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Elliptic divisibility sequences, squares and cubes

By BETÜL GEZER (Bursa)

Abstract. Elliptic divisibility sequences (EDSs) are generalizations of a class of

integer divisibility sequences called Lucas sequences. There has been much interest in

cases where the terms of Lucas sequences are squares or cubes. In this work, using

the Tate normal form having one parameter of elliptic curves with torsion points, the

general terms and periods of all elliptic divisibility sequences with a zero term are given

in terms of this parameter by means of Mazur’s theorem. It is shown that which term

hn of an EDS with zero terms can be a square or a cube by using the general terms of

these sequences.

1. Introduction

A divisibility sequence is a sequence (hn) (n ∈ N) of integers with the property

that hn|hm if n|m. There are also divisibility sequences satisfying a nonlinear re-

currence relation. These are the elliptic divisibility sequences and this recurrence

relation comes from the recursion formula for division polynomials on an elliptic

curve.

An elliptic divisibility sequence (EDS) is a sequence (hn) of integers satisfying

a nonlinear recurrence relation

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m (1.1)

and such that hn divides hm whenever n divides m for all m ≥ n ≥ 1. The

recurrence relation (1.1) is less straightforward than a linear recurrence.
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EDSs are generalizations of a class of integer divisibility sequences called

Lucas sequences. EDSs are quite interesting because of the close relation with

elliptic curves. EDSs have applications to cryptography and the elliptic curve

discrete logarithm problem. They were the first nonlinear divisibility sequences

to be studied. Morgan Ward wrote several papers detailing the arithmetic theory

of EDSs [28], [29].

In order to calculate terms, there are two useful formulas (known as dupli-

cation formulas) which are obtained from (1.1) by setting first m = k + 1, n = k

and then m = k + 1, n = k − 1:

h2k+1 = hk+2h
3
k − hk−1h

3
k+1, (1.2)

h2kh2 = hk(hk+2h
2
k−1 − hk−2h

2
k+1) (1.3)

for all k ∈ N. A solution of (1.1) is proper if h0 = 0, h1 = 1, and h2h3 6= 0. Such

a proper solution will be an EDS if and only if h2, h3, h4 are integers with h2|h4.

The sequence (hn) with initial values h0 = 0, h1 = 1, h2, h3 and h4 is denoted by

[1;h2;h3;h4].

Ward [29] gave formulas for a very special case of the EDSs whose second

or third term is zero which are called improper sequences. In fact, there are also

the EDSs for which the other term is zero. In this paper we give general terms all

of these sequences. This will also help us to determine the square or cube terms

in these sequences as described in the following sections.

In this paper we are interested in sequences with zero terms, i.e., the sequ-

ences in certain ranks. Thus we need to explain the concept of a rank of an EDS:

An integer m is said to be a divisor of the sequence (hn) if it divides some term

hk with k > 0. Let m be a divisor of (hn). We define the rank of apparition of m

in (hn) to be the integer ρ such that m|hρ and there is no integer j such that j is

a divisor of ρ with m|hj . Notice that this definition of the rank used for elliptic

divisibility sequences in this paper in this sense.

One of the well known theorems in the theory of elliptic curves is Mazur’s

theorem [14]. It states that there are no points of order 11, nor are there any points

of order 13 or more on an elliptic curve over Q. Hence, the rank of apparition of

the elliptic divisibility sequences associated to elliptic curves with points of finite

order can not be 11, nor 13 or more. Therefore, any of second, . . . , tenth and

twelfth terms of an elliptic divisibility sequence can be zero.

In this work we will answer the following questions:

• What are the initial values of the EDSs with second, . . . , tenth and twelfth

term zero ?
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• Is there any formula to calculate the terms of the EDSs with second, . . . ,

tenth and twelfth term zero which is more useful than relations above, i.e.,

what are the general terms of these sequences ?

• What are the periods of these sequences?

• Which terms of these sequences can be a square or a cube ?

The first two questions are discussed in Section 3. The initial values of

the EDSs with zero terms and the general terms of these sequences are given in

Theorem 3.1, and Theorem 3.2, respectively. The third question is considered

in Section 4, and the periods of these sequences are given in Theorem 4.2. In

Section 5, the question of when a term of an elliptic divisibility sequence with

zero terms can be a square or a cube is discussed in detail.

2. Some preliminaries on elliptic curves and EDSs

An elliptic curve over Q, is the set of solutions to an equation of the normal

form, or generalized Weierstrass form,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

with coefficients a1, . . . , a6 in Q. The set of all solutions (x, y) ∈ Q × Q to the

equation (2.1) together with the point O, called the point at infinity, is denoted

by E(Q) and called the set of Q-rational points on E. The set of Q-points on

E forms an abelian subgroup of E known as the Mordell–Weil group of E and

the point O is the identity element of this group. For more details on elliptic

curves in general, see [24], [25]. One of the most important theorems in the

theory of elliptic curves is the Mordell–Weil theorem, which implies that, if K is a

number field containing Q, then E(K) is a finitely generated abelian group. Also,

the Mordell–Weil theorem shows that Etors(K), the torsion subgroup of E(K), is
finitely generated and abelian, hence it is finite, since its generators are of finite

order. It is always interesting to characterize the torsion subgroup of a given

elliptic curve. The question of a uniform bound on Etors(Q) was studied from the

point of view of modular curves by Shimura, Ogg, and others. In 1976, B. Mazur

proved the following strongest result which had been conjectured by Ogg:

Theorem 2.1 (Mazur [14]). Let E be an elliptic curve defined over Q.
Then the torsion subgroup Etors(Q) is either isomorphic to Z/NZ for N =

1, 2, . . . , 10, 12 or to Z/2Z × Z/2NZ for N = 1, 2, 3, 4. Further, each of these

groups does occur as an Etors(Q).
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It is a classical result that all elliptic curves with a torsion point of order N

lie in a one parameter family where N ∈ {4, . . . , 10, 12}. The Tate normal form

of an elliptic curve E with point P = (0, 0) is defined by

E : y2 + (1− c)xy − by = x3 − bx2.

If an elliptic curve in normal form has a point of order N > 3, then admissible

change of variables transforms the curve to the Tate normal form, in this case

the point P = (0, 0) is a torsion point of maximal order. Especially, if we want

a classification with respect to the order of the torsion points, the use of Tate

normal form of elliptic curves is unavoidable.

In [12], Kubert listed one parameter family of elliptic curves E defined over

Q with a torsion point of order N where N = 4, . . . , 10, 12. Most cases are proved

by Husemöller, [11]. Also some algorithms are given by using the existence of

such a family, [6]. To decide when an elliptic curve defined over Q has a point of

given order N , we need a result on parametrization of torsion structures:

Theorem 2.2 ([6]). Every elliptic curve with a point P of order N =

4, . . . , 10, 12 can be written in the following Tate normal form

E : y2 + (1− c)xy − by = x3 − bx2,

with the following relations:

1. If N = 4, b = α, c = 0,

2. if N = 5, b = α, c = α,

3. if N = 6, b = α+ α2, c = α,

4. if N = 7, b = α3 − α2, c = α2 − α,

5. if N = 8, b = (2α− 1)(α− 1), c = b/α,

6. if N = 9, c = α2(α− 1), b = c(α(α− 1) + 1),

7. if N = 10, c = (2α3 − 3α2 + α)/(α− (α− 1)2), b = cα2/(α− (α− 1)2),

8. if N = 12, c = (3α2−3α+1)(α−2α2)/(α−1)3, b = c(−2α2+2α−1)/(α−1)

where α ∈ Z.
Theorem 2.2 states that, if any elliptic curve has a point of finite order then

this curve is birationally equivalent to one of the Tate normal forms given in the

theorem above. Therefore, in this work, we are only interested in the elliptic

curves in Tate normal forms with one integer parameter α and general terms of

the elliptic divisibility sequences given as functions of the integer parameter α.

Ward proved, in [29], that birationally equivalent elliptic curves are associ-

ated to equivalent elliptic divisibility sequences, so it is not a restriction to give
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the general terms by using Tate normal forms, that is, we will be giving general

terms of all elliptic divisibility sequences with zero terms under this equivalence.

The relation between an elliptic curve and an elliptic divisibility sequence

is given by Morgan Ward, see for details and formulas, [29]. Ward proved that

elliptic divisibility sequences arise as values of the division polynomials of an

elliptic curve, i.e., if P = (x, y) is a rational point on an elliptic curve E over Q
then the elliptic divisibility sequence (hn) is defined by hn = ψn(x, y) for n ∈ N
where ψn is the n-th division polynomial of E. Therefore, if E is an elliptic curve

over Q then the initial values of the elliptic divisibility sequence are given by

the coefficients of an elliptic curve. Conversely, if (hn) is an elliptic divisibility

sequence in which neither h2 nor h3 is zero then there exists an elliptic curve E and

the coefficients of the elliptic curve are given by the initial values of the sequence.

In this paper, under this fact, we first give initial values and the general terms

of an elliptic divisibility sequence associated to an elliptic curve in Tate normal

form with a torsion point P . We will now give a short account of material about

elliptic divisibility sequences, for more detailed information about these sequences

in general, see [4], [5], [23], [27], [28], [29].

