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Reduction of singularities of holomorphic maps of C2 tangent
to the identity

By FENG RONG (Shanghai)

Abstract. We study the singularities of holomorphic maps of C2 tangent to the

identity. We will adapt the method of Hironaka for the resolution of singularities of

algebraic varieties to our study. In particular, we introduce a new numerical invariant

associated to such maps at the singularities, called “adapted order”, which behaves

well under blow-ups. Though other methods for desingularizing such maps exist, our

approach has the advantage that it has no essential obstruction for generalizing to higher

dimensions.

1. Introduction

In [2], Abate generalized the well-known Leau–Fatou Flower Theorem in

one-dimentional holomorphic dynamics to dimension two. The proof of this ge-

neralization suggests an interesting connection between discrete and continuous

local holomorphic dynamics. Following this connection, some new results in the

study of holomorphic maps, which have similar counterparts in the study of vector

fields, have been obtained (see e.g. [3], [8], [9]).

We studied holomorphic maps of Cn tangent to the identity with absolutely

isolated singularities in [9]. However, the method used in [9] does not apply to the

case when the singularities are not absolutely isolated. For the general case, we
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propose to use the idea of Hironaka for the resolution of singularities of algebraic

varieties ([6], [7]). In this paper, we deal with dimension two. A similar approach

in the study of plane vector fields has been carried out by Cano ([5]).

Our main result is the following reduction theorem (see Section 2 for precise

definitions).

Theorem 1. Let f be a holomorphic map of C2, tangent to the identity

at an isolated fixed point. Then there exists a finite sequence of blow-ups, which

reduces f to a map whose adapted order at each of its singularities is less than

or equal to one.

2. Reduction of singularities

Let us first recall some basic definitions (cf. [3]). For simplicity, we give all

definitions in dimension two.

Let M be a two-dimensional complex manifold and f a holomorphic self-map

of M with p ∈ M as a fixed point. Assume that f is tangent to the identity at p,

that is dfp = id. Write f = (f1, f2), with fj(z) = zj + gj(z). The order of f at p

is ν(f, p) = min{ν(g1), ν(g2)}, where ν(gj) is the least i ≥ 0 such that Pj,i is not

identically zero in the homogeneous expansion of gj , gj = Pj,0 + Pj,1 + . . . , with

degPj,i = i or Pj,i ≡ 0. We always assume that ν(f, p) < ∞. Set l = g.c.d.(g1, g2)

and gj = lgoj , with both l and goj defined up to units in OM,p. The pure order

of f at p is νo(f, p) = min{ν(go1), ν(go2)}. We say that p is a singular point or a

singularity of f if νo(f, p) ≥ 1.

Let P = (P1, P2) be a 2-tuple of homogeneous polynomials of degree ν in C2.

A characteristic direction for P is a vector v ∈ P1 such that P (v) = λv for some

λ ∈ C. It is a nondegenerate characteristic direction if λ 6= 0, and degenerate

otherwise. A characteristic direction for f at p is a characteristic direction for

Pν(f,p) = (P1,ν(f,p), P2,ν(f,p)). A singular direction for f at p is a characteristic

direction for P o
νo(f,p)

= (P o
1,νo(f,p)

, P o
2,νo(f,p)

). Here Pj,ν(f,p) = P o
j,νo(f,p)

Rσ, with

Rσ being the first nonzero term in the homogeneous expansion of l and σ =

ν(f, p)− νo(f, p). The set of singular directions is clearly either a discrete set of

points of P1 or the whole of P1. If the set of singular directions is a discrete set,

we say that f is non-dicritical at p, otherwise we say that f is dicritical at p.

Let π : M̃ → M be the blow-up of M at p. Then, there exists a unique

map f̃ , the blow-up of f at p, such that π ◦ f̃ = f ◦π (see [1]). By [3, Lemma 2.2],

if p is non-dicritical then a direction v ∈ P1 is singular for f if and only if it is a

singularity of f̃ . And by [9, Lemma 2.5], if p is dicritical then the pure order of f̃
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at any of its singularities is less than the pure order of f at p. Thus the crucial

part of the proof for Theorem 1 is to deal with non-dicritical points. Therefore,

without loss of generality, we will assume that no dicritical points occur during

the blow-ups.

We now start our investigation of holomorphic maps of C2 tangent to the

identity at an isolated fixed point, which we assume to be the origin O.

