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On lower bounds of the first eigenvalue of Finsler–Laplacian

By SONGTING YIN (Shanghai), QUN HE (Shanghai) and YIBING SHEN (Zhejiang)

Abstract. By using Bochner technique and gradient estimate, we give the lower

bound estimates of the first eigenvalue of Finsler–Laplacian on Finsler manifolds. These

results generalize the corresponding famous theorems in the Riemannian geometry.

1. Introduction

The research on the first (nonzero) eigenvalue of Laplacian plays an impor-

tant role in global differential geometry. In the Riemannian case, Lichnerowicz

[10] advocated it for the first time and gave the lower bound estimate of the first

eigenvalue via the restriction of the Ricci curvature. Afterwards, Obata [12] furt-

her established a rigidity theorem, demonstrating the optimality of Lichnerowicz’

estimate. For the nonnegative Ricci curvature, Li–Yau [9] employed the gradi-

ent estimates of the eigenfunctions and got the lower bound estimate of the first

eigenvalue via the diameter of the manifolds. Then this method was improved

further and the optimal result was obtained by Zhong–Yang ([22]). Recently,

Hang–Wang [7] proved that S1 is the only case for the first eigenvalue attaining

its lower bound. Precisely, they achieved the following results respectively.

Theorem 1.1 ([10], [12]). Let (M, g) be an n-dimensional compact Rie-

mannian manifold without boundary. If the Ricci curvature satisfies

RicM ≥ (n− 1)k
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for some given constant k > 0, then

λ1 ≥ nk,

where the equality holds if and only if M is isometric to the n-sphere of constant

sectional curvature k, so that the diameter of M is π√
k
.

Theorem 1.2 ([7], [9], [22]). Let (M, g) be an n-dimensional compact Rie-

mannian manifold without boundary. If RicM ≥ 0, then

λ1 ≥ π2

d2
,

where d denotes the diameter of (M, g) and the equality holds if and only if M

is isometric to S1
(
d
π

)
.

As a natural generalization of Riemannian manifolds, Finsler manifolds are

differentiable manifolds of which on each tangent space one endows a Minkowski

norm instead of a Euclidean norm. Recent studies on Finsler manifolds have ta-

ken on a new look. Up to now, there have been several different definitions of

Finsler–Laplacians, introduced respectively by Bao–Lackey [3], Antonelli–

Zastawniak [1], Centroe [4], Thomas [19], and Ge–Shen [6]. By using the

Finsler–Laplacian, Ge–Shen gave the Faber–Krahn type inequality for the first

Dirichlet eigenvalue of the Finsler–Laplacian in [6]. Wu–Xin [20] proved that for

a complete noncompact and simply connected Finsler manifold with finite rever-

sibility λ and nonpositive flag curvature, if Ric ≤ −a2(a > 0) and supM ‖S‖ < a,

then λ1 ≥ (a−supM ‖S‖)2
4λ2 . Another interesting result on this direction, due to

Wang–Xia [21], says that for a compact Finsler measure space, if the weigh-

ted Ricci curvature (see Definition 2.1 below) RicN ≥ K, N ∈ [n,∞], K ∈ R,

then λ1 ≥ λ1(K,N, d) where λ1(K,N, d) represents the first eigenvalue of the

1-dimensional problem (see [21] for details).

In this paper we focus on lower bound estimates of the first eigenvalue of

the Finsler–Laplacian [6] on Finsler manifolds with an arbitrary volume form

dµ. The main purpose is to generalize Theorem 1.1 and Theorem 1.2 into the

Finsler case. It should be noted that since the Finsler–Laplacian is a nonlinear

operator, some methods used in the Riemannian case are not adaptable any more.

To overcome these difficulties, we have to utilize the properties of the weighted

gradient and the weighted Laplacian in weighted Riemannian manifold (M, gV )

[13], [21]. Here the weighted gradient and weighted Laplacian play an important

and reasonable role in studying the first eigenvalue of the Finsler–Laplacian. With

the help of them, we can convert some nonlinear problems into the linear ones
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and even calculate something as simple as in the Riemannian case. In addition,

we also make use of Bochner technique and some gradient estimates. Then by

using the restriction of weighted-Ricci curvature [14] (in the Riemannian case it

is just the Ricci curvature), we obtain the estimates on the lower bounds for the

first eigenvalue λ1 of Finsler–Laplacian in (M,F, dµ). Concretely, we get the main

results as follows.

Theorem 1.3. Let (M,F ) be an n-dimensional forward geodesically comp-

lete connected Finsler manifold without boundary. If the weighted Ricci curvature

and S-curvature satisfy

RicN ≥ (n− 1)k, Ṡ ≤ (N − n)(n− 1)

N − 1
k

for some uniform positive constant k and N ∈ (n,∞), where Ṡ denotes the change

rate of the S-curvature along geodesics, then

λ1 ≥ n− 1

N − 1
Nk.

Moreover, the diameter of M is
√

N−1
n−1

π√
k
if the equality holds.

Theorem 1.4. Let (M,F ) be an n-dimensional forward geodesically comp-

lete connected Finsler manifold without boundary. If S = 0 and Ricci curvature

Ric ≥ (n− 1)k for some uniform positive constant k, then

λ1 ≥ nk.

