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On a theorem of Erdős and Sárközy

By YONG-GAO CHEN (Nanjing) and MIN TANG (Wuhu)

Abstract. Let A = {a1, a2, . . . }(a1 6 a2 6 · · · ) be an infinite sequence of nonne-

gative integers, k ≥ 2 be a fixed integer and denote by Rk(n) the number of solutions of

ai1+ai2+· · ·+aik = n. In this paper, we prove that if g(n) is a monotonically increasing

arithmetic function with g(n) → +∞ and g(n) = o
(
n(log n)−2

)
, then for any 0 < ε < 1,

|Rk(n)−g(n)| > ([k/2]!−ε)
√

g(n) holds for infinitely many positive integers n. We also

prove that for a positive integer d, if Rk(n) ≥ d for all sufficiently large integers n, then

Rk(n) ≥ d+ 2[k/2]!
√
d+ ([k/2]!)2 for infinitely many positive integers n.

1. Introduction

Let A = {a1, a2, . . . }(0 6 a1 6 a2 6 · · · ) be an infinite sequence of non-

negative integers, k ≥ 2 be a fixed integer and denote by Rk(n) the number of

solutions of

ai1 + ai2 + · · ·+ aik = n.

In 1985, P. Erdős and A. Sárközy [2] proved that if g(n) is an arithmetic func-

tion satisfying g(n) → +∞, g(n+1) ≥ g(n) for n ≥ n0 and g(n) = o
(
n(log n)−2

)
,

then R2(n)− g(n) = o((g(n))1/2) cannot hold. In 2002, G. Horváth [3] extend

this result to all k > 2. In 2007, G. Horváth [4] improved the above result,

he proved that if 0 < ε < 1 and g(n) is a real arithmetic function such that
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g(n) → +∞, g(n + 1) ≥ g(n) for n ≥ n0 and g(n) = o
(
n(log n)−2

)
, then there

does not exist n1 such that |Rk(n)− g(n)| ≤ (1− ε)
√
g(n) for all n ≥ n1.

In this paper, we obtain a stronger version of the above results:

Theorem 1. If g(n) is an arithmetic function such that

g(n) → +∞, g(n+ 1) ≥ g(n) for n ≥ n0 (1)

and

g(n) = o
(
n(log n)−2

)
, (2)

then for any 0 < ε < 1,

|Rk(n)− g(n)| > ([k/2]!− ε)
√
g(n)

holds for infinitely many positive integers n.

Remark 1. In [1], the authors proved a similar result for g(n) = cn, where c

is a positive constant.

In [5], the authors proved that for a positive integer d, if Rk(n) ≥ d for all

sufficiently large integers n, then Rk(n) ≥ d+2
√
d+1 for infinitely many positive

integers n. It happens that the method in this paper can be used to improve this

result. The other results in [5] can be improved similarly.

Theorem 2. Let d be a positive integer. If Rk(n) ≥ d for all sufficiently

large integers n, then Rk(n) ≥ d+2[k/2]!
√
d+([k/2]!)2 for infinitely many positive

integers n.

2. Preliminary lemmas

Let z = re(α), where r = 1− 1/N , N is a large integer and e(α) = e2πiα, α

is a real variable. We write

F (z) =
∑

a∈A

za.

Suppose that 1 ≤ Rk(n) ≤ n for all sufficiently large integers n. Then, by

F k(r2) =

∞∑
n=0

Rk(n)r
2n,

the infinite series F (z) =
∑

a∈A za is absolutely convergent for |z| < 1 and

F (r2) → +∞ as N → +∞.
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Lemma 1. Let ` be a positive integer. Then

∫ 1

0

∣∣F 2`(z)
∣∣dα ≥ (`! + o(1))F `(r2).

Proof. We have

∫ 1

0

∣∣F 2`(z)
∣∣dα =

∫ 1

0

F `(z)F `(z)dα

=

∫ 1

0

∑

ai1
,...,ai2`

∈A

rai1
+···+ai2` e((ai1 + · · ·+ ai` − ai`+1

− · · · − ai2`)α)dα

=
∑

ai1+···+ai`
−ai`+1

−···−ai2`
=0

rai1+···+ai2` ≥ `!
∑

i1,...,i` pairwise distinct

r2ai1+···+2ai`

≥ `! ·
( ∑

i1,...,i`

r2ai1+···+2ai` −
∑

1≤u<v≤`

∑

i1,...,i`
iu=iv

r2ai1+···+2ai`

)

= `! ·
(
F `(r2)− 1

2
`(`− 1)F (r4)F `−2(r2)

)

≥ `! ·
(
F `(r2)− 1

2
`(`− 1)F `−1(r2)

)
= (`! + o(1))F `(r2).

This completes the proof of Lemma 1. ¤

Lemma 2. Let k be an integer with k ≥ 2. Then

∫ 1

0

∣∣F k(z)
∣∣dα ≥ ([k/2]! + o(1))F k/2(r2).

Proof. If k is even, then Lemma 2 follows from Lemma 1. If k = 2`+ 1 is

odd, then, by Hölder inequality and Lemma 1, we have

(∫ 1

0

∣∣∣F k(z)
∣∣∣dα

) k−1
k

=

(∫ 1

0

|F k(z)|dα
) k−1

k

·
(∫ 1

0

1dα

)1/k

≥
∫ 1

0

|F (z)|k−1dα =

∫ 1

0

|F (z)|2`dα ≥ (`! + o(1))F `(r2).

Thus

∫ 1

0

∣∣F k(z)
∣∣dα ≥ (`! + o(1))

k
k−1F k/2(r2) ≥ ([k/2]! + o(1))F k/2(r2).

