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Homogeneous summands of exponentials

By FRANK ZORZITTO (Waterloo)

Introduction

As usual C denotes the complex numbers, Z the integers, and T the
unit circle. Let n be a positive integer, Zn the group of residues modulo
n, and ω a primitive n’th root of unity.

According to [3, Th. 3.1], any function f : C→ C is uniquely the sum
of functions, f =

∑
j∈Zn

fj , such that

fj(ωx) = ωjfj(x) x ∈ C and j ∈ Zn .

Since ωn = 1, no confusion results from writing ωj even if j ∈ Zn. The
summand fj is said to be of type j. For instance, with n = 2, this de-
scribes the decomposition of a function into its even and odd parts. If
f is entire with series representation f(x) =

∑∞
n=0 anxn, then fj(x) =∑

k≡j (mod n) akxk, where x ∈ C and j ∈ Zn.
An exponential is a function f : C→ C such that

(1) f(x + y) = f(x)f(y) x, y ∈ C .

The type j summands of an exponential satisfy the system of equations

(2) fj(x + ωy) =
∑

k∈Zn

ωj−kfk(x)fj−k(y) x, y ∈ C, j ∈ Zn .

Furthermore it was demostrated in [3, Th. 3] that any n–tuple of functions
(fj)j∈Zn , satisfying (2), arises from a unique exponential f according to

(3) fj(x) =
1
n

∑

k∈Zn

ωjkf(ω−kx) x ∈ C, j ∈ Zn .
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In this note we consider a situation which is the analogue of the one
above when n is replaced by ∞. Here Zn gets replaced by Z, and the n’th
roots of unity by T . Finite sums become absolutely convergent series.

Homogeneous summands

It seems natural to say that a function f : C → C is absolutely
decomposable into homogeneous summands provided, for each integer n,
there is a function fn : C→ C such that

(4) fn(σx) = fn(x)σn σ ∈ T , x ∈ C
and

(5) f(x) =
∑

n∈Z
fn(x) absolutely x ∈ C

The set of such f will be denoted by D.

Proposition 1. A function f belongs to D if and only if, for each
positive real r, the function f ·r : T → C, given by f ·r(ξ) = f(rξ), ξ ∈ T ,
has absolutely summable Fourier coefficients.

Proof. If f in D decomposes as f =
∑

n∈Z fn, then

(f · r)(ξ) =
∑

n∈Z
fn(rξ) =

∑

n∈Z
fn(r)ξn r > 0, ξ ∈ T .

Since this series converges absolutely, the values fn(r) give the absolutely
summable Fourier coefficients of f · r.

Conversely suppose for each r > 0 that f · r has absolutely summable
Fourier coefficients (fn(r))n∈Z. If x ∈ C and x 6= 0, then x = rξ for a
unique r > 0 and unique ξ in T ; and

f(x) = f(rξ) = (f · r)(ξ) =
∑

n∈Z
fn(r)ξn

with the convergence absolute. For every integer n define fn : C → C by
fn(x) = fn(r)ξn when x = rξ, r > 0, ξ ∈ T ; and by fn(0) = δ0,nf(0),
where δ is the Knonecker delta. Each fn satisfies (4), and f =

∑
n∈Z fn

as in (5). Thus f ∈ D.

The above proposition gives the recipe for constructing all possible
decomposable functions. Because each f · r is continuous, it also implies
that each f in D, restricted to any circle centred at the origin, must be
continuous.



Homogeneous summands of exponentials 179

Proposition 2. If f ∈ D, then the homogeneous summands of f are
unique.

Proof. It suffices to see that the zero function 0 has a unique de-
composition. If 0 =

∑
n∈Z fn absolutely with fn homogeneous, then∑

n∈Z fn(r)ξn = 0 for every r > 0 and ξ in T . This forces fn(r) = 0
due to [2, Sec. 6.1], and thus fn(x) = 0 when x 6= 0. When x = 0 the
requirement fn(0) = fn(σ0) = fn(0)σn, for each n in Z and σ in T , yields
fn(0) = δ0,n0(0) = 0. Thus the homogeneous summands for the zero
function must all be zero.

The space `1 = `1(Z) of absolutely summable complex bilateral se-
quences is a commutative algebra under convolution:

(xn)n∈Z ∗ (yn)n∈Z =

(∑

k∈Z
xkyn−k

)

n∈Z
(xn)n∈Z, (yn)n∈Z ∈ `1 .

The set F of all maps C→ `1 inherits this algebra structure under point-
wise operations. In particular for F,G : C→ `1 in F the product F ∗G is
given by

(F ∗G)(x) = F (x) ∗G(x) x ∈ C .

Each F in F has component maps fn : C→ C, i.e. F (x) = (fn(x))n∈Z, x ∈
C. The set A of those F such that their components fn satisfy (4) consti-
tutes a subalgebra of F . To see this, let F = (fn)n∈Z, G = (gn)n∈Z ∈ A,
and let H = F ∗ G. If x ∈ C and H(x) = (hn(x))n∈Z, then hn(x) =∑

k∈Z fk(x)gn−k(x). For σ in T

hn(σx) =
∑

k∈Z
fk(σx)gn−k(σx) =

∑

k∈Z
fk(x)σkgn−k(x)σn−k

=

(∑

k∈Z
fk(x)gn−k(x)

)
σn = hn(x)σn .

Thus H ∈ A.

Proposition 3. Under pointwise addition and multiplication the set
D of all decomposable functions f : C→ C is an algebra isomorphic to A.

