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On several classes of additively non-regular C-semirings
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Abstract. In this paper, the authors study several classes of additively non-regular

C-semirings whose additive idempotents are central, including the generalized C-rpp se-

mirings, C-rpp semirings, generalized C-abundant semirings and C-abundant semirings.

After introducing the concept of generalized C-rpp semirings, the authors obtain their

equivalent characterizations, and show that a semiring is a generalized C-rpp semiring

if and only if it is a strong b-lattice of additively left cancellative halfrings, and if and

only if it is a subdirect product of a b-lattice and an additively left cancellative halfring.

Also, the authors give the constructions of C-rpp semirings, generalized C-abundant se-

mirings and C-abundant semirings. Consequently, the corresponding results of Clifford

semirings and generalized Clifford semirings in [7] and [29] are extended and generalized.

1. Introduction

A semiring is an algebra (R,+, ·) with two binary operations + and · such
that both (R,+) and (R, ·) are semigroups and such that the distributive laws

x(y + z) ≈ xy + xz and (x+ y)z ≈ xz + yz

are satisfied.

The additive identity (if it exists) of a semiring R is called zero and denoted

by 0. An additively commutative semiring R with a zero satisfying 0x = x0 = 0
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for all x ∈ R, is called a hemiring. A halfring is a hemiring whose additive

reduct (R,+) is a cancellative monoid, i.e., for any a, b, c ∈ R, a + b = a + c

or b + a = c + a implies b = c. A skew-ring (R,+, ·) [29] is a semiring whose

additive reduct (R,+) is a group, not necessarily an abelian group. An additively

cancellative skew-halfring (additively left cancellative skew-halfring, respectively)

is a semiring whose additive reduct is an additively cancellative monoid (left

cancellative monoid, respectively), not necessarily to be additively commutative.

Also, a semiring (R,+, ·) is said to be a b-lattice [29] if its additive reduct (R,+)

is a semilattice and its multiplicative reduct (R, ·) is a band.

The algebraic theory of semirings have some important applications in au-

tomation theory, optimization theory and models of discrete event networks etc.

There are a series of papers in the literature considering semirings (for example,

see [2], [7]–[10], [16]–[17], [20]–[21], [23]–[32]).

Since semirings are generalizations of distributive lattices, b-lattices, rings,

skew-rings, skew-halfrings and left skew-halfrings, it is interesting to use those

semirings to establish the constructions of some semirings. In [2], Bandelt and

Petrich introduced Bandelt–Petrich Construction in semirings and described the

semirings with regular addition which is a subdirect products of a distributive lat-

tice and a ring. In [7], Ghosh established the constructions of strong distributive

lattice of semirings which include the Bandelt–Petrich Construction, and charac-

terized all semirings which are subdirect products of a distributive lattice and a

ring. In particular, the authors introduced Clifford semirings, and showed that a

semiring is a Clifford semiring if and only if it is a strong distributive lattice of

rings, and if and only if it is an inverse subdirect product of a distributive lattice

and a ring. Later, Sen, Maity and Shum in [29] defined the Clifford semiring

which is a completely regular and an additively inverse semiring such that the set

of its additive idempotents is a distributive sublattice as well as a k-ideal (without

assuming that its additive reduct is commutative) and verified that a semiring is

a Clifford semiring if and only if it is a strong distributive lattice of skew-rings.

Meanwhile, they introduced generalized Clifford semirings which are completely

regular and inverse semirings such that its additive idempotent set is a k-ideal,

and obtained that a semiring is a generalized Clifford semiring if and only if it

is a strong b-lattice of skew-rings, and if and only if it is an additively inverse

semiring and is a subdirect product of a b-lattice and a skew-ring. It is not hard

to see that all the semirings studied in [2], [7] and [29] are additively regular.

On the other hand, as we know, in order to generalize regular semigroups,

new Green’s relations, namely, the Green’s ∗-relations on a semigroup have been
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introduced as follows (see [3], [19], or [22]):

L∗ = {(a, b) ∈ S × S : (∀x, y ∈ S1)ax = ay ⇔ bx = by},
R∗ = {(a, b) ∈ S × S : (∀x, y ∈ S1)xa = ya ⇔ xb = yb},
H∗ = L∗ ∩R∗,

D∗ = L∗ ∨R∗.

It is clear that L ⊆ L∗, R ⊆ R∗, H ⊆ H∗, D ⊆ D∗. A semigroup S is

abundant [3] if its each L∗-class and each R∗-class contains an idempotent, a

semigroup S is an rpp semigroup (a lpp semigroup, respectively) if its each L∗-
class (R∗-class, respectively) contains an idempotent (see [5]). A semigroup S is

a C-rpp semigroup ([5]) if its every L∗-class contains an idempotent and E(S)

is central. Dually, we will get the definition of C-lpp semigroups. A semigroup

S is said to be a C-abundant semigroup if it is abundant and E(S) is central,

i.e., it is both a C-lpp semigroup and a C-rpp semigroup. In general, abundant

semigroups, C-rpp semigroups, C-lpp semigroups and C-abundant semigroups are

not regular, so we will call them non-regular semigroups in the following. There

are also a series of papers in the literature considering non-regular semigroups

(for example, see [1], [3]–[5], [11]–[15], [18] etc.).

