1, Tα)

≤ qmax{(d(xn−1, α), d(xn−1, Txn−1), d(α, Tα), d(xn−1, Tα), d(α, Txn−1)}
= qmax{(d(xn−1, α), d(xn−1, xn), d(α, Tα), d(xn−1, Tα), d(α, xn)}.

Letting n tend to infinity, by limn→∞d(xn, Tα) = limn→∞d(xn−1, Tα), we get

lim
n→∞

d(xn, Tα) ≤ qmax{(0, 0, d(α, Tα), lim
n→∞

d(xn−1, Tα), 0} ≤ qd(α, Tα). (6)

From (5) and (6),

d(α, Tα) ≤ lim
k→∞

d(xnk
, Tα) ≤ lim

n→∞
d(xn, Tα) ≤ qd(α, Tα).

Since 0 ≤ q < 1, we have d(α, Tα) = 0. So α is a fixed point of T .

Let we prove now the uniqueness (for case I and II in the same time). Assume

that α′ 6= α is also a fixed point of T . From (1) we get

d(α, α′) = d(Tα, Tα′) ≤ qmax{(d(α, α′), 0, 0, d(α, α′), d(α′, α)} ≤ qd(α, α′).
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Since 0 ≤ q < 1, we have α = α′. So we have proved (a) and (b). By tetrahedral

inequality and by (2) we obtain

d(xn, α) ≤ d(xn, xn+m) + d(xn+m, xn+m+1) + d(xn+m+1, α)

≤ qn

1− q
max{d(x, Tx), d(x, T 2x)}+ d(xn+m, xn+m+1) + d(xn+m+1, α).

Letting m tend to infinity, we obtain the inequality (c). This completes the proof

of the theorem. ¤

Remark 1. The false properties of generalized metric spaces were first ob-

served by Das and Dey ([5], [6]) where appropriate examples were given and in

[5] a general fixed point theorem was proved without the false assumptions. Also

these facts were observed independently by Samet [11] and then [9] and also by

Sarma, Rao and Rao ([12]) who proved the fixed point theorem by assuming

that the generalized metric space is Hausdorff.
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