First of all, note that the pure order is not a “good” numerical invariant,

since it might increase after blow-ups at non-dicritical points. Therefore we are

going to use the adapted order instead. Let M be a two-dimensional manifold and

f a holomorphic self-map of M piontwise fixing S ⊂ M , where S is an analytic

variety of M with only normal crossings as singularities. (For our purpose, we

have either f being the map we start with and S = O or f being the blow-up

map and S being the exceptional divisor.) Let p ∈ S be a singularity of f and let

ep be the number of irreducible components of S through p. Then ep = 0, 1 or 2.

If ep = 0, choose local coordinates (x, y) and write f at p as

{
x1 = x+ a(x, y)

y1 = y + b(x, y).
(1)

If ep = 1, choose local coordinates (x, y) such that the irreducible component is

given by {x = 0} (or {y = 0}). Write f at p as

{
x1 = x+ xκxa(x, y)

y1 = y + xκb(x, y),
(2)

or {
x1 = x+ yτa(x, y)

y1 = y + yτyb(x, y).
(3)

If ep = 2, choose local coordinates (x, y) such that the two irreducible components

are given by {x = 0} and {y = 0} respectively. Write f at p as

{
x1 = x+ xκyτxa(x, y)

y1 = y + xκyτyb(x, y).
(4)

Here κ, τ ≥ 1 are the biggest possible powers and a(x, y) and b(x, y) are re-

latively prime in OM,p. The adapted order ν1(f, p) of f at p is then equal to

min{ν(a), ν(b)}.
Remark 2. Under our assumptions, the blow-up map will always be “tan-

gential” along a fixed component, and thus can be written in the form of either
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(1), (2), (3) or (4). In the “non-tangential” case, one can define “adapted order”

to be just “pure order”. (For the definition of “tangential” and the dynamics in

case the fixed point of the original map is not isolated, see e.g. [4])

One readily checks that the adapted order is well-defined (cf. [2, Lemma 2.2]).

And it is easy to verify that if p is a singularity of f and q is a singularity of f̃ , the

blow-up of f at p, then ν1(f̃ , q) ≤ ν1(f, p). (To appreciate the difference between

ν0 and ν1, one can look at the blow-up x = x̃ỹ, y = ỹ at O for x1 = x + x3,

y1 = y + x(x+ y2).)

If f is of the form (2) (resp. (3)) at p and ν1(f, p) = ν(b) (resp. ν1(f, p) =

ν(a)), then p is said to be of type zero. Otherwise p is said to be of type one.

For an element g ∈ OM,p with order ν(g) ≥ r, r ∈ N, denote by Tr(g) the

affine plane C2 if r < ν(g) and the strict tangent space (i.e. the maximum linear

subvariety of the tangent cone of g = 0 leaving it invariant by translations) if

r = ν(g).

Set µ = ν1(f, p). We define the directrix T(f, p) of f at p as follows. If ep = 0

or 2, then

T(f, p) = Tµ(a) ∩ Tµ(b).

If p is of type zero (resp. one) and f is of the form (3) (resp. (2)), then

T(f, p) = Tµ(a).

If p is of type zero (resp. one) and f is of the form (2) (resp. (3)), then

T(f, p) = Tµ(b).

By definition, we always have that dimT(f, p) ≤ 1. If dimT(f, p) = 1, the

directrix defines a closed point P(T(f, p)) in the exceptional divisor of the blow-up

with center p. We have the following

Lemma 3. Let f̃ be the blow-up of f at p. If q is a closed point of the

exceptional divisor such that ν1(f̃ , q) = ν1(f, p), then dimT(f, p) = 1 and q =

P(T(f, p)).

Proof. Assume that f is of the form (2) and p is of type zero. Set µ =

ν1(f, p) and write bµ(x, y) for the leading homogeneous polynomial in the homo-

geneous expansion of b(x, y).

In the chart (x = x̃, y = x̃(ỹ + ζ)) centered in q, f̃ is of the form

{
x̃1 = x̃+ x̃κ+µ−1 ·O(x̃),

ỹ1 = ỹ + x̃κ+µ−1 · (bµ(1, ỹ + ζ) +O(x̃))
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Since ν1(f̃ , q) = µ, we have ν(bµ(1, ỹ+ζ)) = µ. This implies that bµ(x, y) = c(y−
ζx)µ, where c is a constant. Therefore T(f, p) = {y−ζx = 0} and q = P(T(f, p)).

