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On the structure of the homeomorphism and diffeomorphism
groups fixing a point

By JACEK LECH (Krakow) and ILONA MICHALIK (Krakow)

Abstract. Let M be a manifold, p ∈ M and let H(M,p) be the identity com-

ponent of the group of all compactly supported homeomorphisms of M fixing p. It

is shown that H(M,p) is a perfect group. Next, we prove that the group H(Rn, 0) is

bounded. In contrast, in the C∞ category the diffeomorphism group D∞(Rn, 0), analo-

gous to H(Rn, 0), is neither perfect nor bounded. Finally, the boundedness and uniform

perfectness of H(M,p) is studied.

1. Introduction

Let M be a topological metrizable manifold and let H(M) be the identity

component of the group of all compactly supported homeomorphisms of M . By

H(M,p), where p ∈ M , we denote the identity component of the group of all

h ∈ H(M) with h(p) = p.

Recall that a group G is called perfect if it is equal to its own commutator

subgroup [G,G], that is H1(G) = 0. Moreover we say that a manifold M admits

a compact exhaustion iff there is a sequence {Mi}∞i=1 of compact submanifolds

with boundary such that M1 ⊂ IntM2 ⊂ M2 ⊂ . . . and M =
⋃∞

i=1 Mi.

The following basic fact is probably well-known, see e.g., [13].
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Theorem 1.1. Assume that either M is compact (possibly with boundary),

or M is noncompact boundaryless and admits a compact exhaustion. Then H(M)

is perfect. If M is also connected then H(M) is simple.

The proof of the perfectness is a consequence of Mather’s paper [16] com-

bined with Edwards and Kirby [5], Corollary 1.3 and Remark 7.2. A special

case of Theorem 1.1 was already showed by Fisher [7]. There exist some gene-

ralizations of Theorem 1.1 (see, e.g., [10], [22], [20]). The simplicity follows from

a theorem of Epstein [6] (see also [20]).

Let M be a smooth manifold of class Cr, r = 1, . . . ,∞. The symbol Dr(M)

(resp. Dr(M,p)) will stand for the identity component of the group of all com-

pactly supported Cr-diffeomorphisms of M (resp. fixing p ∈ M). Theorem 1.1

is a C0 analogue of Thurston’s theorem which states that the group D∞(M) is

perfect and simple (see [26], [3]). Mather in [17] and [18] proved that Dr(M) is

perfect and simple as well for r 6= dimM +1. The case r = dimM +1 is unsolved

(see [19], [14]). The simplicity theorems on the classical diffeomorphism groups

are also known ([2], [3], [11], [23], [26]). The structure of the C∞-diffeomorphism

group of a manifold with boundary has been studied in [24], [15], [21] and [1].

It is easy to see that Dr(M,p) is not perfect for r ≥ 1. Moreover, Fukui cal-

culated in [8] that H1(D∞(Rn, 0)) = R. In the topological category the situation

is different.

Theorem 1.2. (1) The groups H(Rn, 0) and H(Rn
+, 0) are perfect, where

Rn
+ = [0,∞)× Rn−1.

(2) If M fulfils the assumption of Theorem 1.1 then the group H(M,p) is perfect.

A similar result was obtained by Tsuboi in [28]. He proved that H([0, 1]) is

perfect by using different argument than that for Theorem 1.2 (in particular, he

did not apply [5]). Next he generalized the result for Lipschitz homeomorphisms

and for C1-diffeomorphisms (resp. C∞-diffeomorphisms) tangent (resp. infinitely

tangent) to the identity at the endpoints. Observe as well that Theorem 1.2 was

proved for M closed by Fukui in [9]. However, our proof is different than that

in [9] and it leads to Corollary 3.7 on the uniform perfectness.

Recall that a group is bounded if it is bounded with respect to any bi-invariant

metric. Our main result is the following

Theorem 1.3. (1) H(Rn, 0) is bounded group.