Two elliptic divisibility sequences (hn) and (h′
n) are said to be equivalent if

there exists a rational ω such that

h′
n = ωn2−1hn (2.2)

for all n ∈ N.
Ward established that the multiples of the rank of apparition ρ are regularly

spaced in (hn) in the following theorem.

Theorem 2.3 ([29]). Let p be a prime divisor of an elliptic divisibility se-

quence (hn), and let ρ be its smallest rank of apparition. Let hρ+1 6≡ 0 (p).

Then

hn ≡ 0 (p) if and only if n ≡ 0 (ρ).

The following theorem shows us that the initial values of the EDS given by

the coefficients of the elliptic curve.

Theorem 2.4 ([23]). Let (hn) be an elliptic divisibility sequence. Then the

elliptic curves E : y2 + a1xy + a3y = x3 + a2x
2 + a4x where a1, a2, a3, a4 ∈ Q,

associated to (hn) are precisely those with:

h2 = a3, (2.3)

h3 = a2a
2
3 − a24 − a1a3a4 (2.4)

h4 = 2a3a4h3 + a1a
2
3h3 − a53. (2.5)



486 Betül Gezer

3. The initial values and the general terms of the EDSs

The problem of finding the general terms of the elliptic divisibility sequences

whose second (resp. third, fourth, fifth, sixth) term is zero are given in [9].

However, it was seen that the general terms of the other sequences with zero

terms can not be easily obtained.

In this paper we first give the general terms of all elliptic divisibility sequences

with zero terms by using Tate normal form of an elliptic curve E which has a

torsion point P = (0, 0) of order N . By Mazur’s theorem we know that there

exists an elliptic curve containing a point of order N . Clearly, every N -th term

hN of the associated elliptic divisibility sequence (hn) is zero, since these terms

correspond to the point at infinityO. In particular, if (hn) is an elliptic divisibility

sequence, in which hN = 0 for some minimal index N then N ∈ {2, . . . , 10, 12}.
The aim of this section is to give general terms of these sequences. Naturally,

it is sufficient to give the general terms only for the sequences with one of the

terms h2, . . . , h10, h12 are zero. But we begin by the case N > 3, since we use

Tate normal form of an elliptic curve. The general terms of improper elliptic

divisibility sequences where h2 or h3 is equal to zero will be discussed at the end

of this section and general terms of them will be given in Theorem 3.5. In the

following theorem, by using the Tate normal form of an elliptic curve, the initial

values of the sequences with zero terms are given for N > 3.

Theorem 3.1. Let (hn) be an elliptic divisibility sequence in which hN = 0

for some minimal index N ∈ {4, . . . , 10, 12}. Then the initial values of (hn) with

α ∈ Z given by the following:

1. If N = 4, [1;−α;−α3; 0], α 6= 0.

2. If N = 5, [1;−α;−α3;α6], α 6= 0.

3. If N = 6, [1;−α(α+ 1);−α3(α+ 1)3;α6(α+ 1)5], α 6= −1, 0.

4. If N = 7, [1;−α2(α− 1);−α6(α− 1)3;α11(α− 1)6], α 6= 0, 1.

5. If N = 8, [1;−α3ξ;−α8ξ3;α14ξ6], where ξ = (α− 1)(2α− 1), α 6= 0, 1.

6. If N = 9, [1;−α2(α−1)γ;−α6(α−1)3γ3;α12(α−1)6γ5], where γ = α2−α+1,

α 6= 0, 1.

7. If N = 10, [1;−α3δζ4;−α9δ3ζ10;α16δ6ζ19], where ζ = α − (α − 1)2 and

δ = (α− 1)(2α− 1), α 6= 0, 1.

8. If N = 12, [1;−(α− 1)8λθ;−(α− 1)20λ3θ3; (α− 1)37λ6θ5], where λ = (3α2 −
3α+ 1)(α− 2α2) and θ = 2α− 2α2 − 1, α 6= 0, 1.
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Proof. 1. We first consider an elliptic curve E with a point P of order

N = 4. Then by Theorem 2.2, the Tate normal form of E is

E : y2 + xy − αy = x3 − αx2. (3.1)

By Theorem 2.4, E is associated to the elliptic sequence (hn) and the initial values

of the sequence are

h1 = 1, h2 = −α, h3 = −α3, h4 = 0.

It is known that, if P is an integer point, and the coefficients ai of the elliptic curve

are integers, then the values hn are integers, and have the divisibility property,

that is, (hn) is an EDS. Therefore coefficients α in (3.1) must be an integer, since

we want to work with elliptic divisibility sequences.

2. Similarly for N = 5, we have

E : y2 + (1− α)xy − αy = x3 − αx2,

and so, the initial values of the sequence are

h1 = 1, h2 = −α, h3 = −α3, h4 = α6.

3. For N = 6, we have

E : y2 + (1− α)xy − α(α+ 1)y = x3 − α(α+ 1)x2,

and so, the initial values of the sequence are

h1 = 1, h2 = −α(α+ 1), h3 = −α3(α+ 1)3, h4 = α6(α+ 1)5.

4. For N = 7, we have

E : y2 + (1− α2 + α)xy − (α3 − α2)y = x3 − (α3 − α2)x2,

and so, the initial values of the sequence are

h1 = 1, h2 = −α2(α− 1), h3 = −α6(α− 1)3, h4 = α11(α− 1)6.

5. Now let E be an elliptic curve in normal form with a point P of order N = 8.

Then by Theorem 2.2, the Tate normal form of E is

E : y2 + (1− (2α− 1)(α− 1)/α)xy − (2α− 1)(α− 1)y = x3 − (2α− 1)(α− 1)x2.

Since we work with elliptic divisibility sequences, coefficients of the elliptic curve

must be integer, so we transform the elliptic curve E to a birationally equivalent

curve Ẽ under admissible change of variables

Ẽ : y2 + (α− ξ)xy − α3ξy = x3 − α2ξx2

where ξ = (2α − 1)(α − 1). By Theorem 2.4, Ẽ is associated to the elliptic
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divisibility sequence (hn) and the initial values of the sequence are

h1 = 1, h2 = −α3ξ, h3 = −α8ξ3, h4 = α14ξ6.

6. For N = 9 we have

E : y2 + (1− c)xy − by = x3 − bx2

where c = α2(α−1), b = c(α(α−1)+1), and so, the initial values of this sequence

are

h1 = 1, h2 = −α2(α− 1)γ, h3 = −α6(α− 1)3γ3, h4 = α12(α− 1)6γ5

where γ = α2 − α+ 1.

7. Now let E be an elliptic curve in normal form with a point P of order N = 10.

By Theorem 2.2, the Tate normal form of E is

E : y2 + (1− c)xy − by = x3 − bx2

where

c =
α(2α2 − 3α+ 1)

α− (α− 1)2
, b =

cα2

α− (α− 1)2

and E birationally equivalent to the curve Ẽ under admissible change of variables

given by

Ẽ : y2 + (ζ2 − αδζ)xy − α3δζ4y = x3 − α3δζ2x2,

where ζ = α− (α− 1)2 and δ = (α− 1)(2α− 1). By Theorem 2.4, Ẽ is associated

to the elliptic divisibility sequence (hn) and the initial values of this sequence are

h1 = 1, h2 = −α3δζ4, h3 = −α9δ3ζ10, h4 = α16δ6ζ19.

8. Now let E be an elliptic curve in normal form with a point P of order N = 12.

By Theorem 2.2, the Tate normal form of E is

E : y2 + (1− c)xy − by = x3 − bx2,

where

c =
(3α2 − 3α+ 1)α(1− 2α)

(α− 1)3
, b =

c(2α− 2α2 − 1)

α− 1

and E birationally equivalent to the curve Ẽ under admissible change of variables

given by

Ẽ : y2 + (α− 1)((α− 1)3 − λ)xy − (α− 1)8λθy = x3 − (α− 1)4λθx2,

where λ = (3α2 − 3α + 1)(α − 2α2), θ = 2α − 2α2 − 1. By Theorem 2.4, Ẽ is

associated to the elliptic divisibility sequence (hn) and the initial values of this

sequence are

h1 = 1, h2 = −(α− 1)8λθ, h3 = −(α− 1)20λ3θ3, h4 = (α− 1)37λ6θ5. ¤
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Thus we know the initial values of the sequences (hn) with zero terms. We

now give the general terms of the sequences (hn) with zero terms depending on

only one integer parameter α in the following theorem.

Theorem 3.2. Let (hn) be an elliptic divisibility sequence with N -th term

zero, i.e., with rank N ∈ {4, . . . , 10, 12}. Let α, γ, δ, λ, θ be as in Theorem 3.1.

Then the general term of (hn) given by the following formulas:

1. If N = 4,

hn = εα{(3n2−p)/8} (3.2)

where

ε =

{
+1 if n ≡ 1, 5, 6 (8)

−1 if n ≡ 2, 3, 7 (8),
p =

{
3 if n ≡ 1, 3 (4)

4 if n ≡ 2 (4).

2. If N = 5,

hn = εα{(2n2−p)/5} (3.3)

where

ε =

{
+1 if n ≡ 1, 4, 7, 8 (10)

−1 if n ≡ 2, 3, 6, 9 (10),
p =

{
2 if n ≡ 1, 4 (5)

3 if n ≡ 2, 3 (5).