In the chart (x = x̃ỹ, y = ỹ) centered in q, f̃ is of the form
{
x̃1 = x̃+ x̃κ+1ỹκ+µ−1 · (−bµ(x, 1) +O(ỹ),

ỹ1 = ỹ + x̃κ+1ỹκ+µ−1 ·O(ỹ)

Since ν1(f̃ , q) = µ, we have ν(bµ(x, 1)) = µ. This implies that bµ(x, y) = cxµ,

where c is a constant. Therefore T(f, p) = {x = 0} and q = P(T(f, p)).

The argument for other cases is similar and we leave it to the interested

reader. ¤

Due to the above lemma, we will then focus on points p with dimT(f, p) = 1

and ep ≥ 1. In suitable coordinates, the map f takes exactly one of the following

forms:
I. (2) type zero T(f, p) = Tµ(b) = (y = 0).

II. (3) type zero T(f, p) = Tµ(a) = (y = 0).

III. (2) type one T(f, p) = Tµ(a) = (y = 0).

IV. (3) type one T(f, p) = Tµ(b) = (y = 0).

V. (4) ζ ∈ C T(f, p) = (y − ζx = 0).

As in [7], for a power series g =
∑

i,j gi,jx
iyj ∈ C[[x, y]] and r ∈ N, set

γr(g;x, y) = min

{
i

r − j
; j < r, gi,j 6= 0

}
.

The following facts are easily verified:

γr(g;x, y) < 1 ⇐⇒ ν(g) < r, (5)

and if ν(g) = r, then

γr(g;x, y) > 1 ⇐⇒ Tr(g) = (y = 0)

and

γr(g̃; x̃, ỹ) = γr(g;x, y)− 1, g̃ = g ◦ π · x̃−r (π : (x̃, ỹ) 7→ (x, y) = (x̃, x̃ỹ)). (6)

We define γ(f, p;x, y) to be equal to

min{γµ(ya;x, y), γµ(b;x, y)}, if I,

min{γµ(a;x, y), γµ(yb;x, y)}, if II,

min{γµ+1(ya;x, y), γµ+1(b;x, y)}, if III,

min{γµ+1(a;x, y), γµ+1(yb;x, y)}, if IV,

min{γµ(a;x, y), γµ(b;x, y)}, if V.
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Since a and b are relatively prime, one has that γ(f, p;x, y) < ∞ if µ ≥ 2.

Set γ = γ(f, p;x, y). If γ ∈ N, a γ-preparation is a change of coordinates of

the form (x′ = x, y′ = y + λxγ), λ ∈ C. One can make successive γ-preparations

to increase γ(f, p;x, y). If µ ≥ 2, this increase is finite since a and b are relatively

prime (a and b are relatively prime in OM,p, if and only if they are relatively

prime in the completion ÔM,p). We say that f is γ-prepared with respect to (x, y)

if one of the following holds:

(i) γ /∈ N;

(ii) γ ∈ N and f takes the form II, IV or V;

(iii) γ ∈ N and γ does not increase after any γ-preparation.

We then define γ(f, p) to be the minimum γ(f, p;x, y), where (x, y) runs over all

γ-prepared situations. (If µ = 1, one may have that γ(f, p) = ∞.)

Consider a sequence of blow-ups

p = p0
π0←− p1

π1←− · · · , (7)

with pi being the center of πi and lying in the exceptional divisor of πi−1. Let

fi be the blow-up map at pi. We say that the sequence (7) is stationary of order

µ if µ = ν1(fi, pi) remains constant. By Lemma 3, there is at most one possible

stationary sequence for each p0.

One readily checks that, in a stationary sequence, the forms of blow-up maps

change as follows:
I −→ I,

II −→ V,

III −→ I,II,III,

IV −→ V,

V −→ I,II,III,V.

Lemma 4. Let {pi} be a stationary sequence of order µ. If fi takes the form

II at pi for some i > 0, then

(i) the stationary sequence terminates at pi, if µ ≥ 2;

(ii) the stationary sequence terminates at pi+1, if µ = 1.

Proof. If epi−1 ≥ 1 then, since fi takes the form II at pi, we know that fi−1

takes the form III or V at pi−1.