Moreover, if the equality holds, then the diameter of M is π√
k
, and M is homeo-

morphic to Sn. In particular, if F is reversible and M has Busemann–Hausdorff

volume form, then (M,F ) is isometric to Sn
(

1√
k

)
.

Theorem 1.5. Let (M,F ) be an n-dimensional compact Finsler manifold

without boundary. If the weighted Ricci curvature Ric∞ ≥ 0, then

λ1 ≥ π2

d2
,

where d denotes the diameter of (M,F ).

Here the term “weighted Ricci curvature” (Definition 2.1) and the notation

“Ṡ” (Definition 2.3) will be given in Section 2 below. If F is a Riemannian metric,

above Theorems are in accord with Theorem 1.1 and Theorem 1.2.
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2. Preliminaries

Throughout this paper, we assume that M is an n-dimensional oriented

smooth manifold without boundary. A Finsler metric on M is a function F :

TM −→ [0,∞) satisfying the following properties (i) F is smooth on TM\0; (ii)
F (x, λy) = λF (x, y) for all λ > 0; (iii) the induced quadratic form g is positive-

definite, where

g := gijdx
i ⊗ dxj , gij =

1

2
[F 2]yiyj .

Here and from now on, we will use the following convention of index ranges unless

other stated:

1 ≤ i, j · · · ≤ n; 1 ≤ α, β · · · ≤ n− 1, ᾱ = n+ α.

The projection π : TM −→ M gives rise to the pull-back bundle π∗TM
and its dual bundle π∗T ∗M over TM\0. In π∗T ∗M there is a global section

ω = [F ]yidxi, called the Hilbert form, whose dual is ` = `i ∂
∂xi , `

i = yi

F , called

the distinguished field.

Let {ei}ni=1 be a local orthonormal basis on π∗TM such that its dual basis

is {ωi}ni=1 with ωn = ω. As is well known that on the pull-back bundle π∗TM
there exists uniquely the Chern connection c∇ with c∇ei = ωj

i ej satisfying

dωi = −ωi
j ∧ ωj , ωα

n = ωᾱ, ωn
n = 0,

ωi
j + ωj

i = −2Cijkω
k
n, Cnjk = 0,

where Cijk = 1
F Aijk is called the Cartan tensor.

Let u : M −→ R be a smooth function. Then we can view u as its lift on the

projective sphere bundle SM . Define

du := uiω
i, (2.1)

dui − ujω
j
i := ui|jωj + ui;αω

ᾱ, (2.2)

where “|” and “; ” denote the horizontal covariant derivative with respect to c∇
and vertical derivative, respectively. Taking exterior differentiation of (2.1) and

making use of (2.2), the structure equations with respect to the Chern connection,

we have

ui|j = uj|i, ui;α = 0.

The curvature 2-forms of the Chern connection c∇ are

dωi
j − ωk

j ∧ ωi
k = Ωi

j :=
1

2
Ri

j klω
k ∧ ωl + P i

j kαω
k ∧ ωᾱ,
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where Ri
j kl = −Ri

j lk and P i
j kα = P i

k jα. The Landsberg curvature is defined as

P i
jk := P i

n jk, which satisfies

Pijk = δilP
l
jk = −Ȧijk, Pnαβ = 0,

where “.” denotes the covariant derivative along the Hilbert form. The flag cur-

vature tensor can be defined by

Rαβ = δαγR
γ
n βn.

For a unit vector V = V iei, the flag curvature K(y;V ) is

K(y;V ) = RαβV
αV β .

The Ricci curvature for (M,F ) is defined as

Ric := Ric(y) =
n−1∑
α=1

K(y; eα) =
n−1∑
α=1

Rαα.

Clearly, Ricci curvature Ric(y) is positively homogeneous of degree zero. i.e.,

Ric(λy) = Ric(y) for all λ > 0.

Now we can introduce the weighted Ricci curvature on the Finsler manifolds,

which was defined by Ohta in [14], motivated by the work of Lott–Villani [11]

and Sturm [18] on metric measure spaces.

Definition 2.1 ([14]). Given a vector V ∈ TxM , let η : (−ε, ε) −→ M be the

geodesic such that η′(0) = V . We set dµ = e−Ψ volη′ along η, where volη′ is the

volume form of gη′ . Define weighted Ricci curvature by

• RicN (V ) := Ric(V ) + (Ψ◦η)′′(0)
F (V )2 − (Ψ◦η)′(0)2

(N−n)F (V )2 for N ∈ (n,∞),

• Ric∞(V ) := Ric(V ) + (Ψ◦η)′′(0)
F (V )2 .

Remark 2.2. The above definition is slightly different from that in [14] where

the weighted Ricci curvature is positively homogeneous of degree two.

As is well known that S-curvature is one of the most important non-Rieman-

nian quantities in Finsler geometry. For any y ∈ TxM\0, let γ(t) be the geodesic

with γ(0) = x, γ̇(0) = y. Then S-curvature is defined by

S(x, y) =
d

dt
[τ(γ(t), γ̇(t))]t=0.

An n-dimensional Finsler metric F on a manifold is said to have constant S-

curvature if S = (n + 1)cF for some constant c. In order to measure the rate of

change of the S-curvature along geodesics, we give the following
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Definition 2.3. For any y ∈ TxM\0, define

Ṡ(x, y) =
1

F 2

d

dt
[S(γ(t), γ̇(t))]t=0, (2.3)

where γ(t) is geodesic satisfying γ(0) = x, γ̇(0) = y.