3. If N = 6,

hn = εα{(5n2−p)/12}(α+ 1){(n
2−k)/3} (3.4)

where

ε =

{
+1 if n ≡ 1, 4, 5, 9, 10 (12)

−1 if n ≡ 2, 3, 7, 8, 11 (12),

and

p =





5 if n ≡ 1, 5 (6)

8 if n ≡ 2, 4 (6)

9 if n ≡ 3 (6),

k =

{
1 if n ≡ 1, 2, 4, 5 (6)

0 if n ≡ 3(6).

4. If N = 7,

hn = εα{(5n2−p)/7}(α− 1){(3n
2−q)/7} (3.5)

where

ε =

{
+1 if n ≡ 1, 4, 5 (7)

−1 if n ≡ 2, 3, 6 (7),

and

p =





5 if n ≡ 1, 6 (7)

6 if n ≡ 2, 5 (7)

3 if n ≡ 3, 4 (7),

q =





3 if n ≡ 1, 6 (7)

5 if n ≡ 2, 5 (7)

6 if n ≡ 3, 4 (7).
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5. If N = 8,

hn = εα{(15n2−p)/16}(α− 1){(7n
2−q)/16}(2α− 1){(3n

2−k)/8} (3.6)

where

ε =

{
+1 if n ≡ 1, 4, 5, 9, 10, 13, 14 (16)

−1 if n ≡ 2, 3, 6, 7, 11, 12, 15 (16),

and

p=





15 if n ≡ 1, 7 (8)

12 if n ≡ 2, 6 (8)

7 if n ≡ 3, 5 (8)

16 if n ≡ 4 (8),

q=





7 if n ≡ 1, 7 (8)

12 if n ≡ 2, 6 (8)

15 if n ≡ 3, 5 (8)

16 if n ≡ 4 (8),

k=





3 if n ≡ 1, 3, 5, 7 (8)

4 if n ≡ 2, 6 (8)

0 if n ≡ 4 (8).

6. If N = 9,

hn = εα{(7n2−p)/9}(α− 1){(4n
2−q)/9}γ{(n2−k)/3} (3.7)

where

ε =

{
+1 if n ≡ 1, 4, 5, 8, 11, 12, 15, 16 (18)

−1 if n ≡ 2, 3, 6, 7, 10, 13, 14, 17 (18),

and

p =





7 if n ≡ 1, 8 (9)

10 if n ≡ 2, 7 (9)

9 if n ≡ 3, 6 (9)

4 if n ≡ 4, 5 (9),

q =





4 if n ≡ 1, 8 (9)

7 if n ≡ 2, 7 (9)

9 if n ≡ 3, 6 (9)

10 if n ≡ 4, 5 (9),

k =

{
0 if n ≡ 3, 6 (9)

1 otherwise.

7. If N = 10,

hn = εα{(21n2−p)/20}(α− 1){(9n
2−q)/20}(2α− 1){(2n

2−k)/5}δ{(5n
2−s)/4} (3.8)

where

ε =

{
+1 if n ≡ 1, 4, 5, 8, 9, 13, 14, 17, 18 (20)

−1 if n ≡ 2, 3, 6, 7, 11, 12, 15, 16, 19 (20),
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and

p =





21 if n ≡ 1, 9 (10)

24 if n ≡ 2, 8 (10)

9 if n ≡ 3, 7 (10)

16 if n ≡ 4, 6 (10)

25 if n ≡ 5 (10),

q =





9 if n ≡ 1, 9 (10)

16 if n ≡ 2, 8 (10)

21 if n ≡ 3, 7 (10)

24 if n ≡ 4, 6 (10)

25 if n ≡ 5 (10),

k =





2 if n ≡ 1, 4, 6, 9 (10)

3 if n ≡ 2, 3, 7, 8 (10)

0 if n ≡ 5 (10),

s =

{
5 if n ≡ 1, 3, 5, 7, 9 (10)

4 if n ≡ 2, 4, 6, 8 (10).

8. If N = 12,

hn = εα{(n2−p)/12}(α− 1){(59n
2−q)/24}

× (2α− 1){(n
2−k)/24}λ{(3n2−s)/8}θ{(n

2−t)/3} (3.9)

where

ε =

{
+1 if n ≡ 1, 5, 9, 13, 14, 16, 17, 18, 20, 21, 22 (24)

−1 if n ≡ 2, 3, 4, 6, 7, 8, 10, 11, 15, 19, 23 (24),

and

p =





1 if n≡ 1, 11 (12)

4 if n≡ 2,10 (12)

9 if n≡ 3, 9 (12)

16 if n≡ 4, 8 (12)

13 if n≡ 5, 7 (12)

12 if n≡ 6 (12),

q=





59 if n≡ 1,11 (12)

44 if n≡ 2,10 (12)

51 if n≡ 3, 9 (12)

56 if n≡ 4, 8 (12)

35 if n≡ 5, 7 (12)

60 if n≡ 6 (12),

k=





1 if n≡ 1,5,7,11(12)

4 if n≡ 2, 10 (12)

9 if n≡ 3, 9 (12)

16 if n≡ 4, 8 (12)

12 if n≡ 6 (12),

s =





3 if n≡ 1, 3, 5, 7, 9, 11 (12)

4 if n≡ 2, 6, 10 (12)

0 if n≡ 4, 8 (12),

t =

{
1 if n≡ 1, 2, 4, 5, 7, 8, 10, 11 (12)

0 if n≡ 3, 6, 9 (12).

Proof. 1. It is clear that the result is true for n ≤ 5. Hence we assume

that n > 5. If (hn) is an EDS, then we know that

hn+2hn−2 = hn+1hn−1h
2
2 − h3h1h

2
n . (3.10)
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We argue by induction on n. First suppose that n ≡ 1 (4) and (3.2) is true

for n+ 1. Then we have

hn+2 = −α6m2+9m+3

by (3.2). On the other hand we see that

hn−2 = −α6m2−3m, hn = α6m2+3m, hn−1 = 0.

Substituting these expressions into (3.10) gives hn+2 = −α6m2+9m+3
2 . Thus we

proved the equation (3.2) is true for n+2 which completes the proof for n ≡ 1 (4).

The other cases are proved similarly.

2. It is clear that the result is true for n ≤ 6. Hence we assume that n > 6. If

(hn) is an EDS, then it satisfies the relation (3.10). We again argue by induction

using (3.3). First suppose that n ≡ 1 (5) and (3.3) is true for n + 1. Then we

have

hn+2 =

{
−α10m2+12m+3 if m ≡ 2, 4 (5)

α10m2+12m+3 if m ≡ 1, 3 (5)

by (3.3). On the other hand we see that

hn−2 =

{
−α10m2−4m if m ≡ 2, 4 (5)

α10m2−4m if m ≡ 1, 3 (5)
hn =

{
α10m2+4m if m ≡ 2, 4 (5)

−α10m2+4m if m ≡ 1, 3 (5)

hn−1 = 0.

Substituting these expressions into (3.10) gives hn+2hn−2 = α3h2
n, hence we have

hn+2 =

{
−α10m2+12m+3 if m ≡ 2, 4 (5)

α10m2+12m+3 if m ≡ 1, 3 (5).

Thus we proved that the equation (3.3) is true for n + 2. The other cases are

proved similarly.

The same proof works for the remaining parts of the theorem. ¤



Elliptic divisibility sequences, squares and cubes 493

p q k s t

n ≡ 1(12) 1 59 1 3 1

n ≡ 2(12) 4 44 4 4 1

n ≡ 3(12) 9 51 9 3 0

n ≡ 4(12) 16 56 16 0 1

n ≡ 5(12) 13 35 1 3 1

n ≡ 6(12) 12 60 −12 4 0

n ≡ 7(12) 13 35 1 3 1

n ≡ 8(12) 16 56 16 0 1

n ≡ 9(12) 9 51 9 3 0

n ≡ 10(12) 4 44 4 4 1

n ≡ 11(12) 1 59 1 3 1

Table 1: The values p, q, k, s and t of the general term of the EDS with N = 12.

It is seen that the values p, q, k, s and t of the general term of the elliptic

divisibility sequences with twelfth term zero in the table above. According to this

table, we have the following terms for n ≡ 6 (12):

h6 = α2(α− 1)86(2α− 1)2λ13δ12, h18 = −α26(α− 1)794(2α− 1)14λ121δ108

h30 = α74(α− 1)2210(2α− 1)38λ337δ300

h42 = −α146(α− 1)4334(2α− 1)74λ661δ588

In addition, if we take α = 3, the first eight terms of the EDS with N = 12 are

1;−948480;−53329136320512000;−27346122891266847865307136000000;

17500141386070121786711926566237801283584;−3319445579395304657

0787963710047756557989077368249771884544000000000000000;−45938

2422798666425039100328482290559063213427355998727370793872053

34329698182758400000000000000000000;−1884349228191035614337748

21043991142309132528994842811514985817859497226098776607161543

9393817547813525913600000000000000000000000000; . . .