This completes the proof of Lemma 2. ¤
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3. Proof of Theorem 1

Suppose that there exists an infinite sequence A = {a1 ≤ a2 ≤ . . . } of

nonnegative integers, ε0 > 0 and n1 ∈ N such that

|Rk(n)− g(n)| ≤ ([k/2]!− ε0)
√
g(n) for all n ≥ n1. (3)

By (1), (2) and (3) we have 1 ≤ Rk(n) ≤ n for all sufficiently large integers n.

For |z| < 1, we have

F k(z) =

∞∑
n=0

Rk(n)z
n =

∞∑
n=0

g(n)zn +

∞∑
n=0

(Rk(n)− g(n))zn.

Let

J =

∫ 1

0

∣∣F k(z)
∣∣dα, J1 =

∫ 1

0

∣∣∣∣
∞∑

n=0

g(n)zn
∣∣∣∣dα,

J2 =

∫ 1

0

∣∣∣∣
∞∑

n=0

(Rk(n)− g(n))zn
∣∣∣∣dα.

Then

J ≤ J1 + J2. (4)

By Lemma 2 we have

J ≥ ([k/2]! + o(1))F k/2(r2). (5)

Similar to the proof of Horváth [4], we have

J1 = o

(( ∞∑
n=0

Rk(n)r
2n

)1/2
)

= o(F k/2(r2)). (6)

By (3), for all n ≥ n2(≥ n1), we have

Rk(n) ≥ g(n)− ([k/2]!− ε0)
√
g(n) ≥ g(n)(1 + ε0/(2[k/2]!))

−2. (7)

By Cauchy’s inequality, Parseval’s formula, the assumption and (7) we have

J2 ≤
(∫ 1

0

∣∣∣∣
∞∑

n=0

(Rk(n)− g(n))zn
∣∣∣∣
2

dα

) 1
2

=

( ∞∑
n=0

(Rk(n)− g(n))2r2n
) 1

2

=

( n2−1∑
n=0

(Rk(n)− g(n))2r2n +

∞∑
n=n2

(Rk(n)− g(n))2r2n
) 1

2

≤
( n2−1∑

n=0

(Rk(n)− g(n))2 + ([k/2]!− ε0)
2

∞∑
n=n2

g(n)r2n
) 1

2
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≤
( n2−1∑

n=0

(Rk(n)− g(n))2 + ([k/2]!− ε0)
2(1 + ε0/(2[k/2]!))

2
∞∑

n=n2

Rk(n)r
2n

) 1
2

≤
(
[k/2]!− 1

2
ε0

)( ∞∑
n=0

Rk(n)r
2n

)1/2

+O(1)

=

(
[k/2]!− 1

2
ε0

)
F k/2(r2) +O(1). (8)

By (4), (5), (6) and (8), dividing by F k/2(r2) and letting N → ∞, we have

[k/2]! ≤ [k/2]!−ε0/2, which is impossible. This completes the proof of Theorem 1.

4. Proof of Theorem 2

Suppose that d ≤ Rk(n) < d+ 2[k/2]!
√
d+ ([k/2]!)2 for all sufficiently large

integers n. Then 1 ≤ Rk(n) ≤ n for all sufficiently large integers n. Let l be the

largest integer with

l < 2[k/2]!
√
d+ ([k/2]!)2.

Then

d+ l − [k/2]!
√
d+ l < d+ [k/2]!

√
d.

Let c be a real number with

max{d+ l − [k/2]!
√
d+ l, d− [k/2]!

√
d} < c < d+ [k/2]!

√
d.

Then

(d+ j − c)2 < ([k/2]!)2(d+ j), j = 0, 1, . . . , l.

Choose a real number 0 < δ < [k/2]! such that

(d+ j − c)2 < ([k/2]!− δ)2(d+ j), j = 0, 1, . . . , l.

Thus

(Rk(n)− c)2 < ([k/2]!− δ)2Rk(n) (9)

for all integers n ≥ n3. For |z| < 1, we have

F k(z) =

∞∑
n=0

Rk(n)z
n =

∞∑
n=0

czn +

∞∑
n=0

(Rk(n)− c)zn.
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Let

J =

∫ 1

0

∣∣F k(z)
∣∣dα, J1 =

∫ 1

0

∣∣∣∣
∞∑

n=0

czn
∣∣∣∣dα,

J2 =

∫ 1

0

∣∣∣∣
∞∑

n=0

(Rk(n)− c)zn
∣∣∣∣dα.

By Lemma 2 we have

J ≥ ([k/2]! + o(1))F k/2(r2). (10)

By [4] (see also [5]) we have

J1 = |c|
∫ 1

0

1

|1− z|dα ¿ logN. (11)

By Cauchy’s inequality, Parseval’s formula, the assumption and (9) we have

J2 ≤
(∫ 1

0

∣∣∣∣
∞∑

n=0

(Rk(n)− c)zn
∣∣∣∣
2

dα

) 1
2

=

( ∞∑
n=0

(Rk(n)− c)2r2n
) 1

2

=

( n3−1∑
n=0

(Rk(n)− c)2r2n +

∞∑
n=n3

(Rk(n)− c)2r2n
) 1

2

≤
( n3−1∑

n=0

(Rk(n)− c)2 + ([k/2]!− δ)2
∞∑

n=n3

Rk(n)r
2n

) 1
2

≤ ([k/2]!− δ)F k/2(r2) +O(1). (12)

By J ≤ J1 + J2, (10), (11) and (12), dividing by F k/2(r2) and letting N → ∞,

we have [k/2]! ≤ [k/2]! − δ/2, which is impossible. This completes the proof of

Theorem 2.
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