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A note on the Apostol–Bernoulli and Apostol–Euler
polynomials

By MIN-SOO KIM (Gyeongsangnam-do) and SU HU (Daejeon)

Abstract. Let α ∈ N0 = {0, 1, 2, . . . }. In this paper, we show provide several

relationships between the generalized Apostol–Bernoulli polynomials B
(α)
n (x;λ) and the

generalized Apostol–Euler polynomials E
(α)
n (x;λ) which involve both the main results

of Luo–Srivastava in [Q.-M. Luo and H. M. Srivastava, Some relationships bet-

ween the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl.

51 (2006), 631–642] and the main results of Srivastava–Pintér in [H. M. Srivas-

tava and Á. Pintér, Remarks on some relationships between the Bernoulli and Euler

polynomials, Appl. Math. Lett. 17 (4) (2004), 375–380] in the case of α ∈ N0.

1. Introduction

The Bernoulli polynomials Bm(x) and Euler polynomials Em(x) are defined

by the following exponential generating functions:

(
t

et − 1

)
ext =

∞∑
m=0

Bm(x)
tm

m!
,

(
2

et + 1

)
ext =
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m=0

Em(x)
tm

m!
, (1.1)

respectively.

The following relationship between the Bernoulli and Euler polynomials is

well-known:

Bn(x) =

n∑

k=0
(k 6=1)

(
n

k

)
BkEn−k(x) (n ∈ N0), (1.2)
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(see Cheon’s work in [5, p. 368, Theorem 3]).

For a real and complex parameter α, the generalized Bernoulli polynomials

B
(α)
n (x) and the generalized Euler polynomials E

(α)
n (x), each of degree n in x as

well as in α, are defined by the following generating functions (see Section 2.8

of [11]):
(

t

et − 1

)α

ext =

∞∑
m=0

B(α)
m (x)

tm

m!
,

(
2

et + 1

)α

ext =
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m=0

E(α)
m (x)

tm

m!
, (1.3)

respectively.

Clearly, we have

B(1)
n (x) = Bn(x) and E(1)

n (x) = En(x). (1.4)

In [33], Srivastava and Pintér got the following relationships between

the generalized Bernoulli polynomials and the classical Euler polynomials which

generalized (1.2):

Theorem 1.1 (Srivastava and Pintér, [33, Theorem 1 and 2]). The fol-

lowing relationships:

B(α)
n (x+ y) =

n∑

i=0

(
n

i

)(
B

(α)
i (x) +

i

2
B

(α−1)
i−1 (x)

)
En−i(y),

E(α)
n (x+ y) =

n+1∑

i=0

2

i+ 1

(
n

i

)(
E

(α−1)
i+1 (x)− E

(α)
i+1(x)

)
Bn−i(y) (α ∈ C;n ∈ N0)

hold true between the generalized Bernoulli (Euler) polynomials and the classical

Euler (Bernoulli) polynomials.

In this paper, we show that similar relationships also exist between the ge-

neralized Apostol–Bernoulli polynomials and the generalized Apostol–Euler poly-

nomials. Since for α ∈ N0, the generalized Bernoulli polynomials and the gene-

ralized Euler polynomials are special cases of the generalized Apostol–Bernoulli

polynomials and the generalized Apostol–Euler polynomials, respectively. Thus

we generalize the above Srivastava and Pintér’s theorem in the case of α ∈ N0.

Our paper is organized as follows.

In Section 2, we will recall the definitions, some background and progres-

ses related to Apostol-type polynomials. In Section 3, we shall apply the um-

bral equivalence of the generating functions to get several recurrence relations of

the generalized Apostol–Bernoulli polynomials and the generalized Apostol–Euler

polynomials. In Section 4, we will prove our main results which involve both the

main results of Luo–Srivastava in [22, Theorem 1 and 2] (see Corollary 4.2

below) and the main results of Srivastava–Pintér in [33, p. 379] in the case of

α ∈ N0 (see Corollary 4.3 below).