Remark 3.3. There are also elliptic curves with a torsion point which are not

in the Tate normal form as in Theorem 2.2. For example the point P = (0, 0) on

the elliptic curve
E : y2 + 17xy − 120y = x3 − 60x2

is a torsion point of order eight. The initial values of elliptic divisibility sequence
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(hn) associated to the curve E are

h1 = 1, h2 = −120, h3 = −864000, h4 = −186624000000

and h8 = 0, that is, the sequence has rank eight. E is birationally equivalent to

the curve Ẽ under the transformation
(
x
y

) → (
4x
8y

)
given by

Ẽ : y2 +
17

2
xy − 15y = x3 − 15x2

which is in Tate normal form. This curve gives us an elliptic sequence, so we need

to make another transformation to have an elliptic divisibility sequence. Hence

we have

E′ : y2 + 34xy − 960y = x3 − 240x2

and the initial values of elliptic divisibility sequence (h′
n) associated to the elliptic

curve E′ are

h′
1 = 1, h′

2 = −960, h′
3 = −221184000, h′

4 = −6115295232000000.

It can easily be seen that (hn) and (h′
n) are equivalent by taking ω = −2 in

the equation (2.2). So, the general terms of the elliptic divisibility sequences

associated to the elliptic curves in Tate normal form are the general terms of all

elliptic divisibility sequences with zero terms under the equivalence.

Remark 3.4. There is no Tate normal form of an elliptic curve with the

torsion point of order two or three, but Kubert in [12], listed the elliptic curves

with torsion point of order two or three are

E : y2 = x3 + ax2 + bx and E : y2 + a1xy + a3y = x3,

respectively. In this case, the elliptic divisibility sequences associated to an elliptic

curve with the torsion point of order two or three give improper sequences and

the initial values of these sequences are

h1 = 1, h2 = 0, h3 = −b2, h4 = 0 and h1 = 1, h2 = a3, h3 = 0, h4 = −a53,

respectively.

Under these considerations, an easy computation gives the general terms of

the improper divisibility sequences.

Theorem 3.5. i. Let (hn) be an elliptic divisibility sequence [1; 0;−b2; 0].
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Then the general term of (hn) is given by the following formula:

hn = εb{(n
2−1)/4}

where

ε =

{
+1 if n ≡ 1, 5 (8)

−1 if n ≡ 3, 7 (8).

ii. Let (hn) be an elliptic divisibility sequence [1; a3; 0;−a53]. Then the general

term of (hn) is given by the following formula:

hn = εa
{(n2−1)/3}
3

where

ε =

{
+1 if n ≡ 1, 2 (6)

−1 if n ≡ 4, 5 (6).

4. The periods of the EDSs

In this section we will give the periods of all elliptic divisibility sequences

with zero terms by using general terms of these sequences which are given in

previous section.

A sequence (sn) of rational integers is said to be numerically periodic modulo

m if there exists a positive integer π such that

sn+π ≡ sn (m) (4.1)

for all sufficiently large n. If (4.1) holds for all n, then (sn) is said to be purely

periodic modulo m. The smallest π for which (4.1) is true is called the period of

(sn) modulo m. All other π’s are multiples of it.

The following theorem of Ward shows us how the period and rank are con-

nected.

Theorem 4.1 ([29]). Let (hn) be an EDS and p be an odd prime whose rank

of apparition ρ is greater than 3. Let a1 be an integral solution of the congruence

a1 ≡ h2/hρ−2 (p) and let e and k be the exponents 1 to which a1 and a2 ≡ hρ−1

(p) respectively belong modulo p. Then (hn) is purely periodic modulo p, and its

period π is given by the formula π(hn) = τρ where τ = 2ν [e, k]. Here [e, k] is the

1That is, let e and k be the smallest positive integers such that ae1 ≡ 1 and ak2 ≡ 1(p) respectively.
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least common multiple of e and k, and the exponent ν is determined as follows:

ν =





+1 if e and k are both odd

−1 if e and k are both even and both divisible by

exactly the same power of 2

0 otherwise.

We give the periods of all elliptic divisibility sequences with zero terms in

the following theorem.

Theorem 4.2. Let (hn) be an elliptic divisibility sequence with N -th term

zero, where N ∈ {4, 5, . . . , 10, 12} and let p be an odd prime. Then the period of

(hn) is

π(hn) =

{
t(p− 1) if q = [e, k] is a primitive root modulo p

2Nl otherwise

where l =

{
q if q is odd

q/2 if q is even,
t =

{
N if N is even

N/2 if N is odd.

Proof. The cases N = 4 and 5, can easily be seen, so we give N = 6,

the other cases can be proved in similar way. In this case the period of (hn)

is π(hn) = 6(p − 1) or 12l. By Theorem 3.1 and Theorem 4.1, we have a1 =

h2/h4 = −1/α5(α + 1)4 and a2 = h5 = α10(α + 1)8. Let e and k be the orders

of a1 and a2, respectively. Then k = e/2 when e is even, and k = e when e is

odd, since a2 = 1/a21. Let a1 be a primitive root modulo p. Then e = p − 1,

k = (p− 1)/2 and so q = p− 1. Hence ν = 0 and so τ = p− 1. Therefore in this

case π(hn) = 6(p− 1). If a1 is not a primitive root modulo p, then there are two

cases. In the first case, let q be odd. Then e = k = q, so that ν = 1. Thus τ = q,

therefore π(hn) = 6q. In the second case, let q be even. Then e = q and k = q/2,

so that ν = 0. Thus τ = 2q therefore π(hn) = 12q. ¤

α p = 5 p = 7 p = 11 p = 13 p = 17 p = 19 p = 23 p = 29 p = 31

−5 − 36 60 72 96 108 132 84 180

−4 12 12 60 36 12 108 132 84 180

−3 24 36 60 12 96 36 12 168 180

−2 24 36 12 72 48 108 132 168 12

1 12 36 60 36 12 108 132 84 60

2 24 36 60 24 48 36 132 168 180

3 24 12 60 36 96 108 132 168 180

4 − 36 60 36 12 108 132 12 36

5 − 36 60 72 96 108 132 84 36

Table 2: The periods of the EDSs with N = 6 modulo p > 3 for some α.



Elliptic divisibility sequences, squares and cubes 497

5. Squares and cubes in EDSs

The question of when a term of a Lucas sequence can be square has generated

interest in the literature [2], [3], [21], [22]. Similar results concerning cubes were

also obtained for specific sequences such as Fibonacci, Lucas and Pell numbers

[17], [20]. In [9], [10], we describe when a term of an elliptic divisibility sequence

can be a square or a cube, if one of the first six terms is zero. Recently, Reynolds

[19] consider perfect powers in elliptic divisibility sequences whose first term is

divisible by 2 or 3.

The ultimate purpose of this section is to determine square or cube terms

in some special family of the elliptic divisibility sequences whose contain a zero

term. In this section we determine square or cube terms of these sequences by

using the general terms of them. Throughout this paper the symbols ¤ and C

mean a square and a cube of a non-zero rational number, i.e. ¤ = ±β2 where

β is an integer. In particular, we will investigate the answers of the following

questions:

• Which terms of (hn) can be a square or a cube independent of α ? This

question is answered for each case. For example, consider an elliptic divisi-

bility sequence for which sixth term is zero,

i. if n ≡ 1, 5, 7, 11 (12), then hn = ¤ for all α 6= −1, 0,

ii. if n ≡ 1, 3, 9, 15, 17 (18), then hn = C for all α 6= −1, 0.

• Which terms of (hn) can not be a square or a cube? Starting with the fact

that square or cube terms can be arise dependent on the parameter α it is

seen that some terms of (hn) can not be a square or a cube for any choice

of α for each case. For example, consider an elliptic divisibility sequence for

which sixth term is zero,

i. if n ≡ 2, 3, 9, 10 (12), then hn is not a square for all α 6= −1, 0,

ii. if n ≡ 2, 5, 7, 11, 13, 16 (18), then hn is not a cube for all α 6= −1, 0.

• Which terms of (hn) can be a square or a cube with admissible choice of α

? In addition to square or cube terms which determined in question one it

is seen that a term of an EDS can be a square or a cube depending on the

admissible choice of α. For example, consider an elliptic divisibility sequence

for which sixth term is zero,

i. if n ≡ 4, 8 (12) then hn is a square iff α+ 1 = ¤,

ii. if n ≡ 4, 14 (18) then hn is a cube iff α+ 1 = C,

iii. if n ≡ 8, 10 (18) then hn is a cube iff α = C.
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Especially when we look for the answers of our problems, we are led to some

Diophantine equations whose solutions give the desired answers. These equations

fall into five main classes: Pell equations, classical well-known cubic equations,

trivial equations, elliptic equations of rank zero or one. Many of these equations

are very similar, so that we can present the solutions of all equations in one table

(see Table 3). For example, consider an elliptic divisibility sequence for which the

eighth term is zero. If n ≡ 3, 13 (16), then we see that hn = ¤ iff

(α− 1)(2α− 1) = ¤,

this leads to a Pell’s equation (4α− 3)2 − 8β2 =1 or a trivial equation (4α−3)2+

8β2 = 1 where α, β are integers. Equations encountered in some cases turned

into elliptic curves. In particular, if we have an elliptic curve with rank zero then

the only integral points on this curve are the torsion points. These, in turn, can

be computed by the Lutz–Nagell Theorem. In [8], the authors find all integer

solutions of Mordell’s equation y2 = x3 + k for 0 < |k| ≤ 104 and also for all but

about 1000 values with |k| ≤ 105. They also give tables listing, curves with large

integer points and large numbers of integer points. A complete list of all integer

solutions of Mordell’s equation can be found in [18]. Therefore if our elliptic

equation is a Mordell’s equation we use the tables in [18]. If the elliptic curve has

a rank different from zero then the Elliptic Logarithm Method is applied to find

the all integral solutions.