Remark 2.4. By Definition 2.3, we get Ṡ(x, y) = 1
F 2S|iyi = 1

F 2 {Sxiyi −
2SyiGi}. It follows that Ṡ(x, λy) = Ṡ(x, y), ∀λ > 0. In addition, according to

Definition 2.1, dµ = e−Ψ volη′ implies Ψ = τ along geodesic η, here τ denotes the

distortion of F with respect to dµ. So by definition of S and Ṡ we have

S = (Ψ ◦ η)′(0), Ṡ =
(Ψ ◦ η)′′(0)

F 2
, (2.4)

where Ψ, η are defined in Definition 2.1.

Let X = Xi ∂
∂xi be a vector field. Then the covariant derivative of X by

v ∈ TxM with reference vector w ∈ TxM\0 is defined by

Dw
v X(x) :=

{
vj

∂Xi

∂xj
(x) + Γi

jk(w)v
jXk(x)

}
∂

∂xi
, (2.5)

where Γi
jk denote the coefficients of the Chern connection given by

Γi
jk =

1

2
gil

(
δglj
δxk

+
δglk
δxj

− δgjk
δxl

)
,

and

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
, N j

i =
∂Gj

∂yi
, Gi =

1

4
gil{[F 2]xkylyk − [F 2]xl}.

Now let L∗ : T ∗M −→ TM denote the Legendre transform. Then L∗ is norm-

preserving map satisfying L∗(aζ) = aL∗(ζ), for all a > 0, ζ ∈ T ∗M . For a smooth

function u : M −→ R, the gradient vector of u at x is defined as the Legendre

transform of the derivative of u, ∇u(x) := L∗(du(x)) ∈ TxM . Explicitly, we can

write in coordinates

∇u(x) :=




gij(x,∇u)

∂u

∂xj

∂

∂xi
, du(x) 6= 0,

0. du(x) = 0.

(2.6)

It is C∞ on the open set {du 6= 0} and C0 at {du = 0}. Set MV := {x ∈
M |V (x) 6= 0} for a vector field V on M , and Mu := M∇u. For a C∞ vector
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field V on M and x ∈ MV , we define ∇V (x) ∈ T ∗
xM ⊗ TxM by using the

covariant derivative as

∇V (v) := DV
v V (x) ∈ TxM, v ∈ TxM. (2.7)

We also set ∇2u(x) := ∇(∇u)(x) for the smooth function u : M −→ R and

x ∈ Mu. Let {ea}na=1 be a local orthonormal basis with respect to g∇u on Mu.

(In order to distinguish local orthonormal basis with respect to g∇u from that

with respect to gy, we use convention of the index range 1 ≤ a, b, · · · ≤ n.) Using

(2.5)–(2.7) and noting that C∇u(∇u, ea, eb) = 0, we then have

∇2u =
∑(∇2u(eb)

)
ωb =

∑(
D∇u

eb
(∇u)

)
ωb =

∑
g∇u

(
D∇u

eb
(∇u), ea

)
eaω

b

=
∑

{eb (g∇u(∇u, ea))− g∇u(∇u,D∇u
eb

ea)}eaωb

=
∑

{eb(ea(u))−
(
D∇u

eb
ea
)
(u)}eaωb =

∑
ua|beaωb,

and

g∇u(∇2u(ea), eb) = g∇u(D
∇u
ea (∇u), eb) = ea (g∇u(∇u, eb))− g∇u(∇u,D∇u

ea eb)

= ea(eb(u))− g∇u(∇u,D∇u
eb

ea + [ea, eb])

= eb(ea(u)) + [ea, eb](u)− g∇u(∇u,D∇u
eb

ea)− [ea, eb](u)

= eb (g∇u(∇u, ea))− g∇u(∇u,D∇u
eb

ea)

= g∇u(D
∇u
eb

(∇u), ea) = g∇u(∇2u(eb), ea).

Namely,

ua|b = ub|a, ∀a, b.
Next we define the divergence of a C∞ vector field V on M with respect to

an arbitrary volume form dµ by

div V :=

n∑

i=1

(
∂V i

∂xi
+ V i ∂Φ

∂xi

)
, (2.8)

where dµ = eΦdx1dx2 · · · dxn. Then the Finsler–Laplacian of u can be defined by

∆u := div(∇u). (2.9)

Given a vector field V such that V 6= 0 on Mu, we define the weighted gradient

vector [13], [21] and the weighted Laplacian [13], [21] on the weighted Riemannian

manifold (M, gV ) by

∇V u :=




gij(V )

∂u

∂xj

∂

∂xi
, on Mu,

0, on M\Mu,

∆V u := div(∇V u). (2.10)
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Clearly, the relation between the two gradients and that between the two Lapla-

cians are

∇∇uu = ∇u, ∆∇uu = ∆u.