A note on the Apostol–Bernoulli and Apostol–Euler polynomials 451

2. Apostol–Bernoulli polynomials

The Apostol–Bernoulli polynomials Bm(x, λ) are natural generalizations of

Bernoulli polynomials, they were first introduced by Apostol [1] in order to

study the Lipschitz–Lerch zeta functions. Their definitions are as follows,

(
t

λet − 1

)
ext =

∞∑
m=0

Bm(x, λ)
tm

m!
, (2.1)

where |t| ≤ 2π when λ = 1; |t| ≤ | log λ| when λ 6= 1 (see [14], [21]).

In particular, Bm(λ) = Bm(0, λ) are the Apostol–Bernoulli numbers. Lett-

ing λ = 1 in (2.1), we obtained the classical Bernoulli polynomials Bm(x) and

Bernoulli numbers Bm, respectively.

In [21, p. 290–302], Luo and Srivastava generalized the definitions of

Apostol–Bernoulli polynomials to the higher order (also called the generalized

Apostol–Bernoulli polynomials) case as follows:

Definition 2.1. For α ∈ N0, the Apostol–Bernoulli polynomials B
(α)
n (x;λ) of

order α in the variable x are defined by means of the following generating function

eB
(α)(x;λ)z ≡

∞∑
n=0

(B(α)(x;λ)z)n

n!
≡

∞∑
n=0

B(α)
n (x;λ)

zn

n!
=

(
z

λez − 1

)α

exz,

where |z| < 2π when λ = 1; |z| < | log λ| when λ 6= 1, the symbol ≡ is used

to denote symbolic or umbral equivalences. In particular, B
(α)
n (λ) = B

(α)
n (0, λ)

denote Apostol–Bernoulli numbers of order α. Clearly, we have

B(1)
n (x; 1) = Bn(x) and B(1)

n (0; 1) = Bn (2.2)

in terms of the classical Bernoulli polynomials Bn(x) and the classical Bernoulli

numbers Bn.

In [14], Luo also introduced the concept of higher order Apostol–Euler poly-

nomials as follows:

Definition 2.2. For α ∈ N0, the Apostol–Euler polynomials E
(α)
n (x;λ) of

order α in the variable x are defined by means of the following generating function

eE
(α)(x;λ)z ≡

∞∑
n=0

(E(α)(x;λ)z)n

n!
≡

∞∑
n=0

E(α)
n (x;λ)

zn

n!
=

(
2

λez + 1

)α

exz,

where λ 6= −1, |z| < | log(−λ)|, the symbol ≡ is used to denote the symbolic or

umbral equivalences.
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In particular, E
(α)
n (λ) = E

(α)
n (0, λ) denotes the Apostol–Euler numbers of

order α. Clearly, we have

E(1)
n (x; 1) = En(x) and 2nE(1)

n

(
1

2
; 1

)
= 2nEn

(
1

2

)
= En (2.3)

in terms of the classical Euler polynomials En(x) and the classical Euler num-

bers En.

By Definition 2.1, we have

B
(`)
i (y;λ) = 0 (0 ≤ i ≤ `− 1) (2.4)

where ` ∈ N.
From the generating functions in Definitions 2.1 and 2.2, it is easily seen that

B(0)
n (x) = E(0)

n (x) = xn (n ∈ N0). (2.5)

The properties of Apostol-type polynomials have been studied in detail by

many authors.

In [36], Srivastava introduced and investigated some of the principal ge-

neralizations and unifications of Bernoulli, Euler and Genocchi polynomials and

their corresponding numbers by means of suitable generating functions. He also

presented several interesting properties of these general polynomial systems inclu-

ding some explicit series representations in terms of the Hurwitz (or generalized)

zeta function and the familiar Gauss hypergeometric function. By introducing the

λ-Stirling numbers of the second kind, he derived several properties and formulas

and considered some of their interesting applications to the family of the Apostol

type polynomials. He also gave a brief expository and historical account of the va-

rious basic (or q-) extensions of the classical Bernoulli polynomials and numbers,

the classical Euler polynomials and numbers, the classical Genocchi polynomials

and numbers, and also of their generalizations such as the above-mentioned fa-

milies of the Apostol-type polynomials and numbers. Finally, he also indicated

relevant connections of the definitions and results presented in his survey with

those in earlier as well as forthcoming investigations.