In this paper, we will study several classes of additively non-regular C-

semirings whose additive idempotents are central, including the generalized C-rpp

semirings, C-rpp semirings, generalized C-abundant semirings and C-abundant

semirings. Our purpose is to extend the results of Clifford semirings and gene-

ralized Clifford semirings in [29] and the semirings which are subdirect products

of a distributive lattice and a ring in [7] to the non-regular C-semirings. We will

show that a semiring is a generalized C-rpp semiring (C-rpp semiring, generali-

zed C-abundant semiring, C-abundant semiring, respectively) if and only if it is

a strong b-lattice (strong distributive lattice, strong b-lattice, strong distributive

lattice, respectively) of additively left cancellative (left cancellative, cancellative,

cancellative, respectively) halfrings, and if and only if it is a subdirect product

of a b-lattice (distributive lattice, b-lattice, distributive lattice, respectively) and

an additively left cancellative (left cancellative, cancellative, cancellative, respec-

tively) halfring.

For notations and terminologies not mentioned in this paper, the readers are

referred to [3], [8] or [29].
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2. Generalized C-rpp semirings and C-rpp semirings

In this section, we will study the classes of generalized C-rpp semirings and

C-rpp semirings, and show that a semiring is a generalized C-rpp semiring (C-rpp

semiring, respectively) if and only if it is a strong b-lattice (strong distributive

lattice, respectively) of additively left cancellative halfrings, and if and only if it

is a subdirect product of a b-lattice (distributive lattice, respectively) and an ad-

ditively left cancellative halfring. Also, we will give some other characterizations

of such semirings.

Let (R,+, ·) be a semiring. We denote the Green’s relations L, R, H on

additive reduct (R,+) by
+

L,
+

R,
+

H, respectively. These are also equivalence

relations on semiring (R,+, ·). Now, we introduce Green’s ∗-relations
+

L∗,
+

R∗,
+

H∗

on semiring R which are given by

+

L∗ = {(a, b) ∈ R×R : (∀x, y ∈ R1)a+ x = a+ y ⇔ b+ x = b+ y},
+

R∗ = {(a, b) ∈ R×R : (∀x, y ∈ R1)x+ a = y + a ⇔ x+ b = y + b},
+

H∗ =
+

L∗ ∩
+

R∗ .

It is clear that
+

L⊆
+

L∗,
+

R⊆
+

R∗,
+

H⊆
+

H∗ on (R,+, ·). In particular, if R is an additi-

vely regular semiring,
+

L=
+

L∗,
+

R=
+

R∗,
+

H=
+

H∗ [4]. In general, Green’s equivalence

relations
+

L∗,
+

R∗ and
+

H∗ are not congruences on (R,+, ·).
For a semiring R, we denote by E+(R) the set of all additive idempotents

of R. For any e, f ∈ E+(R), we write e ≤+ f if e+ f = f = f + e. Remark that

≤+ is a partial order which is compatible with the multiplication.

In the following, we will introduce the concepts of strong b-lattice and strong

distributive lattice of semirings.

Definition 1 (Definition 2.3 in [29]). Let T be a b-lattice and {Rα : α ∈ T}
be a family of pairwise disjoint semirings which are indexed by the elements of T .

For each α ≤ β in T , we now embed Rαin Rβ via a semiring monomorphism φα,β

satisfying the following conditions:

(1.1) φα,α = IRα , the identity mapping on Rα;

(1.2) φα,βφβ,γ = φα,γ if α ≤ β ≤ γ;

(1.3) Rαφα,βRβφβ,γ ⊆ Rαβφαβ,γ if α+ β ≤ γ, i.e., α+ β + αβ ≤ γ.
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On R = ∪α∈Y Rα, we define addition + and multiplication · for a ∈ Rα,

b ∈ Rβ , as follows:

(1.4) a+ b = aφα,α+β + bφβ,α+β

and

a · b = c ∈ Rαβ

such that

cφαβ,α+β = aφα,α+β · bφβ,α+β .

Same as the notation of strong semilattice of semigroups, we denote the above

system byR = 〈T,Rα, φα,β〉 and call it the strong b-lattice T of the semirings

Rα, α ∈ T .

In an obvious way, we may replace b-lattice T in the above definition by

distributive lattice D, R = 〈D,Rα, φα,β〉 and call it strong distributive lattice D

of the semirings Rα, α ∈ D.

Lemma 1 (Theorem 2.4 in [29]). The system R = 〈T,Rα, φα,β〉 defined

above is a semiring.