Let (M,F, dµ) be an n-dimensional Finsler manifold. If there is a constant

λ such that

∆f = −λf

for some function f ∈ L1,2(M), then the constant λ is called the eigenvalue

of ∆ and the function f is called the eigenfunction corresponding to λ. The

least nonzero eigenvalue λ1 of ∆ is called the first eigenvalue on (M,F, dµ). Let

Ω ⊂ M be a domain with compact closure and nonempty boundary ∂Ω. The first

eigenvalue λ1(Ω) of Ω is defined by [15]

λ1(Ω) = inf
u∈L1,2

0 (Ω)

∫
Ω
(F ∗(du))2dµ∫

Ω
u2dµ

,

where L1,2
0 (Ω) is the completion of C∞

0 with respect to the norm

‖ϕ‖2Ω =

∫

Ω

ϕ2dµ+

∫

Ω

(F ∗(dϕ))2dµ.

If Ω1 ⊂ Ω2 are bounded domains, then λ1(Ω1) ≥ λ2(Ω2) ≥ 0. Thus, if Ω1 ⊂ Ω2 ⊂
· · · ⊂ M are bounded domains so that

⋃
Ωi = M , then the following limit

λ1(M) = lim
i→∞

λ1(Ωi) ≥ 0

exists, and it is independent of the choice of {Ωi}.
At the end of this section, some lemmas are given below.

Lemma 2.5 (Bonnet–Myers). Let (M,F ) be an n-dimensional forward geo-

desically complete connected Finsler manifold. If its Ricci curvature satisfies

Ric ≥ (n− 1)k

for some positive constant k, then M is compact and the diameter of (M,F ) is

at most π√
k
.

Lemma 2.6 ([13]). Let (M,F ) be an n-dimensional Finsler manifold. Given

u ∈ C∞(M), we have

∆∇u

(
F (∇u)2

2

)
−D(∆u)(∇u) = ‖∇u‖2 Ric∞(∇u) + ‖∇2u‖2HS(∇u) (2.11)
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as well as

∆∇u

(
F (∇u)2

2

)
−D(∆u)(∇u) ≥ ‖∇u‖2 RicN (∇u) +

(∆u)2

N
(2.12)

for N ∈ [n,∞], point-wise on Mu. Here ‖∇2u‖2HS(∇u) stands for the Hilbert–

Schmidt norm with respect to g∇u.

According to Lemma 3.3 in [20], Lemma 3.2 in [13] and our discussion on

∇2u above, we can rewrite the result as

Lemma 2.7. Let (M,F ) be an n-dimensional Finsler manifold and u :

M −→ R a smooth function. Then on Mu we have

∆u = trg∇u(∇2u)− S(∇u) =
∑
a

ua|a − S(∇u), (2.13)

where ua|a = g∇u

(∇2u(ea), ea
)
and {ea}na=1 is a local g∇u-orthonormal basis

on Mu.

Lemma 2.8 ([17]). Let (M,F, dµ) be an n-dimensional complete connected

Finsler manifold. Suppose that

Ric ≥ (n− 1)k, ‖S‖ ≤ Λ.

Then for any 0 < r < R,

voldµF (B(x,R))

Vk,Λ,n(R)
≤ voldµF (B(x, r))

Vk,Λ,n(r)
,

where

‖S‖x := sup
X∈TxM\0

S(X)

F (X)
; Vk,Λ,n(r) := vol(Sn−1(1))

∫ r

0

eΛtsk(t)
n−1dt

and sk denotes the unique solution to y′′ + ky = 0 with y(0) = 0, y′(0) = 1.

3. Proofs of the main results

Theorem 3.1. Let (M,F ) be an n-dimensional forward geodesically comp-

lete connected Finsler manifold without boundary. If the weighted Ricci curvature

and S-curvature satisfy

RicN ≥ (n− 1)k, Ṡ ≤ (N − n)(n− 1)

N − 1
k
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for some uniform positive constant k and N ∈ (n,∞), where Ṡ denotes the change

rate of the S-curvature along geodesics, then

λ1 ≥ n− 1

N − 1
Nk.

Moreover, the diameter of M is
√

N−1
n−1

π√
k
if the equality holds.

Proof. First of all, from (2.4) we see that, under the hypothesis in The-

orem 3.1,

Ric = RicN −Ṡ +
S2

(N − n)F 2
≥ (n− 1)2

N − 1
k. (3.1)

So, M is compact according to Lemma 2.5.

Let u be the first eigenfunction on (M,F ) corresponding to the eigenvalue λ1.

This implies that

∆u = −λ1u.

Furthermore, from the fact

∆∇uu2 = div(∇∇uu2) = div(2u∇u) = 2u∆u+ 2‖∇u‖2

we get

(∆u)2 = −λ1u∆u = λ1

(
‖∇u‖2 − 1

2
∆∇uu2

)
. (3.2)

Integrating (2.12) and using divergence lemma on M , we obtain

∫

M

λ1‖∇u‖2dµ ≥
∫

M

(
‖∇u‖2 RicN (∇u) +

(∆u)2

N

)
dµ.

Thus, the assumption of the Theorem 3.1 and (3.2) yield

∫

M

(
N − 1

N
λ1 − (n− 1)k

)
‖∇u‖2dµ ≥ 0,

which means that

λ1 ≥ n− 1

N − 1
Nk.

If λ1 = n−1
N−1Nk, then all of the relevant inequalities become the equalities. We

recall the formula (2.12), which was derived from (2.11) and the following inequ-

alities.