In [37], the revised, enlarged and updated version of the earlier book by

Srivastava and Choi entitled “Series Associated with the Zeta and Related

Functions” (Kluwer Academic Publishers, Dordrecht, Boston and London, 2001),

the authors gave a systematic collection of various families of series associated

with the Riemann and Hurwitz Zeta functions, as well as with many other higher

transcendental functions, which are closely related to these functions. In this
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book, the historical account, vast literatures and many fundamental properties

for the Apostol-type polynomials and numbers have also been introduced.

In [4], Choi, Jang and Srivastava presented an explicit representation

of the generalized Bernoulli polynomials in terms of a generalization for the

Hurwitz–Lerch zeta function. Boyadzhiev [3] found some relationships between

the Apostol–Bernoulli polynomials, the classical Eulerian polynomials and the

derivative polynomials for the cotangent functions. We [10] obtained the sums of

products identity for the Apostol–Bernoulli numbers which is an analogue of the

classical sums of products identity for Bernoulli numbers dating back to Euler.

Luo [12], Bayad [2], Navas, Francisco and Varona [29] investigated Fourier

expansions for the Apostol–Bernoulli and Apostol–Euler polynomials. Luo [13]

got many formulas for the Apostol–Bernoulli polynomials by using the Gauss-

ian hypergeometric functions. Luo [16] investigated multiplication formulas for

Apostol-type polynomials and introduced λ-multiple alternating sums, which are

evaluated by Apostol-type polynomials, in particular, he derived some explicit

recursive formulas and deduced some interesting special cases that involve the

classical Raabe formulas and some earlier results of Carlitz and Howard. Luo

and Srivastava [24] systematically studied the Apostol–Genocchi polynomials

of higher order, in particular, they established several elementary properties, pro-

vided some explicit relationships with the Apostol–Bernoulli polynomials and

Apostol–Euler polynomials, and they also derived various explicit series repres-

entations in terms of the Gaussian hypergeometric function and the Hurwitz (or

generalized) zeta function. Luo in [17], Luo and Zhou in [25] investigated the q-

Bernoulli and Euler polynomials, q-Genocchi polynomials, respectively. Luo and

Srivastavan [23] obtained a q-analogue of the Srivastava–Pintér addition the-

orem (Theorem 1.1 above). Luo [18] introduced and investigated the λ-Stirling

numbers of the second kind, in particular, he gave an explicit relationship between

the generalized Apostol–Bernoulli and Apostol–Euler polynomials in terms of the

λ-Stirling numbers of the second kind. Luo [19] extended the definition of the

Genocchi polynomials and investigated their Fourier expansions and integral rep-

resentations, he obtained their formulas at rational arguments in terms of Hurwitz

zeta function and showed an explicit relationship with Gaussian hypergeometric

functions. Luo [20] gave some explicit relationships between the Apostol–Euler

polynomials and the generalized Hurwitz–Lerch zeta function, he also obtained

some series representations of the Apostol–Euler polynomials of higher order in

terms of the generalized Hurwitz–Lerch zeta function. Luo and Srivastava [26]

proved several symmetry identities for the generalized Apostol-type polynomi-

als by using their generating functions. Srivastava, Garg, and Choudhary
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[34], [35] introduced and investigated a generalization of the Bernoulli and Euler

polynomials by means of a suitable generating function, in particular, they gave

explicit series representations for these general polynomials in terms of a cert-

ain generalized Hurwitz–Lerch zeta function and the Gaussian hypergeometric

function. Tremblay, Gaboury and Fugere [39] introduced and investigated

a new class of generalized Apostol–Bernoulli polynomials based on a definition

given by Natalini and Bernardini in [27] for the generalized Bernoulli poly-

nomials, in particular, they obtained a generalization of the Srivastava–Pintér

addition theorem (Theorem 1.1 above). Özarslan [30] presented and studied

a unified family of polynomials which involves the Apostol–Bernoulli, Euler and

Genocchi polynomials. Garg, Jain and Srivastava [8] derived an explicit rep-

resentation of the generalized Apostol–Bernoulli polynomials of higher order in

terms of a generalization of the Hurwitz–Lerch Zeta function and established a

functional relationship between the generalized Apostol–Bernoulli polynomials of

rational arguments and the Hurwitz (or generalized) Zeta function, in particular,

their results provided extensions of those given earlier by Apostol in [1] and

Srivastava in [32]. Srivastava, Kurt and Simsek [38] constructed the gene-

rating functions for several families of Genocchi type polynomials, they defined

a function which interpolates these polynomials at negative integers by applying

the derivative operator to these generating functions, they proved a multiplica-

tion theorem for these polynomials, they also proved several other identities and

provided many applications associated with these and related polynomials and

their interpolation functions.