Lemma 2 ([5]). A semigroup S is a C-rpp semigroup if and only if it is a

strong semilattice of left cancellative monoids.

By Lemma 2, we can dually obtain that a semigroup S is a C-lpp semigroup

if and only if it is a strong semilattice of right cancellative monoids.

From [5], it is also known that a semigroup (S,+) is called a [right, left,

respectively]adequate semigroup if its idempotents commute and every L∗-class
and R∗-class [L∗-class, R∗-class, respectively] contain a unique idempotent. For

an element a of such a semigroup, the unique idempotent in the L∗-class [R∗-
class, respectively] containing a is denoted by a∗[a+]. A [right, left, respectively]

adequate semigroup S is called [right, left, respectively] type A if [e + a = a +

(e+ a)∗, a+ e = (a+ e)+ + a] e+ a = a+ (e+ a)∗ and a+ e = (a+ e)+ + a for

a ∈ S and e ∈ E+(S).

By the definition of C-rpp semigroups, it is not hard to see that a right

type A semigroup is a C-rpp semigroup.

Lemma 3 (Corollary 2.8 in [4]). Let (S,+) be a right type A semigroup with

semilattice of idempotents E = E(S) and µL the largest congruence contained

in L∗. Then the following conditions are equivalent:

(1) S/µL
∼= E;
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(2) µL = L∗;

(3) E is central in S;

(4) S is a strong semilattice of left cancellative monoids.

Lemma 4 (Proposition 2.9 in [4]). Let (S,+) be a adequate semigroup with

semilattice of idempotents E = E(S) and µ the largest congruence contained

in H∗. Then the following conditions are equivalent:

(1) S/µ ∼= E;

(2) µ = H∗;

(3) E is central in S;

(4) S is a strong semilattice of cancellative monoids.

From Lemma 2, it is known that a semigroup S is a C-rpp semigroup if

and only if it is a strong semilattice of left cancellative monoids. Now, we will

similarly give the definition of generalized C-rpp semirings and then investigate

some of their equivalent characterizations and constructions.

Definition 2. A semiring R is said to be a generalized C-rpp semiring if it is

a strong b-lattice of additively left cancellative shew-halfring.

In the following, for any a ∈ R, the unique idempotent in the
+

H∗-class
containing a is denoted by a0.

Theorem 1. Assume that R is a generalized C-rpp semiring. Then the

following conditions hold:

(GCR1) (R,+) is a C-rpp semigroup;

(GCR2) E+(R) is a b-lattice;

(GCR3) for any a, b ∈ S, (ab)0 + a0b0 = a0b0;

(GCR4) if a0 = b0 and a+ e = b+ e for a, b ∈ R and some e ∈ E+(R), then

a = b.

Proof. Assume that R is a generalized C-rpp semiring, then it is a strong b-

lattice of additively left cancellative skew-halfrings, say R = 〈T,Rα, φα,β〉, where
Rα are the additively left cancellative skew-halfrings in which the zero of additive

reduct is denoted by 0α and T is a b-lattice.

i) Since R is a strong b-lattice of left additively cancellative skew-halfrings

Rα, (R,+) is a strong semilattice of left cancellative monoids (Rα,+), by Lemma 2,

(R,+) is a C-rpp semigroup, and condition (GCR1) holds.
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ii) Notice that E+(R) = {0α | α ∈ T} ∼= T , where T is a b-lattice, then

(E+(R),+, ·) is also a b-lattice, and condition (GCR2)holds.

iii) We will show that a0 = 0α for any a ∈ Rα at first. In fact, notice that

(R,+) is a strong semilattice of left cancellative monoids (Rα,+), by Lemma 3,

we obtain that a
+

L∗=
+

Rα for any a ∈ Rα. And then, a0 = 0α. Thus, for any

a ∈ Rα, b ∈ Rβ , we have (ab)0 = 0αβ = 0α0β = a0b0, (ab)0 + a0b0 = a0b0. The

condition (GCR3)holds.

iv) Assume that a0 = b0 and a+ e = b+ e for a, b ∈ R and some e ∈ E+(R),

then there exist α, β ∈ T , s.t., a, b ∈ Rα and e ∈ E(Rβ). Now let f = a0 + e.

Then

a+ f = b+ f,

i.e.,

aϕα,α+β + fϕα+β,α+β = bϕα,α+β + fϕα+β,α+β .

Since ϕα+β,α+β is a monomorphism, we have

fϕα+β ,α+β = f,

where f is the additive identity of Sα+β . And then, we have

aϕα,α+β = bϕα,α+β .

Also, notice that ϕα,α+β is a monomorphism, we immediately get a = b. The

condition (GCR4) holds. ¤

Actually, the converse of the above theorem also holds. To show this, we

need the following proposition.

Proposition 1. If R satisfies the conditions (GCR1)–(GCR3), then the

following conclusions hold:

(1) L∗ is a semiring congruence;

(2) R/L∗ ∼= E+(R).

