On a theorem of Erdős and Sárközy

By YONG-GAO CHEN (Nanjing) and MIN TANG (Wuhu)

Abstract

Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1} \leqslant a_{2} \leqslant \cdots\right)$ be an infinite sequence of nonnegative integers, $k \geq 2$ be a fixed integer and denote by $R_{k}(n)$ the number of solutions of $a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{k}}=n$. In this paper, we prove that if $g(n)$ is a monotonically increasing arithmetic function with $g(n) \rightarrow+\infty$ and $g(n)=o\left(n(\log n)^{-2}\right)$, then for any $0<\varepsilon<1$, $\left|R_{k}(n)-g(n)\right|>([k / 2]!-\varepsilon) \sqrt{g(n)}$ holds for infinitely many positive integers n. We also prove that for a positive integer d, if $R_{k}(n) \geq d$ for all sufficiently large integers n, then $R_{k}(n) \geq d+2[k / 2]!\sqrt{d}+([k / 2]!)^{2}$ for infinitely many positive integers n.

1. Introduction

Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(0 \leqslant a_{1} \leqslant a_{2} \leqslant \cdots\right)$ be an infinite sequence of nonnegative integers, $k \geq 2$ be a fixed integer and denote by $R_{k}(n)$ the number of solutions of

$$
a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{k}}=n
$$

In 1985, P. Erdős and A. SÁrközy [2] proved that if $g(n)$ is an arithmetic function satisfying $g(n) \rightarrow+\infty, g(n+1) \geq g(n)$ for $n \geq n_{0}$ and $g(n)=o\left(n(\log n)^{-2}\right)$, then $R_{2}(n)-g(n)=o\left((g(n))^{1 / 2}\right)$ cannot hold. In 2002, G. Horváth [3] extend this result to all $k>2$. In 2007, G. Horváth [4] improved the above result, he proved that if $0<\varepsilon<1$ and $g(n)$ is a real arithmetic function such that

[^0]$g(n) \rightarrow+\infty, g(n+1) \geq g(n)$ for $n \geq n_{0}$ and $g(n)=o\left(n(\log n)^{-2}\right)$, then there does not exist n_{1} such that $\left|R_{k}(n)-g(n)\right| \leq(1-\varepsilon) \sqrt{g(n)}$ for all $n \geq n_{1}$.

In this paper, we obtain a stronger version of the above results:
Theorem 1. If $g(n)$ is an arithmetic function such that

$$
\begin{equation*}
g(n) \rightarrow+\infty, \quad g(n+1) \geq g(n) \text { for } n \geq n_{0} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
g(n)=o\left(n(\log n)^{-2}\right) \tag{2}
\end{equation*}
$$

then for any $0<\varepsilon<1$,

$$
\left|R_{k}(n)-g(n)\right|>([k / 2]!-\varepsilon) \sqrt{g(n)}
$$

holds for infinitely many positive integers n.
Remark 1. In [1], the authors proved a similar result for $g(n)=c n$, where c is a positive constant.

In [5], the authors proved that for a positive integer d, if $R_{k}(n) \geq d$ for all sufficiently large integers n, then $R_{k}(n) \geq d+2 \sqrt{d}+1$ for infinitely many positive integers n. It happens that the method in this paper can be used to improve this result. The other results in [5] can be improved similarly.

Theorem 2. Let d be a positive integer. If $R_{k}(n) \geq d$ for all sufficiently large integers n, then $R_{k}(n) \geq d+2[k / 2]!\sqrt{d}+([k / 2]!)^{2}$ for infinitely many positive integers n.

2. Preliminary lemmas

Let $z=r e(\alpha)$, where $r=1-1 / N, N$ is a large integer and $e(\alpha)=e^{2 \pi i \alpha}, \alpha$ is a real variable. We write

$$
F(z)=\sum_{a \in A} z^{a} .
$$

Suppose that $1 \leq R_{k}(n) \leq n$ for all sufficiently large integers n. Then, by

$$
F^{k}\left(r^{2}\right)=\sum_{n=0}^{\infty} R_{k}(n) r^{2 n}
$$

the infinite series $F(z)=\sum_{a \in A} z^{a}$ is absolutely convergent for $|z|<1$ and $F\left(r^{2}\right) \rightarrow+\infty$ as $N \rightarrow+\infty$.