Recently, Luo and Srivastava proved the following relationships among

the generalized Apostol–Bernoulli and the generalized Apostol–Euler polynomials

(see [14, Proposition 3 and Proposition 6]) and [21, (56)]:

B(α+β)
n (x+ y;λ) =

n∑

k=0

(
n

k

)
B

(α)
k (x;λ)B

(β)
n−k(y;λ), (2.6)

E(α+β)
n (x+ y;λ) =

n∑

k=0

(
n

k

)
E

(α)
k (x;λ)E

(β)
n−k(y;λ), (2.7)

λB(α)
n (x+ 1;λ)−B(α)

n (x;λ) = nB
(α−1)
n−1 (x;λ), (2.8)

λE(α)
n (x+ 1;λ) + E(α)

n (x;λ) = 2E(α−1)
n (x;λ). (2.9)
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3. Recurrence relations

The well-known relations among the generalized Apostol–Bernoulli polyno-

mials and the generalized Apostol–Euler polynomials are as follows:

B(α+1)
n (x;λ) =

(
1− n

α

)
B(α)

n (x;λ) + (x− α)
n

α
B

(α)
n−1(x;λ), (3.1)

E(α+1)
n (x;λ) =

2

α
E

(α)
n+1(x;λ)− (x− α)

2

α
E(α)

n (x;λ). (3.2)

These have been found by several authors, for references, see, e.g., [14, Propo-

sition 8] and [40, Theorem 1.2 and Theorem 1.3.]. In this section, several new

recurrence relations will be given among the generalized Apostol–Bernoulli poly-

nomials and the generalized Apostol–Euler polynomials.

From (3.1) and (3.2), replacing x by x + y, and letting α = 1, we have the

following recurrences:

B(2)
n (x+ y;λ) = (1− n)Bn(x+ y;λ) + n(x+ y − 1)Bn−1(x+ y;λ), (3.3)

E(2)
n (x+ y;λ) = 2En+1(x+ y;λ)− 2(x+ y − 1)En(x+ y;λ). (3.4)

Letting α = β = 1 in (2.6) and (2.7), we have

B(2)
n (x+ y;λ) =

n∑

k=0

(
n

k

)
Bk(x;λ)Bn−k(y;λ), (3.5)

E(2)
n (x+ y;λ) =

n∑

k=0

(
n

k

)
Ek(x;λ)En−k(y;λ). (3.6)

By (3.3), (3.4), (3.5), and (3.6), we have

n∑

k=0

(
n

k

)
Bk(x;λ)Bn−k(y;λ) = (1− n)Bn(x+ y;λ)

+ n(x+ y − 1)Bn−1(x+ y;λ), (3.7)

n∑

k=0

(
n

k

)
Ek(x;λ)En−k(y;λ) = 2En+1(x+ y;λ)

− 2(x+ y − 1)En(x+ y;λ). (3.8)

These equations can be viewed as a λ-extensions of the following well-known

results (see [6, (3.2) and (4.2)]):

n∑

k=0

(
n

k

)
Bk(x)Bn−k(y) = (1− n)Bn(x+ y) + n(x+ y − 1)Bn−1(x+ y), (3.9)
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n∑

k=0

(
n

k

)
Ek(x)En−k(y) = 2En+1(x+ y)− 2(x+ y − 1)En(x+ y). (3.10)

Setting x = y = 0 in (3.9), we get the following convolution recurrence:

n∑

k=0

(
n

k

)
BkBn−k = (1− n)Bn − nBn−1 (3.11)

for the classical Bernoulli numbers (see [6], [9], [10]). Notice that, we can also

get much more formulas from (3.10). For example, by setting x = y = 1
2 in

(3.10), we get a way to express En(1) in the right hand side in terms of the Euler

numbers En (see (2.3)).