For the convenience of the reader, we present the solutions of all these equa-

tions in the table below before the proofs of the following results. A basic obser-

vation is the following: For every equation, the distinct irreducible factors (over

Q[α]) appearing in the left-hand side (if they are at least two) are pairwise re-

latively prime2. This implies that, if the right hand-side is ¤ (respectively, C),

then every irreducible factor is ¤ (respectively, C). We use of this fact for a quite

number of equations; in most cases it was necessary to consider all factors in the

left-hand side3.

2As a characteristic example, take equation 38. Firstly, α can not have a common prime factor

p with any of α − 1, 2α − 1, 2α2 − 2α + 1, 3α2 − 3α + 1. Indeed, α ≡ 0 (p) implies that both

α− 1 and 2α− 1 are ≡ −1(p) and both 2α2 − 2α+1 and 3α2 − 3α+1 are ≡ 1(p). Next, α− 1

can not have prime factor p with any of 2α− 1, 2α2 − 2α+ 1, 3α2 − 3α+ 1, because α− 1 ≡ 0

(p) implies α ≡ 1(p) and, hence 2α2 − 2α+ 1 and 3α2 − 3α+ 1 are both ≡ 1 (p). Analogously,

2α − 1 can not have a common prime factor p with neither 2α2 − 2α + 1 nor 3α2 − 3α + 1,

because, p should be odd, hence α ≡ 1/2 (p) and, consequently 2α2 − 2α + 1 ≡ 1/2(p) and

3α2 − 3α + 1 ≡ 1/4(p). Finally, 2α2 − 2α + 1 and 3α2 − 3α + 1 are relatively prime because

3(2α2 − 2α+ 1)− 2(3α2 − 3α+ 1) = 1.
3For example, although equation 44 implies that all three α, 2α2 − 2α+1, 3α2 − 3α+1 are C,

we only use the fact that the second one is C.
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Eq. No implies or is reduced to or Comments

is equivalent to is equivalent to

1 α(α+ 1) = ¤ (2α+ 1)2 ± β2 = 1 trivial eq.

5, 9 α(α− 1) = ¤ (2α− 1)2 ± β2 = 1 trivial eq.

α(α− 1)(2α− 1) = ¤
2, 3, 4 α = β3

1 & α+ 1 = β3
2 β3

2 − β3
1 = 1 trivial eq.

6, 10, 15,

16, 17, 18,

19, 29, 30, α = β3
1 & α− 1 = β3

2 β3
1 − β3

2 = 1 trivial eq.

38, 39, 40

41, 42

7 (α− 1)(2α− 1) = ¤ (4α− 3)2 − 8β2 = 1 Pell eq.

(4α− 3)2 + 8β2 = 1 trivial eq.

α(2α− 1) = ¤ (2α− 1)2 − 2β2 = 1 Pell eq.

8, 33 α(2α− 1)(2α2 − 2α+ 1) (2α− 1)2 + 2β2 = 1 trivial eq.

×(3α2 − 3α+ 1) = ¤
11, 25, 47 α− 1 = β3

1 & 2α− 1 = β3
2 β3

2 + 2(−β3
1) = 1 ‘classical’

48, 49 equation4

12, 13 α2 − α+ 1 = ¤ (2α− 1)2 ± β2 = −3 trivial eq.

(α− 1)(α2 − α+ 1) = ¤
14, 20, 21 α2 − α+ 1 = C β3 − 48 = (8α− 4)2 Mordell eq.

22, 23 −α2 + 3α− 1 = ¤ (2α− 3)2 ± β2 = 5 trivial eq.

(2α− 1)(−α2 + 3α− 1) = ¤
24, 26, −α2 + 3α− 1 = C β3 + 80 = (8α− 12)2 Mordell eq.

27, 28

31, 45, 46 α = β3
1 & 2α− 1 = β3

2 (−β2)
3 + 2β3

1 = 1 ‘classical’

equation4

(−2α)3 + 4(−2α)2

34 (α− 1)(−2α2 + 2α− 1) = ¤ +6(−2α) + 4 = β2, Ellog used6

(2α)3 − 4(2α)2 zero rank5

+6(2α)− 4 = β2

32 3α2 − 3α+ 1 = ¤ β2 − 3(2α− 1)2 = 1 Pell eq.

β2 + 3α2 = −1 impossible

(3α)3 − 3(3α)2

35, 36 α(3α2 − 3α+ 1 = ¤ +3(3α) = β2, zero rank5

(−3α)3 + 3(−3α)2 zero rank5

+3(−3α) = β2

(4α)3 − 6(4α)2

37 (2α− 1)(−2α2 + 2α− 1) = ¤ +16(4α)− 16 = β2, zero rank5

(−4α)3 + 6(−4α)2 zero rank5

+16(−4α) + 16 = β2

43, 44 2α2 − 2α+ 1 = C β3 − 4 = (4α− 2)2 Mordell eq.

Table 3: Solutions of the equations, (footnotes on the next page).
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5.1. The case N = 4. In this part we will answer the question of when a term of an

EDS for which the fourth term is zero can be a perfect square or a cube. Although the

terms of the EDSs can be a square or a cube dependent only on the integer parameter

α, there are cases when square or cube terms independent of the any choice of α.

Theorem 5.1. Let (hn) be an elliptic divisibility sequence for which the fourth

term is zero (so that hn = 0, for every n ≡ 0 (4)).

1. i. If n ≡ 1, 7 (8), then hn = ¤ for every non-zero α.

ii. α = ¤ iff hn = ¤ for all n ≥ 0

2. i. If n ≡ 1, 3, 5, 7 (8), then hn = C for every non-zero α.

ii. α = C iff hn = C for all n ≥ 0.

Proof. 1. For (i), if n ≡ 1 or 7 (8), then n = 8k + 1 or 8k + 7 for k ∈ N.
Substituting these values into (3.2), we have

h8k+1 = α24k2+6k, h8k+7 = −α24k2+42k+18,

respectively. Hence, hn = ¤ for every non-zero α.

For (ii), we know that hn = ¤ for every non-zero α when n ≡ 1, 7 (8) by part (i).

Now suppose n ≡ 5 (8). Then n = 8k + 5 for k ∈ N. Putting this into (3.2), we have

h8k+5 = α24k2+30k+9.

Hence we have α = ¤ iff h8k+5 = ¤. The cases n ≡ 2, 3, 6 (8) are proved similarly.

Therefore, α = ¤ iff hn = ¤ for all n ≥ 0.

2. For (i), if n ≡ 1, 3, 5 or 7 (8), then n = 8k+1, 8k+3, 8k+5 or 8k+7 (k ∈ N).
Putting these into (3.2), we have

h8k+1 = α24k2+6k, h8k+3 = −α24k2+18k+3, h8k+5 = α24k2+30k+9

and

h8k+7 = −α24k2+42k+18,

respectively. Therefore hn = C for every non-zero α.

For (ii), We have seen that if n ≡ 1, 3, 5 or 7 (8), then hn = C for every non zero

α by part (i). Now consider the cases n ≡ 2 or 6 (8). Then we have

h8k+2 = −α24k2+12k+1 and h8k+6 = α24k2+36k+13

for k ∈ N, respectively, by (3.2). Hence we get α = C iff h8k+2 = C or α = C iff

h8k+6 = C. Therefore α = C iff hn = C for all n ≥ 0. ¤

4The equation x3 + 2y3 = 1 has the integer solution (x, y) = (−1, 1), hence, by Theorem 5,

Chapter 24 of [15] can not have further solutions with xy 6= 0.
5The only solutions are those given by coordinates of the torsion points. These, in turn, can

be computed by the Lutz–Nagell Theorem (see, for example, Corollary 7.2, Chapter VIII.7 of

[24]); automatically, they can be calculated using e.g. the PARI-GP calculator [16] or the online

MAGMA calculator [13].
6The Elliptic Logarithm Method is applied. This has been developed in [26] and, independently,

in [7] and now is implemented in MAGMA [13]; see also [1].
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N = 4 h8k h8k+1 h8k+2 h8k+3 h8k+4 h8k+5 h8k+6 h8k+7

α ∈ Z\{0} 0 ¤ 0 ¤
α = ¤ 0 ¤ ¤ ¤ 0 ¤ ¤ ¤

α ∈ Z\{0} 0 C C 0 C C

α = C 0 C C C 0 C C C

Table 4: Square and cube terms in EDSs with N = 4.

5.2. The Case N = 5. An easy calculation as in Theorem 5.1 gives the following

theorem.

Theorem 5.2. Let (hn) be an elliptic divisibility sequence for which the fifth

term is zero (so that hn = 0, for every n ≡ 0 (5)).

1. i. If n ≡ 1, 4, 6, 9 (10), then hn = ¤ for every non-zero α.

ii. α = ¤ iff hn = ¤ for all n ≥ 0.

2. i. If n ≡ 1, 3, 4, 11, 12, 14 (15), then hn = C for every non-zero α.

ii. α = C iff hn = C for all n ≥ 0.

5.3. The Case N = 6. This case is little more complicated than the first two cases.

We determine the square or cube terms dependent on the any choice of α and we also

determine the square or cube terms dependent on the admissible choice of α. Moreover,

it is shown that the terms of these sequences can not be a square or a cube for any

choice of α in the following theorem.