(2) Under the assumption of Theorem 1.1 the group H(M) is bounded whenever

H(M,p) is bounded.
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Note that this theorem is no longer true in the Cr category for r ≥ 1. (See

Proposition 4.2).

The fact that D∞(M) is bounded for many types of manifolds is known

in view of the recent result by Burago, Ivanov and Polterovich [4] (see

also [13]). In the proofs of the above theorems we develop some technical ideas

from [13].

We will also show some other properties of the group H(M,p). Namely, in

Section 3 we prove that H(Rn, 0) is uniformly perfect and its commutator length

diameter is ≤ 2. In Section 5 we show that H(M,p) is uniformly perfect provided

the fragmentation norm fragdM is bounded. In the last section some concluding

remarks are given.

2. Deformation properties of the space of isotopies

The proofs of Theorems 1.1, 1.2 and 1.3 depend on the deformation properties

for the spaces of isotopies obtained by Edwards and Kirby in [5]. See also

Siebenmann [25].

Let I = [0, 1]. For an isotopy {ht}t∈I of M we set

supp({ht}t∈I) =
⋃

t∈I supp(ht). In the sequel we will write ht instead of {ht}t∈I .

By a ball we mean a relatively compact open ball. For U ⊂ M we denote by

HU (M) the identity component of the group of all homeomorphisms compactly

supported in U .

We have the following fragmentation property.

Lemma 2.1 ([5]). Let M be as in Theorem 1.1 and let ht : M → M , t ∈ I,

be a compactly supported isotopy of M with h0 = Id. Then there exist isotopies

hi
t : M → M , i = 1, . . . , k, such that ht = h1

t . . . h
k
t , h

i
0 = Id and supp(hi

t) ⊂ Bi,

i = 1, . . . , k, where each Bi is a ball or half-ball. Moreover

(1) If ∂M 6= ∅ and ht = Id on ∂M for all t, then hi
t = Id on ∂M for all i and t.

(2) Let p ∈ M . If ht ∈ H(M,p) for all t, then hi
t ∈ H(M,p) for all i and t.

Proof. ForM compact the first assertion coincides with Corollary 1.3 in [5].

Next, (1) and (2) follow from Remark 7.2 (p. 81–83 in [5]).

Now, assume that M admits a compact exhaustion {Mj}∞j=1 and let ht be

an isotopy in H(M). Then ht is supported in Mj for some j ∈ N. Hence ht = Id

on ∂Mj . From (1) with M = Mj we get isotopies h1
t , . . . , h

k
t in H(Mj) such that

ht = h1
t . . . h

k
t and hi

t = Id on ∂Mj , for i = 1, . . . , k. We extend each hi
t to M by

setting hi
t = Id outside Mj . ¤
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Corollary 2.2. Lemma 2.1 is still valid for elements of H(M) instead of

isotopies.

In the sequel we will need the following version of Isotopy Extension Theorem.

Theorem 2.3 ([5]). Let M be a metrizable topological manifold. Suppose

that ft is an isotopy in H(M) with f0 = Id and that K ⊂ M is a compact set.

Then for any open neighborhood U of the set
⋃

t∈I ft(K) there exists an isotopy

gt in H(M) such that gt = ft on K and supp(gt) ⊂ U for t ∈ I.

3. Basic lemma and the perfectness of H(M,p)

In this section we will prove Theorem 1.2. We begin with the following fact

which plays an important role in studies on homeomorphism groups.

Lemma 3.1 (Basic lemma, [16]). Let U ⊂ M be an open set and B ⊂ M

be a ball such that B ⊂ U . Then there exist u ∈ HU (M) and a homomorphism

ϕ : HB(M) → HU (M) such that h = [ϕ(h), u] for all h ∈ HB(M).

Proof. Choose a ball B′ such that B ⊂ B′ ⊂ B′ ⊂ U . Next, fix p ∈ ∂B′

and set B0 = B. There exists a sequence of balls {Bi}∞i=1 with Bi ⊂ B′, i ≥ 1,

where the family {Bi}∞i=0 is pairwise disjoint, locally finite in B′, and Bi → p as

i → ∞.