Now we apply the umbral equivalence for the generating functions to get the

following two recurrence relations on the generalized Apostol–Bernoulli polyno-

mials and the generalized Apostol–Euler polynomials:

Lemma 3.1. For α ∈ N0 and n ∈ N, the following formulas hold true

n∑

k=0

(
n

k

)
αn−kB

(2α)
k (x− y;λ) =

1

λα

n∑

k=0

(−1)n−k

(
n

k

)
B

(α)
k (x;λ)B

(α)
n−k(y;λ

−1),

n∑

k=0

(
n

k

)
αn−kE

(2α)
k (x− y;λ) =

1

λα

n∑

k=0

(−1)n−k

(
n

k

)
E

(α)
k (x;λ)E

(α)
n−k(y;λ

−1).

Proof. It is obvious that

(λez)α
(

z

λez − 1

)2α

e(x−y)z =

(
z

λez − 1

)α

exz
( −z

λ−1e−z − 1

)α

e−yz.

Thus

λαezαeB
(2α)(x−y;λ)z ≡ eB

(α)(x;λ)zeB
(α)(y;λ−1)(−z) ≡ e(B

(α)(x;λ)−B(α)(y;λ−1))z.

So writing in the non-umbral form we have

λα(α+B(2α)(x− y;λ))n = (B(α)(x;λ)−B(α)(x;λ−1))n.

By Definition 2.2, we can also obtain the second formula similarly. ¤

We shall obtain the following relationship which also involves the well-known

sums of products identities for Bernoulli numbers dating back to Euler:
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Theorem 3.2. For n ∈ N0, we have

n∑

k=0

(−1)n−k

(
n

k

)
Bk(x;λ)Bn−k(x;λ

−1) = (1− n)Bn(λ).

Remark 3.3. Setting α = λ = 1 in the above Theorem, we can obtain the

following convolution recurrence relationship:

n∑

k=0

(−1)k
(
n

k

)
BkBn−k = (−1)n−1(n− 1)Bn,

equivalently, we have the well-known sums of products identities for Bernoulli

numbers
n−1∑

k=1

(
2n

2k

)
B2kB2n−2k = −(2n+ 1)B2n, n ≥ 2.

This has been found by many authors, including Euler (see [6], [7], [9], [31]). In

[6], Dilcher remarked that: “it may be of interest to find formulas of the above

type for sums of products of generalized Bernoulli numbers.”

ProofofTheorem 3.2. The following recurrence relationship is well-known:

B0(λ) = 0, λ(1 +B(λ))n −Bn(λ) =

{
1, n = 1

0, n > 1,
(3.12)

where we use the usual convention about replacing (B(λ))i by Bi(λ) (i ≥ 0).

Setting α = 1 in first part of Lemma 3.1, we get

1

λ

n∑

k=0

(−1)n−k

(
n

k

)
Bk(x;λ)Bn−k(y;λ

−1) =

n∑

k=0

(
n

k

)
B

(2)
k (x− y;λ)

=

n∑

k=0

(
n

k

)
{(1− k)Bk(x− y;λ) + k(x− y − 1)Bk−1(x− y;λ)} , (3.13)

which may be considered as a dual of (3.7).

Letting y = x in (3.13), and using (3.3) and (3.12), we have

1

λ

n∑

k=0

(−1)n−k

(
n

k

)
Bk(x;λ)Bn−k(x;λ

−1) =

n∑

k=0

(
n

k

)
B

(2)
k (λ)

=

n∑

k=0

(
n

k

)
((1− k)Bk(λ)− kBk−1(λ))
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=

n∑

k=0

(
n

k

)
Bk(λ)−

n∑

k=0

(
n

k

)
kBk(x)−

n∑

k=0

(
n

k

)
kBk−1(λ)

=

n∑

k=0

(
n

k

)
Bk(λ)−

n∑

k=0

{(
n

k

)
k +

(
n

k + 1

)
(k + 1)