Lemma 1. Let ℓ be a positive integer. Then

$$
\int_{0}^{1}\left|F^{2 \ell}(z)\right| d \alpha \geq(\ell!+o(1)) F^{\ell}\left(r^{2}\right)
$$

Proof. We have

$$
\begin{aligned}
& \int_{0}^{1}\left|F^{2 \ell}(z)\right| d \alpha=\int_{0}^{1} F^{\ell}(z) \overline{F^{\ell}(z)} d \alpha \\
& =\int_{0}^{1} \sum_{a_{i_{1}}, \ldots, a_{i_{2 \ell}} \in A} r^{a_{i_{1}}+\cdots+a_{i_{2 \ell}}} e\left(\left(a_{i_{1}}+\cdots+a_{i_{\ell}}-a_{i_{\ell+1}}-\cdots-a_{i_{2 \ell}}\right) \alpha\right) d \alpha \\
& =\sum_{a_{i_{1}}+\cdots+a_{i_{\ell}}-a_{i_{\ell+1}}-\cdots-a_{i_{2 \ell}}=0} r^{a_{i_{1}}+\cdots+a_{i_{2 \ell}}} \geq \ell!\sum_{i_{1}, \ldots, i_{\ell}} \sum_{\text {pairwise distinct }} r^{2 a_{i_{1}}+\cdots+2 a_{i_{\ell}}} \\
& \geq \ell!\cdot\left(\sum_{i_{1}, \ldots, i_{\ell}} r^{2 a_{i_{1}}+\cdots+2 a_{i_{\ell}}}-\sum_{\substack{1 \leq u<v \leq \ell}} \sum_{\substack{i_{1}, \ldots, i_{\ell} \\
i_{u}=i_{v}}} r^{2 a_{i_{1}}+\cdots+2 a_{i_{\ell}}}\right) \\
& =\ell!\cdot\left(F^{\ell}\left(r^{2}\right)-\frac{1}{2} \ell(\ell-1) F\left(r^{4}\right) F^{\ell-2}\left(r^{2}\right)\right) \\
& \geq \ell!\cdot\left(F^{\ell}\left(r^{2}\right)-\frac{1}{2} \ell(\ell-1) F^{\ell-1}\left(r^{2}\right)\right)=(\ell!+o(1)) F^{\ell}\left(r^{2}\right) .
\end{aligned}
$$

This completes the proof of Lemma 1.
Lemma 2. Let k be an integer with $k \geq 2$. Then

$$
\int_{0}^{1}\left|F^{k}(z)\right| d \alpha \geq([k / 2]!+o(1)) F^{k / 2}\left(r^{2}\right)
$$

Proof. If k is even, then Lemma 2 follows from Lemma 1 . If $k=2 \ell+1$ is odd, then, by Hölder inequality and Lemma 1, we have

$$
\begin{aligned}
\left(\int_{0}^{1}\left|F^{k}(z)\right| d \alpha\right)^{\frac{k-1}{k}} & =\left(\int_{0}^{1}\left|F^{k}(z)\right| d \alpha\right)^{\frac{k-1}{k}} \cdot\left(\int_{0}^{1} 1 d \alpha\right)^{1 / k} \\
& \geq \int_{0}^{1}|F(z)|^{k-1} d \alpha=\int_{0}^{1}|F(z)|^{2 \ell} d \alpha \geq(\ell!+o(1)) F^{\ell}\left(r^{2}\right)
\end{aligned}
$$

Thus

$$
\int_{0}^{1}\left|F^{k}(z)\right| d \alpha \geq(\ell!+o(1))^{\frac{k}{k-1}} F^{k / 2}\left(r^{2}\right) \geq([k / 2]!+o(1)) F^{k / 2}\left(r^{2}\right)
$$

This completes the proof of Lemma 2.

3. Proof of Theorem 1

Suppose that there exists an infinite sequence $A=\left\{a_{1} \leq a_{2} \leq \ldots\right\}$ of nonnegative integers, $\varepsilon_{0}>0$ and $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|R_{k}(n)-g(n)\right| \leq\left([k / 2]!-\varepsilon_{0}\right) \sqrt{g(n)} \quad \text { for all } n \geq n_{1} \tag{3}
\end{equation*}
$$

By (1), (2) and (3) we have $1 \leq R_{k}(n) \leq n$ for all sufficiently large integers n. For $|z|<1$, we have

$$
F^{k}(z)=\sum_{n=0}^{\infty} R_{k}(n) z^{n}=\sum_{n=0}^{\infty} g(n) z^{n}+\sum_{n=0}^{\infty}\left(R_{k}(n)-g(n)\right) z^{n}
$$