‖∇2u‖2HS(∇u) = tr(B(0)2) =
(trB(0))2

n
+ ‖B(0)− tr(B(0)

n
In‖2HS
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≥ (trB(0))2

n
=

(∆u+DΨ(∇u))
2

n

=
(∆u)2

N
− (DΨ(∇u))

2

N − n
+

N(N − n)

n

(
∆u

N
+

DΨ(∇u)

N − n

)2

≥ (∆u)2

N
− (DΨ(∇u))

2

N − n
, (3.3)

where B(0) = (∇2u) := (ua|b) in the sense that ∇2u(ea) =
∑n

b=1 ua|beb (cf. [13],

p. 9, 11–12), DΨ(∇u) = S(∇u) by (2.4). So, under the condition λ1 = n−1
N−1Nk

we have

B(0) =
tr(B(0)

n
In, (3.4)

∆u

N
= −S(∇u)

N − n
. (3.5)

Obviously from (3.4) we can get

ua|a = ub|b, ∀a, b; ua|b = 0, for a 6= b. (3.6)

Substituting (3.5) into (3.3), one has

‖∇2u‖2HS(∇u) =
(∆u+ S(∇u))

2

n
=

n

N2
(∆u)2 =

nλ2
1

N2
u2.

Therefore combining (3.6) and the formula above, it holds that

u2
a|a =

λ2
1u

2

N2
, ∀a. (3.7)

However, from Lemma 2.7 and (3.6) we also have

−λ1u = ∆u = nua|a − S(∇u), ∀a,

which together with (3.5) and (3.7) yields

ua|a = −λ1u

N
, ∀a.

Let f(x) = ‖∇u‖2 + λ1

N u2. Then f is C∞ on the open set Mu and C0 on M\Mu.

Its derivative in the direction ec, ∀c on Mu is

df(ec) = dg∇u(∇u,∇u)(ec) +
2λ1

N
uuc = 2g∇u(∇2u,∇u)(ec) +

2λ1

N
uuc
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= 2g∇u

(∑
ua|beaωb,

∑
uded

)
(ec) +

2λ1

N
uuc = 2ucuc|c +

2λ1

N
uuc = 0,

which means that f is constant on Mu. On the other hand, we claim that f is also

constant on M\Mu. In fact, if M\Mu 3 x is an inner point, then f = λ1

N u2 holds

on a neighborhood U of x so that df = 0 or f is constant on U . If M\Mu 3 x is a

boundary point, we choose a sequence {xk} ⊂ Mu such that xk −→ x, (k −→ ∞).

Then f(x) = f |Mu
according to the continuity of f . Finally, using the continuity

of f again and connectivity of M we obtain that the function f(x) is constant

on M .

Suppose that u attains its maximum umax and minimum umin at p ∈ M

and q ∈ M respectively. Since ‖∇u‖2 = 0 at both p and q, we see that f(p) =
λ1

N (umax)
2 = f(q) = λ1

N (umin)
2, which implies that |umax| = |umin|. This also

means that all maximum (or minimum) of u are equal. Without loss of generality,

we can assume that umax = 1 and umin = −1. Let γ(s) be the minimal regular

geodesic of (M,F ) from p to q with the tangent vector γ̇(s). We can suppose

that along γ(s) there is not any other extreme point. Otherwise, Since u is

continuous, p must not be the cluster point of minimal extreme points of u. Hence

we may assume q′ ∈ γ(s) is the first minimal extreme point of u from p. Next

set off from q′ to p along
←−−
γ(s), by the same way we get the maximum extreme

point p′ ∈ γ(s). Then γ(s)|
p̂′q′ is the minimal regular geodesic without other

extreme point of u. So we might as well assume that γ(s) has this property which

means ‖∇u‖(x) > 0, ∀x ∈ γ(s)\(p, q). Consequently γ(s)\{p, q} ⊂ Mu. Since

λ1 = n−1
N−1Nk, we have ‖∇u‖√

1−u2
=

√
n−1
N−1k along γ(s).

Let dM denote the diameter of (M,F ). We then have
√

n− 1

N − 1
kdM ≥

√
n− 1

N − 1
k

∫

γ

F (γ̇)ds =

∫

γ

F (γ̇)
‖∇u‖√
1− u2

ds. (3.8)

From |duds | = |g∇u(∇u, γ̇)| ≤ F (γ̇)‖∇u‖ one gets

∫

γ

F (γ̇)
‖∇u‖√
1− u2

ds ≥
∫ 1

−1

du√
1− u2

= π. (3.9)

It follows from (3.8) and (3.9) that dM ≥
√

N−1
n−1

π√
k
.

On the other hand, from (3.1) and Lemma 2.5 we can obtain dM ≤
√

N−1
n−1

π√
k
.

So dM =
√

N−1
n−1

π√
k
. This finishes the proof. ¤

From the proof of Theorem 3.1, it is not difficult to obtain
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Proposition 3.2. Let (M,F ) be an n-dimensional compact connected Fins-

ler manifold without boundary. If the weighted Ricci curvature satisfies RicN ≥
(n− 1)k for some uniform positive constant k and N ∈ (n,∞), then

λ1 ≥ n− 1

N − 1
Nk.

Moreover, the diameter of M is at least
√

N−1
n−1

π√
k
if the equality holds.

Theorem 3.3. Let (M,F ) be an n-dimensional forward geodesically comp-

lete connected Finsler manifold without boundary. If S = 0 and Ricci curvature

Ric ≥ (n− 1)k for some uniform positive constant k, then

λ1 ≥ nk.