}
Bk(λ)

=

n∑

k=0

(
n

k

)
Bk(λ)− n

n∑

k=0

(
n

k

)
Bk(λ)

= (1− n)

n∑

k=0

(
n

k

)
Bk(λ) = (1− n)

1

λ
Bn(λ). (3.14)

Finally, by (3.14), we get the desired result. ¤

We also have the following recurrence relationship for the Apostol–Euler

polynomials:

Theorem 3.4. For n ∈ N0, we have

n∑

k=0

(−1)n−k

(
n

k

)
Ek(x;λ)En−k(x;λ

−1) = −2En+1(λ).

Proof. The proof is similar to that of Theorem 3.2. ¤

The following relationship has already involved the well-known relationship

between the classical Bernoulli and the classical Euler polynomials (see [33, p. 376,

(10) and (11)]):

Lemma 3.5 (Addition theorem). For α ∈ N0, the following relationship

holds true:

2nB(α)
n

(
x+ y

2
;λ2

)
=

n∑

k=0

(
n

k

)
B

(α)
k (x;λ)E

(α)
n−k(y;λ)

or, equivalently,

B(α)
n

(
x+ y;λ2

)
=

1

2n

n∑

k=0

(
n

k

)
B

(α)
k (2x;λ)E

(α)
n−k(2y;λ).

Proof. It is obvious that

(
2z

λ2e2z − 1

)α

e(
x+y
2 )2z =

(
z

λez − 1

)α

exz
(

2

λez + 1

)α

eyz.
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Thus

eB
(α)( x+y

2 ;λ2)2z ≡ eB
(α)(x;λ)zeE

(α)(y;λ)z ≡ e(B
(α)(x;λ)+E(α)(y;λ))z,

So writing in the non-umbral form we have

(
2B(α)

(
x+ y

2
;λ2

))n

= (B(α)(x;λ) + E(α)(y;λ))n,

which completes the proof of the lemma. ¤

Remark 3.6. Setting α = λ = 1 and x = 0 in Lemma 3.5, we obtain the

following well-known relationship between the classical Bernoulli and the classical

Euler polynomials (see [33, p. 376, (10) and (11)]):

Bn(y) =
1

2n

n∑

k=0

(
n

k

)
Bn−kEk(2y)

equivalently,

2nBn

(y
2

)
=

n∑

k=0

(
n

k

)
BkEn−k(y).

4. Main result

Theorem 4.1. For α ∈ N0, each of the following relationships holds true:

B(α)
n (x+ y;λ) =

n∑

i=0

(
n

i

)(
1

2`

∑̀

k=0

(
`

k

)
λkB

(α)
i (x+ k;λ)

)
E

(`)
n−i(y;λ)

and

E(α)
n (x+ y;λ) =

n+∑̀

i=0

(
n+ `

i

)
1

(n+ 1) · · · (n+ `)

×
(
(−1)`

∑̀

k=0

(
`

k

)
(−1)kλkE

(α)
i (x+ k;λ)

)
B

(`)
n+`−i(y;λ)

for the generalized Apostol–Bernoulli polynomials and the generalized Apostol–

Euler polynomials, respectively.
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Proof. It is obvious that

(
z

λez − 1

)α

e(x+y)z =

(
z

λez − 1

)α

exz
(

2

λez + 1

)`

eyz
(λez + 1)`

2`

≡ 1

2`
eB

(α)(x;λ)zeE
(`)(y;λ)z

∑̀

k=0

(
`

k

)
λkekz.

Thus

eB
(α)(x+y;λ)z ≡ 1

2`

∑̀

k=0

(
`

k

)
λke(B

(α)(x+k;λ)+E(`)(y;λ))z.

So writing in the non-umbral form we have

B(α)
n (x+ y;λ) =

1

2`

∑̀

k=0

(
`

k

)
λk(B(α)(x+ k;λ) + E(`)(y;λ))n,

which proves the first result.

For the second result, we have

(
2

λez + 1

)α

e(x+y)z =

(
2

λez + 1

)α

exz
(

z

λez − 1

)`

eyz
(λez − 1)`

z`

≡ (−1)`

z`
eE

(α)(x;λ)zeB
(`)(y;λ)z

∑̀

k=0

(
`

k

)
(−1)kλkekz.