Let

$$
\begin{gathered}
J=\int_{0}^{1}\left|F^{k}(z)\right| d \alpha, \quad J_{1}=\int_{0}^{1}\left|\sum_{n=0}^{\infty} g(n) z^{n}\right| d \alpha \\
J_{2}=\int_{0}^{1}\left|\sum_{n=0}^{\infty}\left(R_{k}(n)-g(n)\right) z^{n}\right| d \alpha
\end{gathered}
$$

Then

$$
\begin{equation*}
J \leq J_{1}+J_{2} \tag{4}
\end{equation*}
$$

By Lemma 2 we have

$$
\begin{equation*}
J \geq([k / 2]!+o(1)) F^{k / 2}\left(r^{2}\right) \tag{5}
\end{equation*}
$$

Similar to the proof of Horváth [4], we have

$$
\begin{equation*}
J_{1}=o\left(\left(\sum_{n=0}^{\infty} R_{k}(n) r^{2 n}\right)^{1 / 2}\right)=o\left(F^{k / 2}\left(r^{2}\right)\right) \tag{6}
\end{equation*}
$$

By (3), for all $n \geq n_{2}\left(\geq n_{1}\right)$, we have

$$
\begin{equation*}
R_{k}(n) \geq g(n)-\left([k / 2]!-\varepsilon_{0}\right) \sqrt{g(n)} \geq g(n)\left(1+\varepsilon_{0} /(2[k / 2]!)\right)^{-2} \tag{7}
\end{equation*}
$$

By Cauchy's inequality, Parseval's formula, the assumption and (7) we have

$$
\begin{aligned}
J_{2} & \leq\left(\int_{0}^{1}\left|\sum_{n=0}^{\infty}\left(R_{k}(n)-g(n)\right) z^{n}\right|^{2} d \alpha\right)^{\frac{1}{2}}=\left(\sum_{n=0}^{\infty}\left(R_{k}(n)-g(n)\right)^{2} r^{2 n}\right)^{\frac{1}{2}} \\
& =\left(\sum_{n=0}^{n_{2}-1}\left(R_{k}(n)-g(n)\right)^{2} r^{2 n}+\sum_{n=n_{2}}^{\infty}\left(R_{k}(n)-g(n)\right)^{2} r^{2 n}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{n=0}^{n_{2}-1}\left(R_{k}(n)-g(n)\right)^{2}+\left([k / 2]!-\varepsilon_{0}\right)^{2} \sum_{n=n_{2}}^{\infty} g(n) r^{2 n}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{align*}
& \leq\left(\sum_{n=0}^{n_{2}-1}\left(R_{k}(n)-g(n)\right)^{2}+\left([k / 2]!-\varepsilon_{0}\right)^{2}\left(1+\varepsilon_{0} /(2[k / 2]!)\right)^{2} \sum_{n=n_{2}}^{\infty} R_{k}(n) r^{2 n}\right)^{\frac{1}{2}} \\
& \leq\left([k / 2]!-\frac{1}{2} \varepsilon_{0}\right)\left(\sum_{n=0}^{\infty} R_{k}(n) r^{2 n}\right)^{1 / 2}+O(1) \\
& =\left([k / 2]!-\frac{1}{2} \varepsilon_{0}\right) F^{k / 2}\left(r^{2}\right)+O(1) \tag{8}
\end{align*}
$$

By (4), (5), (6) and (8), dividing by $F^{k / 2}\left(r^{2}\right)$ and letting $N \rightarrow \infty$, we have $[k / 2]!\leq[k / 2]!-\varepsilon_{0} / 2$, which is impossible. This completes the proof of Theorem 1.

4. Proof of Theorem 2

Suppose that $d \leq R_{k}(n)<d+2[k / 2]!\sqrt{d}+([k / 2]!)^{2}$ for all sufficiently large integers n. Then $1 \leq R_{k}(n) \leq n$ for all sufficiently large integers n. Let l be the largest integer with

$$
l<2[k / 2]!\sqrt{d}+([k / 2]!)^{2}
$$

Then

$$
d+l-[k / 2]!\sqrt{d+l}<d+[k / 2]!\sqrt{d} .
$$

Let c be a real number with

$$
\max \{d+l-[k / 2]!\sqrt{d+l}, d-[k / 2]!\sqrt{d}\}<c<d+[k / 2]!\sqrt{d} .
$$

Then

$$
(d+j-c)^{2}<([k / 2]!)^{2}(d+j), \quad j=0,1, \ldots, l .
$$

Choose a real number $0<\delta<[k / 2]$! such that

$$
(d+j-c)^{2}<([k / 2]!-\delta)^{2}(d+j), \quad j=0,1, \ldots, l .
$$

Thus

$$
\begin{equation*}
\left(R_{k}(n)-c\right)^{2}<([k / 2]!-\delta)^{2} R_{k}(n) \tag{9}
\end{equation*}
$$

for all integers $n \geq n_{3}$. For $|z|<1$, we have

$$
F^{k}(z)=\sum_{n=0}^{\infty} R_{k}(n) z^{n}=\sum_{n=0}^{\infty} c z^{n}+\sum_{n=0}^{\infty}\left(R_{k}(n)-c\right) z^{n} .
$$