Moreover, if the equality holds, then the diameter of M is π√
k
, and M is homeo-

morphic to Sn. In particular, if F is reversible and M has Busemann–Hausdorff

volume form, then (M,F ) is isometric to Sn
(

1√
k

)
.

Proof. If S = 0, then RicN = Ric from the Definition 2.1. Therefore,

by Theorem 3.1 we can easily get the first part of Theorem 3.3. Next we only

prove the last part when the equality holds. Under the condition of Theorem 3.3,

f(x) = ‖∇u‖2 + λ1

n u2 is constant on M by the proof of Theorem 3.1. Put

M+ = {x∈M | u(x) > 0}, M0 = {x ∈ M | u(x) = 0}, M− = {x ∈ M | u(x) < 0}.

Then M+, M− are open sets on M , and M0 is a close set with zero measure.

Let p and q are the maximal point and minimal point of u respectively with

u(p) = 1, u(q) = −1. So, if λ1 = nk, then ‖∇u‖√
1−u2

=
√
k. Suppose that γ is the

minimal geodesic of (M,F ) from p to q with the tangent vector γ̇(s). Denote by

L(γ) the length of γ. Then

√
kL(γ) =

∫

γ

F (γ̇)
‖∇u‖√
1− u2

ds ≥
∫ 1

−1

du√
1− u2

= π (3.10)

which means that L(γ) = d(p, q) = d. Similarly, we also get d(q, p) = d. Furt-

hermore, we claim B(p, d
2 ) ⊂ M+. In fact, if there exists a point x0 ∈ M− ∪M0

such that x0 ∈ B(p, d
2 ), then we suppose that η is the minimal geodesic of (M,F )

from p to x0 with the tangent vector η̇(s). Thus

√
kL(η) =

∫

η

F (η̇)
‖∇u‖√
1− u2

ds ≥
∫ 1

0

du√
1− u2

=
π

2
(3.11)
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which shows that L(η) = d(p, x0) ≥ d
2 . This contradict the assumption. Similarly,

B(q, d
2 ) ⊂ M−. So we get

B

(
p,

d

2

)
∩B

(
q,

d

2

)
= ∅. (3.12)

Note that if S = 0, k > 0, then Vk,Λ,n(r) = vol(Sn(k; r)). Hence from Lemma 2.8

we get

voldµF
(
B
(
p, π

2
√
k

))

vol
(
Sn

(
k; π

2
√
k

)) ≥
voldµF

(
B
(
p, π√

k

))

vol
(
Sn

(
k; π√

k

)) =
voldµF M

volSn
(

1√
k

) ,

which implies that

voldµF

(
B

(
p,

d

2

))
≥ 1

2
voldµF M. (3.13)

A similar argument yields

voldµF

(
B

(
q,

d

2

))
≥ 1

2
voldµF M. (3.14)

From (3.12), (3.13) and (3.14), we have

B

(
p,

d

2

)
= M+, B

(
q,

d

2

)
= M−, (3.15)

M0 is the boundary of both B
(
p, d

2

)
and B

(
q, d

2

)
. In addition, we can prove that

for any point x ∈ M0, d(p, x) = d
2 . On one hand, from (3.11), d(p, x) ≥ d

2 . On

the other hand, if d(p, x) > d
2 , then there exists a neighborhood U of x such

that d(p, y) > d
2 for any y ∈ U . This contradict (3.15). Similarly, for any point

x ∈ M0, d(q, x) = d
2 .

In the following, we illustrate that u has only one maximal point on M . If

not, we assume p1, p2 are the two maximal points of u. Let σ1 be the minimal

regular geodesic from p1 to q. Set x1 = σ1 ∩ M0, then L(σ1) = d(p1, q) = d,

d(p1, x1) = L(σ1|p̂1x1
) = d(x1, q) = L(σ1|x̂1q) = d

2 . Draw a minimal regular

geodesic η from p2 to x1. Then d(p2, x1) = L(η) = d
2 . From (3.10) we have

d(p2, x1) + d(x1, q) = d(p1, q).

Let σ2 := η ∪ σ1|x̂1q, then σ2 is a minimal regular geodesic from p2 to q with

L(σ2) = d. Note that the equality in (3.10) holds if and only if γ̇ is parallel to ∇u

and u is monotone decreasing along γ. Hence at x1, we have σ̇1(x1) = σ̇2(x1) =
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− ∇u
‖∇u‖ (x1). According to the uniqueness of geodesic we have σ1 = σ2 so that

p1 = p2. Similarly, u has only one minimal point q on M .

Since ‖∇u‖2 + ku2 = k, then we have

D∇u
∇u

( ∇u

‖∇u‖
)

= D∇u
∇u

( ∇u√
k
√
1− u2

)

=
1√

k
√
1− u2

D∇u
∇u∇u+D∇u

∇u

(
1√

1− u2

) ∇u√
k

=
1√

k
√
1− u2

∇2u(∇u) + g∇u

(
∇u,∇∇u

(
1√

1− u2

)) ∇u√
k

=
1√

k
√
1− u2

(∇2u(∇u) + uk∇u) = 0,

which means that ∇u
‖∇u‖ is geodesic field. For any x0 ∈ M , Draw a minimal

geodesic γ from q to x0, then

√
kL(γ) =

∫

γ

F (γ̇)
‖∇u‖√
1− u2

ds ≥
∫ u(x0)

−1

du√
1− u2

.