Since HU (M) acts transitively on the family of balls in B′ we can find a

homeomorphism u ∈ HU (M) such that u(Bi−1) = Bi for i = 1, 2, . . . . Then we

define a homomorphism ϕ : HB(M) → HU (M) by the formula

ϕ(h) =

{
uihu−i on Bi, i = 0, 1, . . .

Id outside
⋃∞

i=0 Bi .

It is obvious that h = [ϕ(h), u] as required. ¤

The above fact appeared in Mather’s paper [16]. Actually, Mather proved

also the acyclicity of H(Rn). Obviously, [16] and Lemma 3.1 are no longer true

for C1-homeomorphisms. However, Tsuboi gave an excellent improvement of this

reasoning and adapted it for Cr-diffeomorphisms with small r (see [27]).

Let G be a group. For g ∈ [G,G] the least k such that g is a product of k

commutators is called the commutator length of g and is denoted by clG(g).

We will need some results from [4]. A subgroup H of G is called strongly m-

displaceable if there exists f∈G such that the subgroupsH, fHf−1, . . . , fmHf−m

pairwise commute. Then we say that f m-displaces H.
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Theorem 3.2 ([4]). Let G be a group and H a subgroup G. If some g ∈ G

m-displaces H for every m ≥ 1 then for all h ∈ [H,H] we get clG(h) ≤ 2.

Another useful result is the following

Proposition 3.3. If U , V are open disjoint subsets of M such that there

exists f ∈ H(M) with f(U ∪ V ) ⊂ V then f m-displaces HU (M) for all m ≥ 1.

Proof. Indeed, this follows from the relation fm(U) ⊂ fm−1(V ) \ fm(V )

for every m ≥ 1. ¤

Let Sn−1 be the unit sphere. We denote S = Sn−1 ⊂ Rn in the case H(Rn, 0)

and S = Sn−1 ∩ Rn
+ in the case H(Rn

+, 0). Moreover let A(a, b) = S × (a, b) and

A(a, b) = S × [a, b] for 0 < a < b < ∞.

Corollary 3.4. Let M = Rn and U = A(b, a) for some a > b > 0. Then

every h ∈ HU (Rn) is expressed as the product of two commutators of elements of

HU (Rn).

Proof. Let h ∈ HU (Rn). Since HU (Rn) is perfect from Theorem 1.1 then

h ∈ [HU (Rn),HU (Rn)]. Let h|U = [h1, h2] . . . [h2k−1, h2k] for some k ∈ N and

h1, . . . , h2k ∈ H(U). Each hi has compact support in U so we may extend hi to

Rn by hi = Id outside U . Moreover there are a′, b′ such that a > a′ > b′ > b and

supp(hi) ⊂ V = A(b′, a′) for i = 1, . . . , 2k. Especially h ∈ [HV (Rn),HV (Rn)].

Choose c′, d′ with b′ > c′ > d′ > b and denote W = A(d′, c′). There exists

homeomorphism ũ : [0,∞) → [0,∞) with support in (b, a) such that ũ(d′, a′) ⊂
(d′, c′). By setting u = IdS ×ũ we get u ∈ HU (Rn) and u(V ∪W ) ⊂ W .

From Proposition 3.3 u ∈ HU (Rn) m-displaces HV (Rn) for every m ≥ 1. In

view of Theorem 3.2 we get clHU (Rn)(h) ≤ 2 as required. ¤

Suppose that {Ui}i∈N is a pairwise disjoint, locally finite family of open

sets of M \ {p}. Put U =
⋃∞

i=1 Ui. By H(M,U) we denote the group of all

homeomorphisms supported in U such that there exists the decomposition h =

h1h2 . . . with supp(hi) ⊂ Ui such that hi ∈ HUi(M), i ∈ N.
Corollary 3.5. Let M = Rn and take a sequence

a1 > b1 > a2 > b2 > · · · > 0

tending to 0. Next, set U =
⋃∞

i=1 Ui, where Ui = A(bi, ai). Then any element of

the group H(M,U) is expressed as the product of two commutators of elements

of H(M,U).
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Indeed, we may use Corollary 3.4 for each i and glue together homeomorp-

hisms obtained in this manner.