Let

$$
\begin{gathered}
J=\int_{0}^{1}\left|F^{k}(z)\right| d \alpha, \quad J_{1}=\int_{0}^{1}\left|\sum_{n=0}^{\infty} c z^{n}\right| d \alpha \\
J_{2}=\int_{0}^{1}\left|\sum_{n=0}^{\infty}\left(R_{k}(n)-c\right) z^{n}\right| d \alpha .
\end{gathered}
$$

By Lemma 2 we have

$$
\begin{equation*}
J \geq([k / 2]!+o(1)) F^{k / 2}\left(r^{2}\right) \tag{10}
\end{equation*}
$$

By [4] (see also [5]) we have

$$
\begin{equation*}
J_{1}=|c| \int_{0}^{1} \frac{1}{|1-z|} d \alpha \ll \log N \tag{11}
\end{equation*}
$$

By Cauchy's inequality, Parseval's formula, the assumption and (9) we have

$$
\begin{align*}
J_{2} & \leq\left(\int_{0}^{1}\left|\sum_{n=0}^{\infty}\left(R_{k}(n)-c\right) z^{n}\right|^{2} d \alpha\right)^{\frac{1}{2}}=\left(\sum_{n=0}^{\infty}\left(R_{k}(n)-c\right)^{2} r^{2 n}\right)^{\frac{1}{2}} \\
& =\left(\sum_{n=0}^{n_{3}-1}\left(R_{k}(n)-c\right)^{2} r^{2 n}+\sum_{n=n_{3}}^{\infty}\left(R_{k}(n)-c\right)^{2} r^{2 n}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{n=0}^{n_{3}-1}\left(R_{k}(n)-c\right)^{2}+([k / 2]!-\delta)^{2} \sum_{n=n_{3}}^{\infty} R_{k}(n) r^{2 n}\right)^{\frac{1}{2}} \\
& \leq([k / 2]!-\delta) F^{k / 2}\left(r^{2}\right)+O(1) . \tag{12}
\end{align*}
$$

By $J \leq J_{1}+J_{2},(10),(11)$ and (12), dividing by $F^{k / 2}\left(r^{2}\right)$ and letting $N \rightarrow \infty$, we have $[k / 2]!\leq[k / 2]!-\delta / 2$, which is impossible. This completes the proof of Theorem 2.

References

[1] Y. G. Chen and M. Tang, A quantitative Erdős-Fuchs theorem and its generalization, Acta Arith. 149 (2011), 171-180.
[2] P. Erdős and A. SÁrközy, Problems and results on additive properties of general sequences, I, Pacific J. Math. 118 (1985), 347-357.
[3] G. Horváth, On an additive property of sequences of nonnegative integers, Period. Math. Hungar. 45(1-2) (2002), 73-80.
[4] G. Horváth, An improvement of a theorem of Erdős and Sárközy, Pollack Periodica 2 (2007), 155-161.
[5] M. Tang and Y. G. Chen, Some extensions of a property of linear representation functions, Discrete Math. 309 (2009), 6294-6298.

YONG-GAO CHEN
SCHOOL OF MATHEMATICAL SCIENCES
AND INSTITUTE OF MATHEMATICS
NANJING NORMAL UNIVERSITY
NANJING 210023
P. R. CHINA

E-mail: ygchen@njnu.edu.cn
MIN TANG
SCHOOL OF MATHEMATICS
AND COMPUTER SCIENCE
ANHUI NORMAL UNIVERSITY
WUHU 241003
P. R. CHINA

E-mail: tmzzz2000@163.com
(Received May 7, 2012)

[^0]: Mathematics Subject Classification: 11B34.
 Key words and phrases: General sequences; additive representation functions.
 This work was supported by the National Natural Science Foundation of China, Grant Nos. 11071121 and 10901002, and Anhui Provincial Natural Science Foundation, Grant No 1208085QA02.