Since γ is minimal geodesic, γ̇ = ∇u
‖∇u‖ . Further, we have on γ

|u′|2 + ku2 = k, u(0) = −1, u′(0) = 0,

which shows that u = − cos
√
kt, t ∈ [

0, π−arccosu(x0)√
k

]
. As a geodesic on M , γ is

defined in [0,∞], so we have u = − cos
√
kt, t∈[0, π√

k

]
. Particularly, u

(
γ
(

π√
k

))
=1

which means p ∈ γ. Clearly, the point p is the cut locus of q. Thus we conclude

that expq : TqM ⊃ Bq

(
π√
k

) −→ Mn\{p} is diffeomorphism. On the other hand,

expq̃ : Tq̃S
n ⊃ Bq̃(π) −→ Sn\{p̃} is also diffeomorphism where Sn is n-sphere,

q̃, p̃ are the south pole and north pole respectively. Let (r̃, θ̃α) be the polar

coordinate system of Tq̃S
n and (r, θα) be the polar coordinate system of TqM

n.

Define h : Tq̃S
n −→ TqM by r = r̃√

k
, θα = θ̃α, then h is diffeomorphism. Now we

define ψ : Mn −→ Sn by

ψ(x) =

{
expq̃ ◦h−1 ◦ exp−1

q (x) x 6= p

p̃ x = p

It is not hard to see ψ is homeomorphic. i.e. M is homeomorphic to Sn. At

last, if F is reversible, SBH = 0 and the diameter of M is π√
k
, then according

to the Corollary 1 in [8], (M,F ) is isometric to Sn
(

1√
k

)
. The theorem has been

proved. ¤



400 Songting Yin, Qun He and Yibing Shen

Theorem 3.4. Let (M,F ) be an n-dimensional compact Finsler manifold

without boundary. If the weighted Ricci curvature Ric∞ ≥ 0, then

λ1 ≥ π2

d2
,

where d denotes the diameter of (M,F ).

Proof. Let u be the first eigenfunction on (M,F ) corresponding to the first

eigenvalue λ1. Since
∫
M

udµ = − 1
λ1

∫
M

∆udµ = 0 and noting that −u is not

necessarily the first eigenfunction on (M,F ), we assume that

1 = supu > inf u = −k ≥ −1 (1 ≥ k = supu > inf u = −1 resp.), 0 < k ≤ 1.

For small ε > 0, let

v =
u− 1

2 (1− k)
1
2 (1 + k)(1 + ε)

(
resp. v =

u+ 1
2 (1− k)

1
2 (1 + k)(1 + ε)

)
.

Clearly, dv = 2
(1+k)(1+ε)du. Since Legendre transform L∗ : T ∗M −→ TM is

dimorphic and satisfies L∗(aζ) = aL∗(ζ), a ∈ R+, ζ ∈ T ∗M , we have

∇v = ∇∇uv =
2

(1 + k)(1 + ε)
∇u

under which 


∆v = −λ1(v ± aε), aε =

1− k

(1 + k)(1 + ε)
,

sup v = 1
1+ε , inf v = − 1

1+ε .

Let v = sin θ, then

− 1

1 + ε
≤ sin θ ≤ 1

1 + ε
,
‖∇v‖2
1− v2

= ‖∇∇uθ‖2.

Consider the function

f(x) =
‖∇v‖2
1− v2

.

Since M is compact, we can apply the maximal principle to f(x) on the

weighted Riemannian manifold (M, g∇u). Suppose that f(x) attains its maximum

at x0 ∈ M , then ∇∇uf(x0) = 0, ∆∇uf(x0) ≤ 0 and x0 ∈ Mu.
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Let {ea}na=1 be a local orthonormal basis with respect to g∇u on Mu. Write

∇v =
∑

a vaea. Then by simple computations on ∇∇uf(x0) = 0 we have

∑

b

vbvb|a =
‖∇v‖2(−v)va

1− v2
, ∀a. (3.16)

Furthermore, a straightforward calculation yields

∆∇uf(x0) = ∆∇u

(‖∇v‖2
1− v2

)
=

∆∇u
(‖∇v‖2)

1− v2
+ ‖∇v‖2∆∇u

(
1

1− v2

)

+ 2g∇u

(
∇∇u

(‖∇v‖2) ,∇∇u

(
1

1− v2

))
:= A+B + C, (3.17)

where

A =
∆∇u

(‖∇v‖2)

1− v2
,

B = ‖∇v‖2∆∇u

(
1

1− v2

)
= ‖∇v‖2 div

(
∇∇u

(
1

1− v2

))

= ‖∇v‖2
{

2v

(1− v2)2
div

(∇∇uv
)
+ 2g∇u

(
∇∇uv,∇∇u

(
v

(1− v2)2

))}

= ‖∇v‖2
{

2v

(1− v2)2
∆v +

2‖∇v‖2
(1− v2)2

+
8v2‖∇v‖2
(1− v2)3

}
,

C = 2g∇u

(
∇∇u

(‖∇v‖2) ,∇∇u

(
1

1− v2

))
=

8vvavbva|b
(1− v2)2

.