Proposition 3.6. For every f ∈ H(Rn, 0) with supp(f) ⊂ S×[0, d0], d0 > 1,

there exists a sequence

c0 = d0 > a1 > b1 > c1 > d1 > · · · > ak > bk > ck > dk > · · · > 0 (3.1)

tending to 0, and g, h ∈ H(Rn, 0) such that f = gh,

(1) g = f on
∞⋃
j=1

A(cj , bj) and h = f on
∞⋃
j=1

A(aj , dj−1),

(2) supp(g) ⊂
∞⋃
j=1

A(dj , aj) and supp(h) ⊂
∞⋃
j=1

A(bj , cj−1)

(3) if g = g1g2 . . . with supp(gj) ⊂ A(dj , aj) then gj ∈ HA(dj ,aj)(Rn) and

analogously for h = h1h2 . . . with supp(hj) ⊂ A(bj , cj−1) we have hj ∈
HA(bj ,cj−1)(Rn) for j = 1, 2, . . . .

Proof. In the proof we apply Theorem 2.3 for M = Rn \ {0}.
Let f ∈ H(Rn, 0) and let ft be an isotopy from Id to f . Choose d0 >

a1 > b1 > c1 > d1 > 0 such that
⋃

t∈I ft(A(c1, b1)) ⊂ A(d1, a1). From The-

orem 2.3 there is an isotopy g1t in H(Rn) such that g1t = ft on A(c1, b1) and

supp(g1t ) ⊂ A(d1, a1). Moreover g1t ∈ HA(d1,a1)(Rn) that is g1t is isotopy sup-

ported in A(d1, a1). Here we put g1t (0) = 0.

Define h1
t = (g1t )

−1ft on A(b1, c0) and h1
t = Id otherwise. Then h1

t = ft on

A(a1, d0), supp(h
1
t ) ⊂ A(b1, c0) and h1

t ∈ HA(b1,c0)(Rn). Let f1
t = (g1t h

1
t )

−1ft.

Then supp(f1
t ) ⊂ A(0, c1).

Inductively, suppose we have defined a sequence d0 > a1 > b1 > c1 > d1 >

· · · > ai > bi > ci > di and isotopy f i
t ∈ HA(0,ci)(Rn).

We take di >ai+1 >bi+1 >ci+1 >di+1 > 0 such that
⋃

t∈I f
i
t (A(ci+1, bi+1)) ⊂

A(di+1, ai+1). From Theorem 2.3 there exists an isotopy gi+1
t in H(Rn) such that

gi+1
t = f i

t on A(ci+1, bi+1) and gi+1
t ∈ HA(di+1,ai+1)(Rn). We define hi+1

t ∈ H(Rn)

by hi+1
t = (gi+1

t )−1f i
t on A(bi+1, ci) and hi+1

t = Id outside this set. We get

hi+1
t = f i

t on A(ai+1, di) and hi+1
t ∈ HA(bi+1,ci)(Rn). Let f i+1

t = (gi+1
t hi+1

t )−1f i
t .

Products g =
∏∞

i=1 g
i
1 and h =

∏∞
i=1 h

i
1 have the required properties. ¤

Proof of Theorem 1.2 for H(Rn, 0). For f ∈ H(Rn, 0) we take g, h as

in above proposition. (The proof of the case H(Rn
+, 0) is contained in the proof

of Corollary 3.7 below).