Thus

eE
(α)(x+y;λ)z ≡ (−1)`

z`

∑̀

k=0

(
`

k

)
(−1)kλke(E

(α)(x+k;λ)+B(`)(y;λ))z.

So writing in the non-umbral form we have

∞∑
n=0

E(α)
n (x;λ)

zn

n!
=

(−1)`

z`

∑̀

k=0

(
`

k

)
(−1)kλk

∞∑
n=0

(E(α)(x+ k;λ) +B(`)(y;λ))n
zn

n!
.

By (2.4), if n < `, we have

(E(α)(x+ k;λ) +B(`)(y;λ))n =

n∑

i=0

(
n

i

)
E

(α)
n−i(x+ k;λ)B

(`)
i (y;λ) = 0.
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Thus

∞∑
n=0

E(α)
n (x;λ)

zn

n!
=

(−1)`

z`

∑̀

k=0

(
`

k

)
(−1)kλk

∞∑
n=0

(E(α)(x+ k;λ) +B(`)(y;λ))n
zn

n!

=
(−1)`

z`

∑̀

k=0

(
`

k

)
(−1)kλk

∞∑
n=0

(E(α)(x+ k;λ) +B(`)(y;λ))n+` zn

(n+ `)!
.

Comparing the coefficients in the both sides of the above identity, we obtain the

second result. ¤

Setting ` = 1 in the identities of Theorem 4.1, from (2.8) and (2.9), we have

1

2

1∑

k=0

(
1

k

)
λkB

(α)
i (x+ k;λ) =

1

2

(
B

(α)
i (x;λ) + λB

(α)
i (x+ 1;λ)

)

= B
(α)
i (x;λ) +

i

2
B

(α−1)
i−1 (x;λ) (4.1)

and

1∑

k=0

(
1

k

)
(−1)kλkE

(α)
i (x+ k;λ) = E

(α)
i (x;λ)− λE

(α)
i (x+ 1;λ)

= 2
(
E

(α)
i (x;λ)− E

(α−1)
i (x;λ)

)
, (4.2)

respectively.

Setting ` = 1 in Theorem 4.1, from (4.1), and (4.2), we arrive at the follo-

wing well-known Luo–Srivastava’s results [22, Theorem 1, p. 379; Theorem 2,

p. 380]).

Corollary 4.2 (Luo and Srivastava, [22, Theorem1 and 2]). For α, n∈N0,

B(α)
n (x+ y;λ) =

n∑

i=0

(
n

i

)(
B

(α)
i (x;λ) +

i

2
B

(α−1)
i−1 (x;λ)

)
En−i(y;λ),

E(α)
n (x+ y;λ) =

n+1∑

i=0

2

n+ 1

(
n+ 1

i

)(
E

(α−1)
i (x;λ)− E

(α)
i (x;λ)

)
Bn−i+1(y;λ).

Letting λ = 1 in Corollary 4.2, we obtain the following well-known Srivastava–

Pintér’s results in the case of α ∈ N0:
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Corollary 4.3 (Srivastava and Pintér, [33, Theorem 1 and 2]). For

α, n ∈ N0,

B(α)
n (x+ y) =

n∑

i=0

(
n

i

)(
B

(α)
i (x) +

i

2
B

(α−1)
i−1 (x)

)
En−i(y),

E(α)
n (x+ y) =

n+1∑

i=0

2

i+ 1

(
n

i

)(
E

(α−1)
i+1 (x)− E

(α)
i+1(x)

)
Bn−i(y).

Setting α = 1 in the first assertion of Corollary 1.1, letting y = 0 and make

use of (2.5), we also obtain the main relationship in Cheon’s work (cf., [5, p. 368,

Theorem 3]):

Bn(x) =

n∑

k=0
(k 6=1)

(
n

k

)
BkEn−k(x) (n ∈ N0).
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CANADA H3A 2K6

E-mail: suhu1982@gmail.com, hu@math.mcgill.ca

(Received June 28, 2012; revised March 25, 2013)