Theorem 5.3. Let (hn) be an elliptic divisibility sequence for which the sixth

term is zero (so that hn = 0, for every n ≡ 0 (6)).

1. i. If n ≡ 1, 5, 7, 11 (12), then hn = ¤ for every α 6= −1, 0.

ii. If n ≡ 4, 8 (12), hn = ¤ iff α+ 1 = ¤.

iii. Otherwise, hn 6= ¤ for every α 6= −1, 0.

2. i. If n ≡ 1, 3, 9, 15, 17 (18), then hn = C for every α 6= −1, 0.

ii. If n ≡ 4, 14 (18), α+ 1 = C iff hn = C.

iii. If n ≡ 8, 10 (18), α = C iff hn = C.

iv. Otherwise, hn 6= C for every α 6= −1, 0.

Proof. 1. The cases (i) and (ii) can be proved in the same way as in Theorem 5.1.

For (iii), if n ≡ 2 (12) then n = 12k + 2 (k ∈ N). Substituting this into (3.4), we have

h12k+2 = −α60k2+20k+1(α+ 1)48k
2+16k+1.

Therefore hn = ¤ iff
α(α+ 1) = ¤. (1)

This last equation leads to trivial equation

(2α+ 1)2 ± β2 = 1
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where β is an integer. It is clear that these equations do not provide any acceptable α.

The cases where n ≡ 3, 9, 10 (12) can be proved in the same way.

2. The proof of (i), (ii) and (iii) are similar to proof of Theorem 5.1. For (iv), if

n ≡ 2 or 16 (18) then n = 18k+2 or n = 18k+16 (k ∈ N). Putting these into (3.4), we

have

h18k+2 = −α135k2+30k+1(α+ 1)108k
2+24k+1

and

h18k+16 = α135k2+240k+106(α+ 1)108k
2+192k+85

respectively. Thus hn = C iff α(α+ 1) = C. (2)

If n ≡ 5 or 13 (18) then we have

h18k+5 = α135k2+75k+10(α+ 1)108k
2+60k+8

and

h18k+13 = α135k2+195k+70(α+ 1)108k
2+156k+56

respectively, by (3.4). From these equations we see that hn = C iff

α(α+ 1)2 = C. (3)

Now suppose that n ≡ 7 or 11 (18) then we have

h18k+7 = α135k2+105k+20(α+ 1)108k
2+84k+16

and

h18k+11 = −α135k2+165k+50(α+ 1)108k
2+132k+40

respectively, by (3.4). In this case we have hn = C iff

α2(α+ 1) = C. (4)

It follows that equations (2), (3) and (4) lead to trivial equation

β3
2 − β3

1 = 1

where α = β3
1 , α+ 1 = β3

2 and β1, β2 are integers. This equation does not provide any

acceptable α. ¤

5.4. The Case N = 7. We determine the square or cube terms of the elliptic divisibility

sequences for which the seventh term is zero in the following theorem.

Theorem 5.4. Let (hn) be an elliptic divisibility sequence for which the seventh

term is zero (so that hn = 0, for every n ≡ 0 (7)).

1. i. If n ≡ 1, 13 (14), then hn = ¤ for every α 6= 0, 1.

ii. If n ≡ 2, 3, 11, 12 (14), then hn = ¤ iff α− 1 = ¤.

iii. If n ≡ 4, 5, 9, 10 (14), then hn = ¤ iff α = ¤.

iv. Otherwise, hn 6= ¤ for all α 6= 0, 1.
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2. i. If n ≡ 1, 3, 8, 13, 18, 20 (21), then hn = C for every α 6= 0, 1.

ii. If n ≡ 4, 6, 10, 11, 15, 17 (21), then hn = C iff α = C.

iii. If n ≡ 9, 12 (21), then hn = C iff α− 1 = C.

iv. Otherwise, hn 6= C for every α 6= 0, 1.

Proof. 1. The proof of (i), (ii) and (iii) are similar to proof of Theorem 5.1. For

(iv), if n ≡ 6 or 8 (14) then we have

h14k+6 = −α140k2+120k+1(α− 1)84k
2+72k+15

and

h14k+8 = α140k2+160k+45(α− 1)84k
2+96k+27

respectively, by (3.5). From these equations we see that hn = ¤ iff

α(α− 1) = ¤. (5)

This last equation leads to trivial equations

(2α− 1)2 ± β2 = 1

where β is an integer. It is clear that these equations do not provide any acceptable α.

2. The proof of (i), (ii) and (iii) are similar to proof of Theorem 5.1. For (iv), if

n ≡ 2, 5, 16 or 19 (21) then we have

h21k+2 = −α315k2+60k+2(α− 1)189k
2+36k+1

h21k+5 = α315k2+150k+17(α− 1)189k
2+90k+10

h21k+16 = −α315k2+480k+182(α− 1)189k
2+288k+109

h21k+19 = α315k2+570k+257(α− 1)189k
2+342k+154

respectively, by (3.5). Therefore, hn = C iff

α2(α− 1) = C. (6)

This last equation leads to trivial equation

β3
1 − β3

2 = 1

where α = β3
1 , α − 1 = β3

2 and β1, β2 are integers and this equation does not provide

any acceptable α. ¤
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5.5. The Case N = 8. We determine the square or cube terms of the elliptic divisibility

sequences for which the eighth term is zero in the following theorem.

Theorem 5.5. Let (hn) be an elliptic divisibility sequence for which the eighth

term is zero (so that hn = 0, for every n ≡ 0 (8)).

1. i. If n ≡ 1, 4, 12, 15 (16), then hn = ¤ for every α 6= 0, 1.

ii. If n ≡ 3, 13 (16), then hn = ¤ iff (α− 1)(2α− 1) = ¤.

iii. If n ≡ 5, 11 (16), then hn = ¤ iff α(2α− 1) = ¤.

iv. Otherwise hn 6= ¤ for every α 6= 0, 1.

2. i. If n ≡ 1, 7, 17, 23 (24), then hn = C for every α 6= 0, 1.

ii. If n ≡ 3, 4, 20, 21 (24), then hn = C iff α = C.

iii. If n ≡ 6, 18 (24), then hn = C iff 2α− 1 = C.

iv. If n ≡ 9, 15 (24), then hn = C iff α− 1 = C.

v. Otherwise hn 6= C for every α 6= 0, 1.

Proof. 1. The proof of (i) is similar to proof of Theorem 5.1. For (ii), if n ≡
3, 13 (16) then we have

h16k+3 = −α240k2+90k+8(α− 1)112k
2+42k+3(2α− 1)96k

2+36k+3

and

h16k+13 = α240k2+390k+158(α− 1)112k
2+182k+73(2α− 1)96k

2+156k+63,

respectively by (3.6). Hence, hn = ¤ iff

(α− 1)(2α− 1) = ¤. (7)

It follows that

(4α− 3)2 − 8β2 = 1 (5.1)

or

(4α− 3)2 + 8β2 = 1

where β is an integer. From the last equation we have no solutions of α. The first

equation leads to Pell equation. If we rewrite this equation as

(τ + 2β
√
2 )(τ − 2β

√
2 ) = 1

where τ = 4α − 3 we see that the only solutions of the form τk + 3 ≡ 0 (4) give the

desired solution of α and their number is infinite.

For (iii), if n ≡ 5 or 11 (16) then we have

h16k+5 = α240k2+150k+23(α− 1)112k
2+70k+10(2α− 1)96k

2+60k+9

and

h16k+11 = −α240k2+330k+113(α− 1)112k
2+154k+52(2α− 1)96k

2+132k+45,

respectively, by (3.6). Hence, hn = ¤ iff

α(2α− 1) = ¤. (8)
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It follows that (α, 2α − 1) = (β2
1 , β

2
2), (−β2

1 ,−β2
2), (−β2

1 , β
2
2) or (β2

1 ,−β2
2), where β1, β2

are positive integers. The latter two possibilities give the trivial equations 2β2
1+β2

2 = −1

and 2β2
1 +β2

2 = 1, respectively. The first equation is impossible and the second one does

not give desired α. The former two possibilities lead to Pell equations

β2
2 − 2β2

1 = −1, β2
2 − 2β2

1 = 1

respectively. The solutions to the first equation are (1, 1), (7, 5), (41, 29), . . . and para-

meters α corresponding to these solutions are 1, 25, 841, . . . . Note that α can not be 1 by

the assumption. Thus the solutions to the last equation are (3, 2), (17, 12), (99, 70), . . .

and parameters α corresponding to these solutions are −4,−144,−4900, . . . .

For (iv), if n ≡ 2, 6, 10 or 14 (16) then we have

h16k+2 = −α240k2+60k+3(α− 1)112k
2+28k+1(2α− 1)96k

2+24k+1,

h16k+6 = −α240k2+180k+33(α− 1)112k
2+84k+15(2α− 1)96k

2+72k+13,

h16k+10 = α240k2+420k+93(α− 1)112k
2+140k+43(2α− 1)96k

2+120k+37,

and

h16k+14 = α240k2+420k+183(α− 1)112k
2+196k+85(2α− 1)96k

2+168k+73,

respectively, by (3.6). From these equations we see that hn = ¤ iff

α(α− 1)(2α− 1) = ¤. (9)

Notice that the factors α, α− 1 and 2α− 1 are pairwaise coprime. Now the product of

three pairwaise coprime number is a square only when each is a square. This implies

that α = ¤, α− 1 = ¤ which is impossible by the proof of Theorem 5.4.