Denote Ui = A(di, ai) and U =
⋃∞

i=1 Ui. In view of Corollary 3.5 with M =

Rn we get g = [g1, g2][g3, g4] for g1, g2, g3, g4 ∈ H(M,U). It is easily seen that
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gi ∈ H(Rn, 0), i = 1, 2, 3, 4. Consequently g ∈ [H(Rn, 0),H(Rn, 0)]. Analogously

for h. Thus H(Rn, 0) is a perfect group. It follows (1).

To show (2) we use Corollary 2.2 combined with (1). ¤

For any perfect group G denote by cldG the commutator length diameter

of G, i.e. cldG := supg∈G clG(g). Next, G is called uniformly perfect if G is perfect

and cldG < ∞.

Note that recently Burago, Ivanov and Polterovich in [4] and, inde-

pendently, Tsuboi in [29] proved that the groups D∞(M) are uniformly perfect

for many types of M and calculated some estimations on the commutator length

diameter of these groups. The results and their proofs depend on the topology

of M .

Using the above proof we get immediately that cldH(Rn,0) ≤ 4. But by mo-

dification of the construction in Lemma 3.1 we obtain better estimation.

Corollary 3.7. The group H(Rn, 0) is uniformly perfect and cldH(Rn,0) ≤ 2.

The same is true for H(Rn
+, 0).

Proof. For f ∈ H(Rn, 0) let g, h and U be as in the proof of Theorem 1.2.

(The case H(Rn
+, 0) is analogous).

For each i ≥ 1 choose d̄i, āi such that di−1 > āi > ai > di > d̄i > āi+1 > ai+1

and set Vi = A(d̄i, āi). There exists homeomorphism ũ : [0,∞) → [0,∞) with

compact support such that ũ(d̄i, āi) = (d̄i+1, āi+1) and ũ(d̄i, ai)  (d̄i+1, di+1) for

every i ≥ 1.

Take u = IdS ×ũ. Then u ∈ H(Rn, 0) and u(Ui) ⊂ u(Vi) = Vi+1 for i ≥ 1.

Notice also that sets uj(Ui) are pairwise disjoint for all i≥ 1, j≥ 0, and uj(Ui) → 0

as j → ∞.

We define

ϕ(g) =

{
ujgu−j on uj(Ui), i ≥ 1, j ≥ 0

Id outside
⋃

i,j u
j(Ui) .

From the fact that g ∈ H(Rn, U) we obtain ϕ(g) ∈ H(Rn, 0) and g = [ϕ(g), u].

Analogously for h. Hence clH(Rn,0)(f) ≤ 2. ¤

4. Conjugation-invariant norms and the boundedness of H(M)

Let G be a group. A conjugation-invariant norm (or norm for short) on G

is a function ν : G → [0,∞) for every g, h ∈ G we have

(1) ν(g) > 0 if and only if g 6= e,
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(2) ν(g−1) = ν(g),

(3) ν(gh) ≤ ν(g) + ν(h),

(4) ν(hgh−1) = ν(g).

It is easy to see that G is bounded if and only if any conjugation-invariant

norm on G is bounded.

Observe that the commutator length clG is a conjugation-invariant norm on

[G,G], or on G if G is a perfect group.

From Corollary 2.2 for any h ∈ H(M) there is a decomposition h = h1 . . . hk

such that hi ∈ HBi
(M), where Bi is a ball or half-ball for i = 1, . . . , k. Hence

we may introduce the following fragmentation norm fragM on H(M). Namely,

for h ∈ H(M), h 6= Id, we define fragM (h) to be the least k > 0 such that

h = h1 . . . hk as above. We take fragdM := suph∈H(M) fragM (h) as the diameter

of H(M) in fragM .

Analogously, from Lemma 2.1 (2) we may define another fragmentation norm,

fragM,p, for the group H(M,p) instead of H(M). However, in view of the proof

of Remark 7.2 in [5] we obtain

Proposition 4.1. For every h ∈ H(M,p) one has fragM,p(h) = fragM (h).