Proof. (1) Assume that R satisfies the conditions (GCR1)–(GCR3), we will

show that L∗ is a semiring congruence.

Firstly, since (GCR1) holds, by Lemma 3, (R,+) is a strong semilattice Y

of left cancellative monoids (Rα,+), where Y ∼= (E+(R),+). By Lemma 3 again,

(R,+)/L∗ ∼= (E+(R),+), we obtain that L∗ is a semilattice congruence on (R,+).

To show that L∗ is a semiring congruence, we only need to prove that L∗ is a

multiplicative congruence on (R, ·), i.e., for any a, b ∈ R,

(ab)0 = a0b = ab0 = a0b0.
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In fact, for any a, b ∈ R, since a0b, ab0, a0b0 ∈ E+(R), by condition (GCR2), we

have

(ab)0 = [(a+ a0)(b+ b0)]0 = (ab+ a0b+ ab0 + ab0)0 = (ab)0 + a0b+ ab0 + a0b0.

And then

(ab)0 + a0b0 = (ab)0.

Together with (GCR3), we have

(ab)0 = a0b0.

Notice that (ab)0+a0b = (ab)0 and (ab)0+ab0 = (ab)0 also hold, we immediately

get

(ab)0 = a0b = ab0 = a0b0.

(2) Define a mapping

φ : S/L∗ → E+(S), aL∗ 7→ a0.

It is a routine way to check that φ is bijective, and

(aL∗ + bL∗)φ = [(a+ b)L∗]φ = (a+ b)0 = a0 + b0,

[(aL∗)(bL∗)]φ = [(ab)L∗]φ = (ab)0 = a0b0.

Thus, S/L∗ ∼= E+(S). ¤

Now, we have the following theorem.

Theorem 2. A semiring R is a generalized C-rpp semiring if and only if it

satisfies the conditions (GCR1)–(GCR4).

Proof. We only need to show the sufficiency. By Proposition 1, it is known

that if S satisfies the conditions (GCR1)–(GCR4), then L∗ is a semiring congru-

ence on (R,+, .), and R/L∗ ∼= E+(R) is a b-lattice. Also, for any a∈R, notice that

(L∗
a,+) is an additively left cancellative monoid, we obtain that R is a b-lattice

of additively left cancellative skew-halfrings.

For any e, f ∈ E+(R) with e ≤+ f , define a mapping

φe,f : L∗
e → L∗

f , a 7→ a+ f.

In the following, we will show that R = 〈E+(R), L∗
e, φe,f 〉 is a strong b-lattice

of the additively left cancellative skew-halfrings L∗
e, e ∈ E+(R). That is, we will

show that φe,f satisfies the conditions of strong b-lattice.



On several classes of additively non-regular C-semirings 525

For any a, b ∈ L∗
e,

(a+ b)φe,f = a+ b+ f = a+ (f + b+ f) = (a+ f) + (b+ f) = aφe,f + bφe,f .

Also, since af ∈ L∗
ef ∩ E+(R), we have af = ef . And then,

(ab)φe,f = ab+ f = ab+ e+ f = ab+ (e+ f)2 = ab+ e+ ef + fe+ f

= ab+ af + fb+ f = (a+ f)(b+ f) = aφe,f bφe,f .

Hence, φe,f is a semiring morphism.

For any a, b ∈ L∗
e, if aφe,f = bφe,f , we have a+f = b+f . Notice that (L∗

e,+)

is an additively left cancellative monoid, we will get a0 = b0 = e. It follows from

(GCR4) that a = b. Thus, φe,f is a semiring monomorphism.

Moreover, we can check that the monomorphism φe,f satisfies the conditions

(1.1)–(1.4) of Definition 1.

(i) φe,e is clearly an identity morphism.

(ii) For any e, f, g ∈ E+(R) with e ≤+ f ≤+ g, we have

aφe,fφf,g = a+ f + g = a+ g = aφe,g.

Hence, φe,fφf,g = φe,g.

(iii)For any e, f, g ∈ E+(R), if e+ f ≤+ g, then for any a ∈ L∗
e, b ∈ L∗

f ,

aφe,gbφf,g = (a+ g)(b+ g) = ab+ ag + gb+ g = ab+ eg + gf + g

= ab+ g = (ab)φef,g.

(iv) For any e, f ∈ E+(R), a ∈ L∗
e, b ∈ L∗

f , we have

aφe,e+f + bφf,e+f = (a+ e+ f) + (b+ e+ f) = a+ f + b+ e

= a+ b+ e+ f = a+ b;

aφe,e+fbφf,e+f = (a+ e+ f)(b+ e+ f) = ab+ a(e+ f) + (e+ f)b+ (e+ f)

= ab+ (e+ f) = (ab)φef,e+f

Thus, we have shown that R is a strong b-lattice of additively left cancellative

skew-halfrings. And then it is a generalized C-rpp semiring. ¤

Example 1. Let (A,+) and (B,+) be the infinite cyclic monoids generated

by a and b respectively. Let M = A∪B∪{0} with additive identity 0 and addition

+ defined by

ma+ nb = (m+ n)b, nb+ma = (n+m)a
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for any m,n ∈ N+. Also, we define the multiplication · of M as follows: s1 ·s2 = 0

for any s1, s2 ∈ M , it is a routine way to check that (M,+, ·) is an additively left

cancellative skew-halfring.