So, from the formulas above, we can rewrite (3.17) as follows

0 ≥ ∆∇uf(x0) =
∆∇u(‖∇v‖2)

1− v2
+

8v
∑

vavbva|b
(1− v2)2

− 2‖∇v‖4 + 2v‖∇v‖2∆v

(1− v2)2
+

8v2‖∇v‖4
(1− v2)3

.

Substituting (3.16) into it, one has

0 ≥ ∆∇u(‖∇v‖2) + 2‖∇v‖4 + 2v‖∇v‖2∆v

1− v2
. (3.18)

From (2.11) and the conditions of Theorem 3.4, we get

∆∇u(‖∇v‖2) = 2‖∇v‖2 Ric∞(∇v) + 2D(∆v)(∇v) + 2‖∇2v‖2HS(∇v)

≥ 2D(−λ1(v ± aε))(∇v) + 2
∑

ab

v2a|b = −2λ1‖∇v‖2 + 2
∑

ab

v2a|b. (3.19)
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By the Schwartz inequality and (3.16), we have

∑

ab

v2a|b
∑

b

v2b ≥
∑
a

(∑

b

vbvb|a

)2

=
∑
a

‖∇v‖4v2v2a
(1− v2)2

,

which means that

∑

ab

v2a|b ≥
‖∇v‖4v2
(1− v2)2

. (3.20)

Utilizing (3.18)-(3.20) above, we obtain at the point x0 that

f(x0) =
‖∇v‖2
1− v2

(x0) ≤ λ1(1 + aε).

So for any x ∈ M , we have

√
f(x) = ‖∇∇uθ‖ ≤

√
λ1(1 + aε). (3.21)

Set

G(θ) = max
x∈M
θ(x)=θ

‖∇∇uθ‖2 = max
x∈M
θ(x)=θ

‖∇v‖2
1− v2

.

Clearly, G(θ) ∈ C0
([− π

2 + δ, π
2 − δ

])
, where δ is specified by

sin
(π
2
− δ

)
=

1

1 + ε
, G

(
−π

2
+ δ

)
= G

(π
2
− δ

)
= 0.

From (3.21) we can write

G(θ) ≤ λ1(1 + aε),

under which we let

G(θ) = λ1(1 + aεϕ(θ)), ϕ(θ) ∈ C0
([

−π

2
+ δ,

π

2
− δ

])
.

Since G(θ) vanishes at the end points of the interval [−π
2 + δ, π

2 − δ],

ϕ
(π
2
− δ

)
= ϕ

(
−π

2
+ δ

)
< −1.

By (3.21) we see that ϕ(θ) ≤ 1.

In the following, by the same way in [22], we can get

ϕ(θ) ≤ ψ(θ), (3.22)
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where ψ(θ) is defined by

ψ(θ) =





4
π (θ + cos θ sin θ)− 2 sin θ

cos2 θ
, θ ∈

(
−π

2
,
π

2

)

ψ
(π
2

)
= 1, ψ

(
−π

2

)
= −1.

(3.23)

Now we continue to prove Theorem 3.4. From (3.22), we have

‖∇∇uθ‖ ≤
√
λ1

√
1 + aεψ(θ). (3.24)

Let p, q ∈ M be such points that θ(p) = −π
2 +δ, θ(q) = π

2 −δ. Let γ be a shortest

geodesic joining p and q. Denote by T the tangent vector of γ. Then

‖∇∇uθ‖ =
‖∇v‖
cos θ

=
F (∇v)

cos θ
≥

∣∣g∇u

(∇v, T
F (T )

)∣∣
cos θ

=
|Tv|

F (T ) cos θ
=

|dvds |
F (T ) cos θ

=
|dθds |
F (T )

. (3.25)

Therefore from (3.24) and (3.25) one gets

√
λ1d ≥

∫

γ

√
λ1F (T )ds ≥

∫ π
2 −δ

−π
2 +δ

dθ√
1 + aεψ(θ)

. (3.26)

It is easy to see from (3.23) that ψ(0) = 0, ψ(−θ) = −ψ(θ), |aεψ(θ)| < 1. Hence,

we have

∫ π
2 −δ

−π
2 +δ

dθ√
1 + aεψ(θ)

=

∫ π
2 −δ

0

(
1√

1 + aεψ(θ)
+

1√
1− aεψ(θ)

)
dθ

= 2

∫ π
2 −δ

0

(
1 +

∞∑

i=1

1 · 3 · · · (4i− 1)

2 · 4 · · · 4i a2iε ψ2i

)
dθ

≥ 2

(
π

2
− δ

)
= π − 2δ. (3.27)

Thus √
λ1d ≥ π − 2δ.

Letting ε → 0, so that δ → 0 too, we then obtain

λ1 ≥ π2

d2
. ¤
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Remark 3.5. The estimate in Theorem 3.4 has been pointed out in [21],

where a sharp lower bound for first Neumann eignenvalue of Finsler–Laplacian

was given. The conclusion of Theorem 3.4 is not sharp for n ≥ 2.

If S = (n+1)cF for some constant c, then Ṡ = 0 so that Ric∞ = Ric. So we

can easily get the following

Corollary 3.6. Let (M,F ) be an n-dimensional compact Finsler manifold

without boundary. If M has constant S-curvature and Ric ≥ 0, then

λ1 ≥ π2

d2
,

where d denotes the diameter of (M,F ).
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