Burago, Ivanov and Polterovich proved in [4] that D∞(M) is bounded

(and a fortiori uniformly perfect) for many manifolds. They stated there that

they did not know any example of M such that D∞(M) is unbounded.

On the other hand, we have the following

Proposition 4.2. The groups Dr(M,p) for r = 1, . . . ,∞ are unbounded.

Proof. Choose a chart at p. Then there is the epimorphism Dr(M,p) 3
f 7→ jacp f ∈ R+, where jacp f is the jacobian of f at p in this chart. From

Proposition 1.3 in [4] an abelian group is bounded if and only if it is finite. Now

Lemma 1.10 in [4] implies that Dr(M,p) is unbounded. ¤

In the sequel we need

Theorem 4.3 ([4]). Let G be a group with a conjugation-invariant norm ν

and H a subgroup G. Suppose that some g ∈ G m-displaces H for every m ≥ 1.

Then ν(h) ≤ 14ν(g) for all h ∈ [H,H].

5. Boundedness of H(M,p)

In this section we will prove Theorem 1.3.
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Proposition 5.1. Let R > 0. For any sequence

R > a1 > b1 > a2 > b2 > · · · > 0

tending to 0, there exists h ∈ H(Rn, 0) such that for every i = 1, 2, . . .

h(A(b2i−1, a2i−1) ∪A(b2i, a2i)) ⊂ A(b2i, a2i).

Moreover, if we have another sequence

R > c1 > d1 > c2 > d2 > · · · > 0

tending to 0, then there is ϕ ∈ H(Rn, 0) of the form ϕ = IdS ×ϕ̃ with ϕ̃(bi, ai) =

(di, ci) for i = 1, 2, . . . .

Proof of Theorem 1.3. First, we show the boundedness of H(Rn, 0).

Fix a conjugation-invariant norm ν on H(Rn, 0) and let f ∈ H(Rn, 0) with

supp(f) ⊂ S × [0, d0], d0 > 1. From Proposition 3.6 there exist a sequence

c0 = d0 > a1 > b1 > c1 > d1 > · · · > 0

tending to 0, and homeomorphisms h1, h2, h3, h4 ∈ H(Rn, 0) with f = h1h2h3h4

such that

h1 = f on

∞⋃

j=1

A(c2j−1, b2j−1), supp(h1) ⊂ U1 :=

∞⋃

j=1

A(d2j−1, a2j−1),

h2 = f on

∞⋃

j=1

A(c2j , b2j), supp(h2) ⊂ U2 :=

∞⋃

j=1

A(d2j , a2j),

h3 = f on

∞⋃

j=1

A(a2j−1, d2j−2), supp(h3) ⊂ U3 :=

∞⋃

j=1

A(b2j−1, c2j−2),

h4 = f on

∞⋃

j=1

A(a2j , d2j−1), supp(h4) ⊂ U4 :=

∞⋃

j=1

A(b2j , c2j−1).

Moreover we get hi ∈ H(M,Ui) for i = 1, 2, 3, 4.

Next, fix a sequence tending to 0

R > ā1 > b̄1 > ā2 > b̄2 > · · · > 0.

From Proposition 5.1 there are g ∈ H(Rn, 0) such that

g(A(b̄2i−1, ā2i−1) ∪A(b̄2i, ā2i)) ⊂ A(b̄2i, ā2i)
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and ϕ1 ∈H(Rn, 0) such that ϕ1(A(b̄i, āi))=A(di, ai). Then ϕ1gϕ
−1
1 (U1∪U2)⊂U2.

From Proposition 3.3 homeomorphism ϕ1gϕ
−1
1 m-displaces H(Rn, U1) for

every m ≥ 1. Since h1 ∈ [H(Rn, U1),H(Rn, U1)] in view of Corollary 3.5, then

from Theorem 4.3 we obtain

ν(h1) ≤ 14ν(ϕ1gϕ
−1
1 ) = 14ν(g).