On the other hand, let D = {e, f} such that e+ e = e · e = e, f +f = e+f =

f + e = f · f = e · f = f · e = f . Then (D,+, ·) is a b-lattice.

Now, construct the direct product of D and M , and denote it by R, i.e.,

R = D × M . Then, we can check that E+(R) = D × {eM}, where eM is the

identity element of (M,+). It is also not hard to check that (R,+, .) is a semiring

which satisfies the following conditions:

(i) (R,+) is a C-rpp semigroup;

(ii) (E+(R),+, ·) is a b-lattice;

(iii) for any a, b ∈ R, (ab)0 + a0b0 = a0b0;

(iv) if a0 = b0 and a+ e = b+ e for a, b ∈ R and some e ∈ E+(R), then a = b.

By Theorem 2, (R,+, .) is just a generalized C-rpp semiring.

Next, we will give another construction of generalized C-rpp semirings. Recall

that a subdirect product algebra T is a subalgebra of a direct product of algebras

such that the projection mapping from the algebra T to each of its components

is surjective.

Theorem 3. A semiring R is a generalized C-rpp semiring if and only if it is

a subdirect product of a b-lattice and an additively left cancellative shew-halfring.

Proof. (⇐) Suppose that R is a subdirect product of a b-lattice T and an

additively left cancellative shew-halfring M . Consider R ⊆ T × M . For each

α ∈ T , let Rα = ({α} × M) ∩ R. Then Rα is an additively left cancellative

shew-halfring for each α ∈ T and R = ∪α∈TRα. Now for each pair α, β ∈ T with

α ≤+ β, define a mapping

φα,β : Rα → Rβ , (α, r)φα,β = (β, r).

Then φα,β is clearly a monomorphism satisfying the conditions φα,α = IRα and

φα,βφβ,γ = φα,γ if α ≤+ β ≤+ γ for α, β, γ ∈ T .

Let α, β, γ ∈ T be such that α + β ≤+ γ. Denote a = (α, r) ∈ Rα, b =

(β, r′) ∈ Rβ . And then

a+ b = (α, r) + (β, r′) = (α+ β, r + r′) ∈ Rα+β

and

ab = (α, r)(β, r′) = (αβ, rr′) ∈ Rαβ .
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Now, we have

(aφα,γ)(bφβ,γ) = (αβ, rr′)φαβ,γ = (ab)φαβ,γ .

Also, since

a+b = (α, r)+(β, r′) = (α+β, r+r′) = (α+β, r)+(α+β, r′) = aφα,α+β+bφβ,α+β

and

(aφα,α+β)(bφβ,α+β) = (α+ β, r)(α+ β, r′) = (α+ β, rr′)

= (αβ, rr′)φαβ,α+β = (ab)φαβ,α+β ,

R is a strong b-lattice of additively left cancellative shew-halfrings. Hence, R is

a generalized C-rpp semiring.

(⇒) Assume that R is a generalized C-rpp semiring. We will show that it is

a subdirect product of a b-lattice and an additively left cancellative shew-halfring

by the following steps.

Firstly, from Proposition 1, L∗ is a semilattice congruence on (R,+) and a

semiring congruence on R. Also, since R is a generalized C-rpp semiring, we have

aa0 = a for any a ∈ R, and then a = aa0L∗a2. Hence, R/L∗ is an idempotent

semiring with the semilattice additive reduct and band multiplicative reduct, i.e.,

R/L∗ is a b-lattice.

Secondly, define a binary relation

θ = {(a, b) | (∃e ∈ E+(R))a+ e = b+ e}.

It can be easily seen that θ is an equivalence relation on R. Moreover, θ is the

minimum additively left cancellative shew-halfring congruence on (R,+, .). In

fact, by the Proposition 1.7 in [18], θ is a minimum left cancellative monoid

congruence on the additive reduct (R,+). Also, if aθb for some a, b ∈ R, there

exists e ∈ E+(R) such that a+ e = b+ e. Now, for any c ∈ R, we have

ac+ ec = bc+ ec, ca+ ce = cb+ ce.

Notice that ce, ec ∈ E+(R). We immediately obtain that

acθbc, caθcb.

Thus, we have shown that θ is the minimum additively left cancellative shew-

halfring congruence on (R,+, .). This also shows that R/θ is an additively left

cancellative shew-halfring.
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Finally, define a mapping

Φ : R → R/θ ×R/L∗, a 7→ (aθ, aL∗).