Proof. The isomorphism A → D is given by F = (fn)n∈Z 7→∑
n∈Z fn. Proposition 2 ensures that this is a bijection. Pointwise convolu-

tion in A corresponds to multiplication in D because absolutely summable
series obey the distributive law, and the order of summation is immaterial.
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Proposition 4. If f : C→ C is a continuous exponential, then f ∈ D.

Proof. If f is the zero function, then f ∈ D for trivial reasons.
Otherwise, as is well known (see e.g. [1, Ch. 5, Th. 3]), there exist a, b in
C such that

f(x) = eax+bx̄ = eaxebx̄ x ∈ C .

Let r > 0, ξ ∈ T and x = rξ. Then

eax = earξ =
∑

n≥0

anrn

n!
ξn, ebx̄ = ebrξ−1

=
∑

n≥0

bnrn

n!
ξ−n .

Since the coefficients anrn/n! and bnrn/n! are absolutely summable, Propo-
sition 1 yields that the maps x 7→ eax, x 7→ ebx̄ are in D. Their product f
is in D, from Proposition 3.

Decompose a continuous exponential f as
∑

n∈Z fn where fn satisfy
(4). Since f satisfies (3), it follows from Proposition 3 that

(6) fn(x + y) =
∑

k∈Z
fk(x)fn−k(y) x, y ∈ C, n ∈ Z .

Equations (4) and (6), for the homogeneous summands of a continuous
exponential, seem to be the natural extension of (2) to the limiting case of
∞. The point of this note is that, as in [3, Th. 3], an exponential f , now
continuous, can be recovered from (4) and (6).

Theorem 5. Suppose F = (fn)n∈Z ∈ A and F (x + y) = F (x) ∗ F (y)
for x, y in C; that is, fn satisfy (4) and (6) as well as absolute summability.
Then the map f =

∑
n∈Z fn is a continuous exponential with the fn’s as

its homogeneous components.

Proof. From Proposition 3 it is clear that f is an exponential and
that the fn’s give its homogeneous components. There remains the ques-
tion of the continuity of f .

As observed after Proposition 1, the restriction of f to any circle
centred at the origin is continuous. By considering f(x + y) = f(x)f(y)
where x, y ∈ C, fixing y and letting x vary, it is seen that the restriction of
f to a circle with any centre is continuous. This consideration also shows
that, if f is continuous at one point in C, then f is continuous at all points.
Thus it suffices to prove the continuity of f at the point 1 + i, i =

√−1.
Consider the smooth map ϕ, of two real variables, given by

ϕ : s + it 7→
(
s + 1−

√
2t− t2

)
+ i

(
t + 1−

√
2s− s2

)
0 < s, t < 2 .
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A simple verification shows that ϕ(1+ i) = 1+ i, and the Jacobian matrix
of ϕ at 1+ i is the 2× 2 identity matrix. By the inverse function theorem,
the restriction of ϕ to some open neightbourhood V of 1 + i is an open
mapping and injective. Since ϕ(V ) is now another open neighbourhood of
1 + i, homeomorphic to V by ϕ, f becomes continuous at 1 + i provided
f ◦ ϕ restricted to V is continuous at 1 + i.

Suppose sn + itn is a sequence in V and sn + itn → 1 as n →∞, i.e.
sn → 1, tn → 1. Let

un = sn + i
(
1−

√
2sn − s2

n

)
, vn = 1−

√
2tn − t2n + itn .

Clearly un → 1, vn → i and un + vn = ϕ(sn + tn). Now observe that
|1 + i− un| = |1 + i− vn| = 1, which means that un, vn lie on the circle K
of centre 1+ i and radius 1. The exponential f when restricted to such K,
is continuous. Thus f(un) → f(1), f(vn) → f(i) as n → ∞. This leads
to the conclusion that

f ◦ ϕ(sn + itn) = f(un + vn) = f(un)f(vn) →
f(1)f(i) = f(1 + i) = f ◦ ϕ(1 + i) ,

as desired.

The above proof leads one to speculate, out of mere curiosity, whether
any function C→ C, having continuous restrictions to all circles in C, can
still possess a point of discontinuity.

What is the analogue of (3) when n is replaced by ∞? Suppose
f : C → C is a continuous exponential; and thus f =

∑
n∈Z fn absolutely

such that the fn’s satisfy (4) and (6). If x ∈ C and σ ∈ T , then f(σx) =∑
n∈Z fn(x)σn. Since the coefficients of σn are absolutely summable, this

series converges uniformly over all σ in T . For every integer j, term by
term integration of σ−jf(σx) over σ in T gives the summand fj in terms
of the exponential. Namely

1
2π

∫

T

σ−jf(σx)dσ =
∑

n∈Z
fn(x)

1
2π

∫

T

σn−jdσ = fj(x) ,

for every x in C. The analogue of the summation (3) is the familiar
computation of Fourier coefficients over T , the dual group of Z.

References

[1] J. Acz�el, Lectures on functional equations and their applications, Academic Press,
New York, 1966.

[2] Y. Katznelson, An introduction to harmonic analysis, Dover Publications, New
York, 1976.



182 Frank Zorzitto : Homogeneous summands of exponentials

[3] J. Schwaiger, On generalized hyperbolic functions and their characterization by
functional eautations, Aequationes Mathematicae (to appear).

FRANK ZORZITTO
DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO, CANADA, N2L 3G1

(Received June 30, 1993)