Let n ≡ 7, 9 (16). Then we have

h16k+7 = −α240k2+210k+45(α− 1)112k
2+98k+21(2α− 1)96k

2+84k+18,

and

h16k+9 = α240k2+270k+75(α− 1)112k
2+126k+35(2α− 1)96k

2+108k+30,

respectively, by (3.6). From these equations we see that hn = ¤ iff

α(α− 1) = ¤. (5)

This equation give trivial equations (2α− 1)2 ± β2 = 1. It is clear that these equations

do not provide any acceptable α.

2. The proof of (i) is similar to proof of Theorem 5.1. For (ii), if n ≡ 3, 4, 20 or

21 (24), then n = 24k+3, n = 24k+4, n = 24k+20, or 24k+21 (k ∈ N). Substituting
these values into (3.6), we have

h24k+3 = −α540k2+135k+8(α− 1)252k
2+63k+3(2α− 1)216k

2+54k+3,
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h24k+4 = −α540k2+180k+14(α− 1)252k
2+84k+6(2α− 1)216k

2+72k+6,

h24k+20 = −α540k2+900k+374(α− 1)252k
2+420k+174(2α− 1)216k

2+360k+150,

and

h24k+21 = α540k2+945k+413(α− 1)252k
2+441k+192(2α− 1)216k

2+378k+165,

respectively. Thus hn = C iff α2 = C. The cases (iii) and (iv) can be proved in the

same way.

For (v), if n ≡ 5 (24) then

h24k+5 = α540k2+225k+23(α− 1)252k
2+105k+10(2α− 1)216k

2+90k+9

by (3.6). So, hn = C iff

α2(α− 1) = C. (6)

Let n ≡ 12 (24). Then we have

h24k+12 = α540k2+540k+134(α− 1)252k
2+252k+62(2α− 1)216k

2+216k+54,

by (3.6). Therefore hn = C iff

α2(α− 1)2 = C. (10)

The equations (6) and (10) lead to trivial equation

β3
1 − β3

2 = 1

where α = β3
1 , α − 1 = β3

2 and β1, β2 are integers and this equation does not provide

any acceptable α. The cases where n ≡ 11, 13, 19 (24) can be proved in the same way.

If n ≡ 2, 10, 14, 22 (24) then

h24k+2 = α540k2+90k+3(α− 1)252k
2+42k+1(2α− 1)216k

2+36k+1,

h24k+10 = −α540k2+450k+93(α− 1)252k
2+210k+43(2α− 1)216k

2+180k+37,

h24k+14 = −α540k2+630k+183(α− 1)252k
2+294k+85(2α− 1)216k

2+252k+73,

h24k+22 = α540k2+990k+453(α− 1)252k
2+462k+211(2α− 1)216k

2+396k+181,

respectively, by (3.6). From these equations we see that hn = C iff

(α− 1)(2α− 1) = C. (11)

It follows that (α−1, 2α−1) = (β3
1 , β

3
2) where β1, β2 are integers. This gives the classical

equation

β3
2 + 2(−β1)

3 = 1

and the only solution of this equation is (β1, β2) = (−1,−1) and this solution does not

provide any acceptable α. ¤
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5.6. The Case N = 9. We determine the square or cube terms of the elliptic divisibility

sequences for which the ninth term is zero in the following theorem.

Theorem 5.6. Let (hn) be an elliptic divisibility sequence for which the ninth

term is zero (so that hn = 0, for every n ≡ 0 (9)).

1. i. If n ≡ 1, 17 (18), then hn = ¤ for every α 6= 0, 1.

ii. If n ≡ 5, 13 (18), then hn = ¤ iff α = ¤.

iii. Otherwise, hn 6= ¤ for every α 6= 0, 1.

2. i. If n ≡ 1, 3, 6, 12, 15, 21, 24, 26 (27), then hn = C for every α 6= 0, 1.

ii. If n ≡ 4, 23 (27), then hn = C iff (α2 − α+ 1)2 = C.

iii. Otherwise hn 6= C for every α 6= 0, 1.

Proof. 1. The proof of (i), (ii) are similar to proof of Theorem 5.1. For (iii), if

n ≡ 6, 7, 8, 10, 11 or 12 (18) then hn = ¤ iff

α(α− 1) = ¤ (5)

by (3.7). But this is impossible by proof of Theorem 5.4.

Let n ≡ 4, 14 (18). Then hn = ¤ iff

α2 − α+ 1 = ¤ (12)

by (3.7). This last equation leads to trivial equations

(2α− 1)2 − β2 = −3 or (2α− 1)2 + β2 = −3

where β is an integer. The last equation is impossible and from the first one we only

have α = 0 and 1.

If n ≡ 2, 3, 15, 16 (18) then hn = ¤ iff

(α− 1)(α2 − α+ 1) = ¤ (13)

by (3.7). As the products α− 1 and α2 −α+1 are coprime we see that α2 −α+1 = ¤
and this equation do not provide any acceptable α by above.

2. The proof of (i), is similar to proof of Theorem 5.1. For (ii), if n ≡ 4, 23 (27),

then hn = C iff

(α2 − α+ 1)2 = C (14)

or equivalently α2−α+1 = C by (3.7). This last equation leads to a Mordell’s equation

β3 − 48 = (8α− 4)2

where β is an integer. From the tables in [18], we see that the only integer solutions to the

equation are (4,±4), (28,±148). An easy computation shows that the only acceptable

solutions of α are −18 and 19.
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For (iii), if n ≡ 8, 19 (27), then hn = C iff

α(α− 1) = C, (15)

if n ≡ 10, 17 (27), then hn = C iff

α2(α− 1)2 = C, (16)

if n ≡ 2, 25 (27), then hn = C iff

α2(α− 1)(α2 − α+ 1) = C, (17)

if n ≡ 5, 22 (27), then hn = C iff

α(α− 1)(α2 − α+ 1)2 = C, (18)

and if n ≡ 13, 14 (27), then hn = C iff

α2(α− 1)2(α2 − α+ 1)2 = C. (19)

respectively by (3.7). These equations lead to trivial equation

β3
1 − β3

2 = 1

where α = β3
1 , α − 1 = β3

2 and β1, β2 are integers. It is clear that this equation does

not provide any acceptable α.

If n ≡ 7, 20 (27) then hn = C iff

α(α2 − α+ 1) = C, (20)

and if n ≡ 11, 16 (27) then hn = C iff

(α− 1)2(α2 − α+ 1) = C (21)

respectively by (3.7). These equations lead to

β3 − 48 = (8α− 4)2

where β is an integer. This equation was treated above. ¤
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5.7. The Case N = 10. We determine the square or cube terms of the elliptic divisi-

bility sequences for which the tenth term is zero in the following theorem.

Theorem 5.7. Let (hn) be an elliptic divisibility sequence for which the tenth

term is zero (so that hn = 0, for every n ≡ 0 (10)).

1. i. If n ≡ 1, 9, 11, 19 (20), then hn = ¤ for every α 6= 0, 1.

ii. If n ≡ 4, 16 (20), then hn = ¤ iff −α2 + 3α− 1 = ¤.

iii. If n ≡ 5, 15 (20), then hn = ¤ iff α = ¤.

iv. Otherwise hn 6= ¤ for every α 6= 0, 1.

2. i. If n ≡ 1, 11, 19, 29 (30), then hn = C.

ii. If n ≡ 3, 27 (30), then hn = C iff −α2 + 3α− 1 = C.

iii. If n ≡ 7, 13, 17, 23 (30), then hn = C iff 2α− 1 = C.

iv. Otherwise hn 6= C for every α 6= 0, 1.

Proof. 1. The cases (i) and (iii) can be proved in the same way as in Theorem

5.1. For (ii), if n ≡ 4, 16 (20), then hn = ¤ iff

−α2 + 3α− 1 = ¤ (22)

by (3.8). This equation leads to trivial equations

(2α− 3)2 ± β2 = 5

where β is an integer. The only solutions of these equations are α = 2 and 3.

For (iv), if n ≡ 2, 3, 7, 13, 17, 18 (20), then hn = ¤ iff

α(α− 1)(2α− 1) = ¤ (9)

by (3.8). But this is impossible by proof of Theorem 5.5.

If n ≡ 6, 14 (20), then hn = ¤ iff

α(α− 1) = ¤ (5)

by (3.8), but this is impossible by proof of Theorem 5.4.

If n ≡ 8, 12 (20), then hn = ¤ iff

(2α− 1)(−α2 + 3α− 1) = ¤ (23)

by (3.8). Since the factors 2α − 1 and −α2 + 3α − 1 are coprime we have 2α − 1 = ¤
and −α2 + 3α− 1 = ¤. But this is impossible by case (ii).

2. The cases (i) and (iii) can be proved in the same way as in Theorem 5.1. For

(ii), if n ≡ 3, 27 (30), then hn = C iff

−α2 + 3α− 1 = C (24)
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by (3.8). This equation leads to Mordell’s equation

β3 + 80 = (8α− 12)2 (5.2)

where β is an integer. From the tables in [18] we see the only integer solutions to the

equation are (−4,±4), (4,±12), (1,±9), (44,±292). Now we can easily verify that the

only acceptable solutions of α are 2, 3, 38 and −35.