First, suppose that fi−1 takes the form III at pi−1. We can then write fi−1

as {
x1 = x+ xκxa(x, y)

y1 = y + xκb(x, y),
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where a(x, y) = cyµ + O(µ + 1) with c 6= 0 and b(x, y) = O(µ + 1). After the

blow-up (x̃ = x, ỹ = y/x) and then interchanging x̃ and ỹ, we see that fi is of the

form {
x̃1 = x̃+ ỹκ+µã(x̃, ỹ)

ỹ1 = ỹ + ỹκ+µỹb̃(x̃, ỹ),

where ã(x̃, ỹ) = dỹµ + ex̃µ+1 + O(µ + 1) with d 6= 0 and b̃(x̃, ỹ) = cx̃µ + O(ỹ).

After the blow-up (x̄ = x̃, ȳ = ỹ/x̃), we can then write fi+1 as

{
x̄1 = x̄+ x̄κ+2µ−1ȳκ+µx̄ā(x̄, ȳ)

ȳ1 = ȳ + x̄κ+2µ−1ȳκ+µȳb̄(x̄, ȳ),

where ā(x̄, ȳ) = dȳµ+ ex̄+O(x̄2) and b̄(x̄, ȳ) = −dȳµ+(c− e)x̄+O(x̄2)+O(x̄ȳ).

We see that ν1(fi+1, pi+1) = 1. Therefore, if µ ≥ 2 then the stationary

sequence terminates at pi. If µ = 1, we have dimT(fi+1, pi+1) = 0 and thus the

stationary sequence terminates at pi+1 by Lemma 3.

Second, suppose that fi−1 takes the form V at pi−1. We can then write fi−1

as {
x1 = x+ xκyτxa(x, y)

y1 = y + xκyτ b(x, y),

where a(x, y) = c(y − ζx)µ + O(µ + 1) and b(x, y) = d(y − ζx)µ + O(µ + 1),

with |c| + |d| 6= 0 and ζ 6= 0. After the blow-up (x̃ = x, ỹ = y/x − ζ) and then

interchanging x̃ and ỹ, we see that fi is of the form

{
x̃1 = x̃+ ỹκ+τ+µ(x̃+ ζ)τ+1ã(x̃, ỹ)

ỹ1 = ỹ + ỹκ+τ+µ(x̃+ ζ)τ+1ỹb̃(x̃, ỹ),

where b̃(x̃, ỹ) = eỹµ + O(µ + 1) with e 6= 0 and b̃(x̃, ỹ) = cx̃µ + O(ỹ) with c 6= 0

(since we necessarily have c = d). We then see that we can argue exactly as

above.

Now suppose that epi−1 = 0. We then necessarily have i−1 = 0. By Lemma 3,

we can write f0 in suitable local coordinates (x, y) as

{
x1 = x+ a(x, y)

y1 = y + b(x, y),

where a(x, y) = cyµ + O(µ + 1) and b(x, y) = dyµ + O(µ + 1) with |c| + |d| 6= 0.

Since f1 takes the form II at p1, we necessarily have d = 0 (and thus c 6= 0) and
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after the blow-up (x̃ = x, ỹ = y/x) and then interchanging x̃ and ỹ, we can write

f1 as {
x̃1 = x̃+ ỹµ−1ã(x̃, ỹ)

ỹ1 = ỹ + ỹµ−1ỹb̃(x̃, ỹ),

where ã(x̃, ỹ) = eỹµ + O(µ + 1) with e 6= 0 and b̃(x̃, ỹ) = cx̃µ + O(ỹ). We can

then again argue as above.

This completes the proof. ¤

Lemma 5. Let {pi} be a stationary sequence of order µ. If fi takes the

form I (resp. III, resp. IV, resp. V) at pi and fi+1 takes the form I (resp. III,

resp. V, resp. V) at pi+1, then

γ(fi+1, pi+1) ≤ γ(fi, pi)− 1.

Proof. Assume, without loss of generality, that γ(fi, pi) < ∞.

Let (x, y) be local coordinates around pi such that fi is γ-prepared with

respect to (x, y), where γ = γ(fi, pi;x, y). In each of the cases we are concerned

with, the coordinates centered in pi+1 are (x̃ = x, ỹ = y/x). By (6), we have that

γ(fi+1, pi+1; x̃, ỹ) = γ(fi, pi;x, y)− 1.

It is not difficult to see that fi+1 is (γ − 1)-prepared with respect to (x̃, ỹ)

if fi is γ-prepared with respect to (x, y). Therefore the lemma follows from the

above equality and the definition of γ(f, p). ¤

For stationary sequences of order greater or equal to two, we have the follo-

wing

Theorem 6. All the possible stationary sequences of order greater or equal

to two have finite length.