Using analogous estimations for h2, h3, h4 with some ϕ2, ϕ3, ϕ4 ∈ H(Rn, 0) we

get

ν(f) ≤ ν(h1) + ν(h2) + ν(h3) + ν(h4) ≤ 56ν(g)

as required.

Now we prove the second part of Theorem 1.3.

Assume that H(M,p) is bounded. Let ν be a conjugation-invariant norm on

H(M) and let f ∈ H(M).

If M is noncompact we may choose ϕ ∈ H(M) such that ϕfϕ−1 ∈ H(M,p).

Then

ν(f) = ν(ϕfϕ−1) = ν|H(M,p)(ϕfϕ
−1)

is bounded.

ForM compact, let ft be an isotopy from Id to f such thatK=
⋃

t∈I ft({p}) 6=
M . Fix a neighbourhood U of K and x /∈ U . Then from Theorem 2.3 there is

an isotopy gt in H(M) such that gt = ft on K and supp(gt) ⊂ U . Note that

g−1
t ft(p) = p for every t.

Now take ϕ ∈ H(M) such that ϕ(x) = p and ϕgϕ−1 ∈ H(M,p) where g = g1.

Hence we get

ν(f) ≤ ν(g) + ν(g−1f) = ν|H(M,p)(ϕgϕ
−1) + ν|H(M,p)(g

−1f)

which is bounded for every conjugation-invariant norm ν on H(M). ¤
Corollary 5.2. If fragdM is bounded then H(M,p) is uniformly perfect and

cldH(M,p) ≤ 2 fragdM .

Proof. Let f ∈ H(M,p). From Corollary 2.2 we may write f = f1 . . . fk
where supp(fi) ⊂ Bi and fi ∈ H(M,p) for i = 1, . . . , k. Here Bi is a ball or

half-ball for each i and we may assume that k ≤ fragdM .

Now fix i. If p ∈ supp(fi) then from Corollary 3.7 we have clH(M,p)(fi) ≤ 2.

If p /∈ supp(fi) choose an open set Ui of M with Ui ∩ Bi = ∅ and p /∈ Ui.

There exists a homeomorphism ϕi ∈ H(M,p) such that ϕi(Bi ∪ Ui) ⊂ Ui. Then

Proposition 3.3 implies that ϕi m-displaces HBi(M,p) for every m ≥ 1 and from

Theorem 3.2 we get clH(M,p)(fi) ≤ 2. Hence

clH(M,p)(f) ≤ clH(M,p)(f1) + · · ·+ clH(M,p)(fk) ≤ 2 fragdM

as required. ¤
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6. Final remarks

1. In view of the proofs of Theorems 1.2 and 1.3 we have

Corollary 6.1. The group H([0, 1]) is perfect and bounded.

Note that H([0, 1]) coincides with the group of all orientation-preserving ho-

meomorphisms of [0, 1].

2. Let 0 < s ≤ r ≤ ∞ and let Dr
s(Rn, 0) be the subgroup of all elements of

H(Rn, 0) of class Cr that are s-tangent to the identity at 0. It is easily seen that

Dr
s(Rn, 0) is not perfect if s < r. Indeed, for any diffeomorphisms f, g ∈ Dr

s(Rn, 0)

we have

Ds+1(fg)(0) = Ds+1f(0) +Ds+1g(0), Ds+1f−1(0) = −Ds+1f(0).

Therefore if we choose h ∈ Dr
s(Rn, 0) such thatDs+1h(0) 6= 0, the above equalities

yield that h cannot be in the commutator subgroup.

On the other hand, it is likely that Dr
r(Rn, 0) is perfect for r = 1, . . . ,∞. See

Sergeraert [24], Masson [15] and Tsuboi [28].

3. Haller and Teichmann introduced in [12] the concept of local smooth

perfectness of diffeomorphism groups. They proved that essentially the groups

D∞(M) are locally smoothly perfect for all boundaryless manifolds M different

than R. It is an interesting problem whether the groupD∞
∞(M) is locally smoothly

perfect.
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