It is a routine way to check that R can be embedded into R/θ × R/L∗, and the

projection mapping from R into each of its components is surjective. Consequ-

ently, R is a subdirect product of a b-lattice and an additively left cancellative

shew-halfring. ¤

So we have obtained some constructions and characterizations of generalized

C-rpp semirings. In the following, we will investigate another class of additive

non-regular C-semirings, called C-rpp semirings.

Definition 3. A semiring R is said to be a C-rpp semiring if it is a strong

distributive lattice of additively left cancellative shew-halfrings.

Theorem 4. Assume that R is a C-rpp semiring. Then the following con-

ditions hold:

(CR1) (R,+) is a C-rpp semigroup;

(CR2) (E+(R),+, ·) is a distributive lattice;

(CR3) for any a, b ∈ R, (ab)0 + a0b0 = a0b0;

(CR4) if a0 = b0 and a+ e = b+ e for a, b ∈ R and some e ∈ E+(R),then a = b.

Conversely, if a semiring R satisfies the conditions (CR1)–(CR4), then it is

a C-rpp semiring.

Proof. (⇒) From Definition 2 and Definition 3, it is known that a C-rpp se-

miring is a generalized C-rpp semiring. Thus, by Theorem 2, (CR1), (CR3),(CR4)

hold. We only need to prove that (CR2) holds.

Assume that S is a C-rpp semiring. Then it is a strong distributive lattice

of additively left cancellative skew-halfrings, say R = 〈D,Rα, φα,β〉, where each

Rα is an additively left cancellative skew-halfring in which the additive identity

is denoted by 0α and T is a distributive lattice. Notice that E+(R) = {0α | α ∈
T} ∼= T , we immediately obtain that (E+(R),+, ·) is also a distributive lattice.

Hence, (GC2) holds.

(⇐) Assume that the semiring R satisfies the conditions (CR1)–(CR4), then

by Theorem 2, it is clearly a generalized C-rpp semiring. Also, note that (CR2)

holds. By analogy with the discussions of Theorem 1, R is a C-rpp semiring. ¤

Example 2. Let (M = A ∪ B ∪ {0},+, ·) be an additively left cancellative

skew-halfring as defined in Example 1. Let D = {e, f} be such that e+e = e ·e =
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e+ f = f + e = e, f + f = f · f = e · f = f · e = f. Then (D,+, ·) is a distributive

lattice.

Now, Construct the direct product of D and M and denote it by R, i.e.,

R = D ×M . Clearly, E+(R) = D × {eM}, where eM is the identity element of

(M,+). It is also not hard to check that (R,+, .) is a semiring which satisfies the

following conditions:

(i) (R,+) is a C-rpp semigroup;

(ii) (E+(R),+, ·) is a distributive lattice;

(iii) for any a, b ∈ R, (ab)0 + a0b0 = a0b0;

(iv) if a0 = b0 and a+ e = b+ e for a, b ∈ R and some e ∈ E+(R), then a = b.

Thus, by Theorem 4, (R,+, .) is a C-rpp semiring.

Further, by analogy with the discussions of the subdirect decompositions of

generalized C-rpp semirings, we have the following theorem.

Theorem 5. A semiring R is a C-rpp semiring if and only if it is a subdirect

product of a distributive lattice and an additively left cancellative skew-halfring.

3. Generalized C-abundant semirings and C-abundant semirings

In this section, we will study generalized C-abundant semirings and C-

abundant semirings, and will show that a semiring is a generalized C-abundant

semiring (C-abundant semiring, respectively) if and only if it is a strong b-lattice

(strong distributive lattice, respectively) of additively cancellative skew-halfrings,

and if and only if it is a subdirect product of a b-lattice (distributive lattice,

respectively) and an additively cancellative skew-halfring. Also, we will give some

characterizations of such semirings.

Firstly, by Lemma 2 and its dual, we immediately have

Lemma 5. A semigroup S is a C-a(or C-abundant) semigroup if and only

if it is a strong semilattice of cancellative monoids.

Definition 4. A semiring R is said to be a generalized C-abundant semiring

if it is a strong b-lattice of additively cancellative skew-halfrings.

Theorem 6. Assume that R is a generalized C-abundant semiring, then the

following conditions hold:

(GCA1) (R,+) is a C-abundant semigroup;

(GCA2) (E+(R),+, ·) is a b-lattice;
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(GCA3) for any a, b ∈ R, (ab)0 + a0b0 = a0b0;

(GCA4) if a0 = b0 and a+ e = b+ e for a, b ∈ S and some e ∈ E+(R),

then a = b.

Proof. From Definition 2 and Definition 4, it is known that, a generali-

zed C-abundant semiring is a generalized C-rpp semiring, then the conditions

(GCA2)–(GCA4) hold. We only need to show that condition (GCA1) holds.