For (iv), if n ≡ 2, 8, 22, 28 (30), then hn = C iff

(α− 1)(2α− 1)(−α2 + 3α− 1) = C (25)

by (3.8). This equation leads to classical equation

β3
2 + 2(−β3

1) = 1

where α − 1 = β3
1 , 2α − 1 = β3

2 and β1, β2 are integers and the only solution of this

equation is (β1, β2) = (−1,−1) and this equation does not provide any acceptable α.

If n ≡ 4, 14, 16, 26 (30), then hn = C iff

α(−α2 + 3α− 1) = C, (26)

if n ≡ 9, 21 (30), then hn = C iff

(2α− 1)2(−α2 + 3α− 1) = C, (27)

if n ≡ 12, 18 (30), then hn = C iff

(α− 1)(−α2 + 3α− 1)2 = C, (28)

by (3.8) or equivalently α2 − 3α + 1 = C. This last equation leads to equation (5.2).

This equation does not provide any acceptable α.

If n ≡ 5, 25 (30), then hn = C iff

α(α− 1)(2α− 1) = C, (29)

if n ≡ 15 (30), then hn = C iff

α(α− 1)(−α2 + 3α− 1) = C. (30)

by (3.8). These equations leads to trivial equation

β3
1 − β3

2 = 1

where α = β3
1 , α− 1 = β3

2 and β1, β2 are integers. The solutions of this equation do not

provide any acceptable α.

If n ≡ 6, 24 (30), then hn = C iff

α(2α− 1)2(−α2 + 3α− 1)2 = C. (31)

This equation leads to classical equation

(−β2)
3 + 2β3

1 = 1

where α = β3
1 , 2α − 1 = β3

2 and β1, β2 are integers. The only solution of this equation

is (β1, β2) = (1, 1) and this solution does not provide any acceptable α. ¤
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5.8. The Case N = 12. We determine the square or cube terms of the elliptic divisi-

bility sequences for which the twelfth term is zero in the following theorem.

Theorem 5.8. Let (hn) be an elliptic divisibility sequence for which the twelfth

term is zero (so that hn = 0, for every n ≡ 0 (12)).

1. i. If n ≡ 1, 23 (24), then hn = ¤ for every α 6= 0, 1.

ii. If n ≡ 5, 19 (24), then hn = ¤ iff 3α2 − 3α+ 1 = ¤.

iii. Otherwise hn 6= ¤ for all α 6= 0, 1.

2. i. If n ≡ 1, 35 (36), then hn = C for every α 6= 0, 1.

ii. If n ≡ 3, 9, 15, 21, 27, 33 (36), then hn = C iff α− 1 = C.

iii. Otherwise hn 6= C for all α 6= 0, 1.

Proof. 1. The case (i) can be proved in the same way as in Theorem 5.1. For (ii),

if n ≡ 5, 19 (24), then hn = ¤ iff

3α2 − 3α+ 1 = ¤ (32)

by (3.9). It follows that

β2 − 3(2α− 1)2 = 1 (5.3)

or

β2 + 3(2α− 1)2 = −1,

where β is an integer. The last equation is impossible modulo 3, and the first leads to

Pell equation. If we rewrite equation (5.3) as

(β + (2α− 1)
√
3 )(β − (2α− 1)

√
3 ) = 1

we see that the solutions of this equation are (2, 1), (7, 4), (26, 15), . . . and parameters

α corresponding to these solutions are 1, 5
2
, 8, . . . . It can easily be seen that the only

odd solutions of this Pell equation gives the desired solution of α, i.e., for such an α,

3α2 − 3α+ 1 is a square and their number is infinite.

For (iii), if n ≡ 2, 3, 10, 14, 21, 22 (24), then hn = ¤ iff

α(2α− 1)(2α− 2α2 − 1)(3α2 − 3α+ 1) = ¤ (33)

by (3.9). Notice that the factors α, 2α − 1, 2α − 2α2 − 1, 3α2 − 3α + 1 are pairwaise

coprime. Now the product of four pairwaise coprime number is a square only when each

is a square. This implies that α = ¤, 2α − 1 = ¤ which is impossible by the above

argument.

If n ≡ 4, 8, 16, 20 (24), then hn = ¤ iff

(α− 1)(2α− 2α2 − 1) = ¤ (34)

by (3.9). This equation leads to

(−2α)3 + 4(−2α)2 + 6(−2α) + 4 = β2
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or

(2α)3 − 4(2α)2 + 6(2α)− 4 = β2.

where β is an integer. From the last equation we have an elliptic curve with rank 0 and

torsion points on this curve do not provide any acceptable α. From the first equation

we have an elliptic curve with rank 1 and applying the Elliptic Logarithm Method we

see that the only solutions to this equation are α = 0, 1 and −3. So we have α = −3.

If n ≡ 6, 18 (24), then hn = ¤ iff

α(3α2 − 3α+ 1) = ¤, (35)

if n ≡ 11, 13 (24), then hn = ¤ iff

α(α− 1)(3α2 − 3α+ 1) = ¤. (36)

by (3.9), or equivalently α(3α2 − 3α+ 1) = ¤. This equation leads to

(3α)3 − 3(3α)2 + 3(3α) = β2

or

(−3α)3 + 3(−3α)2 + 3(−3α) = β2.

where β is an integer. From these equations we have elliptic curves with rank 0 and

torsion points on these curves do not provide any acceptable α.

If n ≡ 7, 17 (24), then hn = ¤ iff

α(α− 1) = ¤. (5)

But this is impossible by proof of Theorem 5.4.

If n ≡ 9, 15 (24), then hn = ¤ iff

(α− 1)(2α− 1)(2α− 2α2 − 1) = ¤. (37)

by (3.9). This equation leads to

(4α)3 − 6(4α)2 + 16(4α)− 16 = β2

or

(−4α)3 + 6(−4α)2 + 16(−4α) + 16 = β2

where β is an integer. From these equations we have elliptic curves with rank 0 and

torsion points on these curves do not provide any acceptable α.

2. The cases (i) and (ii) can be proved in the same way as in Theorem 5.1. For

(iii), if n ≡ 2, 34 (36), then hn = C iff

α(2α− 1)(α− 1)2(2α− 2α2 − 1)(3α2 − 3α+ 1) = C, (38)
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if n ≡ 8, 28 (36), then hn = C iff

α(α− 1)2(2α− 1)2 = C, (39)

if n ≡ 11, 25 (36), then hn = C iff

α(α− 1)(2α− 1)2(2α− 2α2 − 1)2 = C, (40)

if n ≡ 13, 23 (36), then hn = C iff

α2(α− 1)2(2α− 1)(2α− 2α2 − 1)2 = C, (41)

if n ≡ 17, 19 (36), then hn = C iff

α2(α− 1) = C (42)

by (3.9). These equations lead to trivial equation

β3
1 − β3

2 = 1

where α = β3
1 , α− 1 = β3

2 and β1, β2 are integers. This equation does not provide any

acceptable α.

If n ≡ 4, 32 (36), then hn = C iff

(α− 1)(2α− 2α2 − 1)2 = C, (43)

if n ≡ 14, 22 (36), then hn = C iff

α2(2α− 2α2 − 1)2(3α2 − 3α+ 1) = C. (44)

by (3.9). These equations lead to Mordell’s equation

β3 − 4 = (4α− 2)2

where β is an integer. From the tables in [18], we see that the integral solutions to this

equation do not provide any acceptable α.

If n ≡ 5, 31 (36), then hn = C iff

α(2α− 1)(2α− 2α2 − 1)2 = C, (45)

if n ≡ 16, 20 (36), then hn = C iff

α2(2α− 1)(2α− 2α2 − 1) = C, (46)
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by (3.9). These equations lead to classical equation

(−β2)
3 + 2β3

1 = 1

where α = β3
1 , 2α − 1 = β3

2 and β1, β2 are integers. The only solution of this equation

is (β1, β2) = (1, 1) and this solution does not provide any acceptable α.

If n ≡ 6, 18, 30 (36), then hn = C iff

(α− 1)2(2α− 1)2(3α2 − 3α+ 1) = C, (47)

if n ≡ 7, 29 (36), then hn = C iff

(α− 1)2(2α− 1)2(2α− 2α2 − 1) = C, (48)

if n ≡ 10, 26 (36), then hn = C iff

(α− 1)(2α− 1)2(3α2 − 3α+ 1) = C, (49)

by (3.9). These equations lead to classical equation

β2
3 + 2(−β1)

3 = 1

where α− 1 = β3
1 , 2α− 1 = β3

2 and β1, β2 are integers. The solution of this equation is

(β1, β2) = (−1,−1) and this solution does not provide any acceptable α. ¤
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[11] D. Husemöller, Elliptic Curves, Springer Verlag, New York, 1987.

[12] D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc.
33(3) (1976), 193–237.

[13] http://magma.maths.usyd.edu.au/calc/.

[14] B. Mazur, Modular curves and the Eisenstein ideal, IHES Publ. Math. 47 (1977), 33–186.

[15] L. J. Mordell, Diophantine Equations, Pure and Applied Mathematics 30, Academic
Press, London and New York, 1970.

[16] http://pari.maths.u-bordeaux.fr/.
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