Actually, if R is a generalized C-abundant semiring, then it is a strong b-

lattice of additively cancellative skew-halfrings, say R = 〈T,Rα, φα,β〉, where

each Rα is an additively cancellative skew-halfring and T is a b-lattice. It follows

that (R,+) is strong semilattice of cancellative monoids (Rα,+), i.e., (R,+) is a

C-abundant semigroup. Thus, the condition (GCA1) holds. ¤

Proposition 2. Assume that a semiring R satisfies the conditions (GCA1)–

(GCA3). Then the following conclusions hold:

(1) H∗ is a semiring congruence;

(2) R/H∗ ∼= E+(R).

Proof. (1) Assume that semiring R satisfies the conditions (GCA1)–(GCA3).

We will show that H∗ is a semiring congruence.

Firstly, since condition (GCA1) holds, by Lemma 4 or Lemma 5, (R,+) is

a strong semilattice Y of cancellative monoids Rα, where Y ∼= (E+(R),+). By

Lemma 4 again, we obtain that H∗ = L∗ = R∗ is a semilattice congruence on

(R,+). And then, by analogy with with the discussions of Proposition 1, we can

get H∗ = L∗ = R∗ is a semiring congruence.

(2) Define a mapping

φ : R/H∗ → E+(R), aH∗ 7→ a0.

It is not hard to check that φ is bijective, and

(aH∗ + bH∗)φ = [(a+ b)H∗]φ = (a+ b)0 = a0 + b0,

[(aH∗)(bH∗)]φ = [(ab)H∗]φ = (ab)0 = a0b0.

Thus, R/H∗ ∼= E+(R). ¤

Theorem 7. A semiring R is a generalized C-abundant semiring if and only

if it satisfies the conditions (GCA1)–(GCA4).
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Proof. We only need to show the sufficiency. By Proposition 2, it is known

that if S satisfies the conditions (GCA1)–(GCA4), then H∗ is a semiring cong-

ruence on (R,+, .), and R/H∗ ∼= E+(R) is a b-lattice. Also, notice that (H∗
a ,+)

is an additively cancellative monoid, we obtain that R is a b-lattice of additively

cancellative skew-halfrings.

For any e, f ∈ E+(R) with e ≤+ f , define mapping

φe,f : H∗
e → H∗

f , a 7→ a+ f.

In the following, we begin to show that R = 〈E+(R), Re, φe,f 〉 is a strong b-lattice

of the semirings Re, e ∈ E+(R).

For any a, b ∈ H∗
e ,

(a+ b)φe,f = a+ b+ f = a+ (f + b+ f) = (a+ f) + (b+ f) = aφe,f + bφe,f .

Also, since af ∈ H∗
ef ∩ E+(R), we have af = ef . And then,

(ab)φe,f = ab+ f = ab+ e+ f = ab+ (e+ f)2 = ab+ e+ ef + fe+ f

= ab+ af + fb+ f = (a+ f)(b+ f) = aφe,f bφe,f .

Hence, φe,f is a semiring morphism.

For any a, b ∈ H∗
e ,if aφe,f = bφe,f , we have a+f = b+f . Notice that (H∗

e ,+)

is an additively cancellative monoid, we have a0 = b0 = e. By condition (GCA4),

we have a = b. Thus, φe,f is a semiring monomorphism.

Moreover,we can check that the monomorphism φe,f satisfies the conditions

(1.1)–(1.4) of Definition 1.

(i) φe,e is clearly an identity morphism.

(ii) For any e, f, g ∈ E+(R) with e ≤+ f ≤+ g, we have

aφe,fφf,g = a+ f + g = a+ g = aφe,g.

Hence, φe,fφf,g = φe,g.

(iii) For any e, f, g ∈ E+(S), if e+ f ≤+ g, then for any a ∈ H∗
e , b ∈ H∗

f ,

aφe,gbφf,g = (a+ g)(b+ g) = ab+ ag + gb+ g = ab+ eg + gf + g = (ab)φef,g,

i.e.,

φe,gbφf,g = φef,g.
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(iv) For any e, f ∈ E+(R), a ∈ H∗
e , b ∈ H∗

f , we have

aφe,e+f + bφf,e+f = (a+ e+ f) + (b+ e+ f) = a+ f + b+ e

= a+ b+ (e+ f) = a+ b;

aφe,e+fbφf,e+f = (a+ e+ f)(b+ e+ f) = ab+ a(e+ f) + (e+ f)b+ (e+ f)

= ab+ (e+ f) = (ab)φef,e+f .

Thus, we have shown that R is a strong b-lattice of additively cancellative

skew-halfrings, and then it is a generalized C-abundant semiring. ¤

Example 3. Let T be a b-lattice and M an additively cancellative skew-

halfring. Construct the direct product of T and R, and denote it by M , i.e.,

R = T × M . Then, we can check that E+(R) = T × {eM}, where eM is the

identity element of (M,+). We can also check that (R,+, .) is a semiring which

satisfies the conditions (GCA1)–(GCA4). Thus, by Theorem 7, (R,+, .) is really

a generalized C-abundant semiring.

Theorem 8. A semiring R is a generalized C-abundant semiring if and only

if it is a subdirect product of a b-lattice and an additively cancellative skew-

halfring.

Proof. (⇐) By Theorem 3 and its dual, the sufficiency is clear.

(⇒) Assume that R is a generalized C-rpp semiring, we will show that it is

a subdirect product of a b-lattice and an additively cancellative skew-halfring by

the following steps.

Firstly, from Proposition 2, H∗ is a semilattice congruence on (R,+) and a

semiring congruence on R. Also, since R is a generalized C-a semiring, we have

aa0 = a = a0a for any a ∈ R, and then a = aa0H∗a2. Hence, R/H∗ is an

idempotent semiring with the semilattice additive reduct and band multiplicative

reduct, i.e., R/H∗ is a b-lattice.

Secondly, define a binary relation

θ = {(a, b) | (∃e ∈ E+(R))a+ e = b+ e}.

It can be easily seen that θ is an equivalence relation on (R,+, .). Moreover,

θ is the minimum additively cancellative skew-halfring congruence on (R,+, .).

In fact, by the Proposition 1.7 in [18] and its dual, θ is a minimum cancellative

monoid congruence on the additive reduct (R,+). Also, if aθb for some a, b ∈ R,

there exists e ∈ E+(R) such that a+ e = b+ e. Now, for any c ∈ R, we have

ac+ ec = bc+ ec, ca+ ce = cb+ ce.
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Notice that ce, ec ∈ E+(R), we immediately obtain that

acθbc, caθcb.

Thus, we have shown that θ is the minimum additively cancellative skew-halfring

congruence on (R,+, .). This also shows that R/θ is an additively cancellative

skew-halfring.

Finally, define a mapping

Φ : R → R/θ ×R/H∗, a 7→ (aθ, aH∗).

It is a routine way to check that R can be embed into R/θ×R/H∗,and the projec-

tion mapping from R into each of its components is surjective. Consequently, R is

a subdirect product of a b-lattice and an additively cancellative skew-halfring. ¤

Remark 1. From Theorem 8, we can see that the class of generalized C-

abundant semirings is actually a general extension of the class of generalized

Clifford semirings studied in [29].

At the end of this section, we will study C-abundant semirings.

Definition 5. A semiring R is said to be a C-abundant semiring if it is a

strong distributive lattice of additively cancellative skew-halfrings.

Some characterizations of such semirings are also given below.

Theorem 9. If R is a C-abundant semiring, then the following conditions

hold:

(CA1) (R,+) is a C-abundant semigroup;

(CA2) (E+(R),+, ·) is a distributive lattice;

(CA3) for any a, b ∈ R,(ab)0 + a0b0 = a0b0;

(CA4) if a0 = b0 and a+ e = b+ e for a, b ∈ S and some e ∈ E+(R),then a = b.

Conversely, if a semiring R satisfies the conditions (CA1)–(CA4), then it is

a C-abundant semiring.

Proof. (⇒) By Definition 4 and Definition 5, a C-a semiring is clearly a

generalized C-abundant semiring. Thus, by Theorem 6, condition (CA1), (CA3),

(CA4) hold. We only need to prove that condition (CA2) holds.

Assume that R is a C-abundant semiring. Then it is a strong distributive

lattice of additively cancellative skew-halfrings, say R = 〈D,Rα, φα,β〉, where

each Rα is an additively cancellative skew-halfring in which the additive identity

is denoted by 0α and D is a distributive lattice. Notice that E+(R) = {0α | α ∈
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D} ∼= D, we immediately obtain that (E+(R),+, ·) is also a distributive lattice.

(CA2) holds.

(⇐) Assume that the semiring R satisfies the conditions (CA1)–(CA4), then

by Theorem 7, it is clearly a generalized C-abundant semiring. Also, note that

(CA2) holds, by analogy with the discussions of Theorem 1, together with Defi-

nition 5, R is a C-abundant semiring. ¤

Example 4. Let D be a distributive lattice and M an additively cancellative

skew-halfring. Construct the direct product of D and M , and denote it by R,

i.e., R = D×M . Then, E+(R) = D×{eM}, where eM is the identity element of

(M,+). We can also check that (R,+, .) is a semiring which satisfies the conditions

(CA1)–(CA2). Thus, by Theorem 9, (R,+, .) is a C-abundant semiring.

By analogy with the discussions of the subdirect decompositions of the ge-

neralized C-a semirings, we will have the following theorem.

Theorem 10. A semiring R is a C-abundant semiring if and only if it is

a subdirect product of a distributive lattice and an additively cancellative skew-

halfring.

Remark 2. From Theorem 10, we can see that the class of C-abundant semi-

rings is actually a general extension of the one of Clifford semirings studied in [7]

and [29].
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