Proof. If fi takes the form III or V at pi and fi+1 takes the form II at pi+1,

then, by Lemma 4 (i), the stationary sequence terminates at pi+1.

If fi takes the form I (resp. III, resp. IV, resp. V) at pi and fi+1 takes the

form I (resp. III, resp. V, resp. V) at pi+1, then, by Lemma 5, we have

γ(fi+1, pi+1) ≤ γ(fi, pi)− 1.

We can now conclude using the above inequality and (5). ¤

It is obvious that Theorem 1 is a corollary of the above theorem. To finish

the paper, we give a brief discussion on stationary sequences of order one.
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Lemma 7. Assume that f takes the form I at p. Let (x, y) be local coordina-

tes around p such that f is γ-prepared with respect to (x, y) for γ = γ(f, p;x, y).

Set γ′ = γ(f, p) and assume that γ > γ′. Then γ′ ∈ N and there exists a change

of coordinates (x′ = x, y′ = y + λxγ′
) such that γ(f, p;x′, y′) = γ′ and that f is

γ′-prepared with respect to (x′, y′).

Proof. By the assumption, we can write f as

{
x1 = x+ xκxa(x, y)

y1 = y + xκb(x, y),

where a(x, y) = O(µ) and b(x, y) = cyµ +O(µ+ 1), with µ = ν1(f, p) and c 6= 0.

Choose local coordinates (x̄, ȳ) such that γ(f, p; x̄, ȳ) = γ′ and f is γ′-
prepared with respect to (x̄, ȳ). Since f takes the form I at p, we have that

x̄ = u ·x, ȳ = v · y+w ·xn, where u, v, w ∈ OM,p with u(0, 0) 6= 0 and v(0, 0) 6= 0.

Since γ > γ′, we also have that w(0, 0) 6= 0.

Since b(x, y) = cyµ + O(µ + 1), the term x̄nȳµ−1 appears in the expression

of ȳ1. Therefore, we have n ≥ γ′. Since terms xiyj create terms x̄i+knȳl with

k + l = j and i > γ′(µ− j), we have

i+ kn

µ− l
>

γ′(µ− k − l) + kn

µ− l
= γ′ +

k(n− γ′)
µ− l

≥ γ′.

Therefore, we actually have γ′ = n ∈ N.

Now consider the change of coordinates (x′ = x, y′ = y + λxγ′
), with λ 6= 0.

By the above discussion, we have that γ(f, p;x′, y′) = γ′. Due to the presence

of the term x′ny′µ−1, we see that γ′ does not increase after any γ′-preparation.
Therefore f is γ′-prepared with respect to (x′, y′). ¤

For stationary sequences of order equal to one, we have the following

Theorem 8. The length of a stationary sequence of order one is infinite if and

only if there exists a step pl such that fl takes the form I at pl and γ(fl, pl) = ∞.

Moreover, if i ≥ l then fi takes the form I at pi and γ(fi, pi) = ∞.

Proof. Assume that {pi} is a stationary sequence of order one with infinite

length. If γ(fi, pi) < ∞ for all i, then we can show as in Theorem 6 that the

stationary sequence has finite length, a contradiction. Therefore, we have that

γ(fl, pl) = ∞ for some l. Since ν1(fl, pl) = 1, by the definition of γ(f, p), one

readily checks that fl takes the form I at pl. If γ(fi, pi) < ∞ for some i > l, then

by Lemma 5 and (5) we have that the stationary sequence has finite length, a

contradiction. Therefore, the last statement holds.
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For the converse, assume that fl takes the form I at pl and γ(fl, pl) = ∞ for

some l. Suppose that γ(fl+1, pl+1) = γ < ∞. We can choose local coordinates

(x, y) such that γ(fl, pl;x, y) > γ+1. Then γ(fl+1, pl+1; x̃, ỹ) > γ for (x̃ = x, ỹ =

y/x). By Lemma 7, there exists a change of coordinates (x̃′ = x̃, ỹ′ = ỹ + λx̃γ)

such that γ(fl+1, pl+1; x̃
′, ỹ′) = γ and that fl+1 is γ-prepared with respect to

(x̃′, ỹ′). Now consider the change of coordinates (x′ = x, y′ = y + λxγ+1). We

have that γ(fl, pl;x
′, y′) = γ and that fl is (γ+1)-prepared with respect to (x′, y′),

a contradiction. Therefore, we must have γ(fl+1, pl+1) = ∞. ¤

Remark 9. In [9], we gave “final forms” of singularities which are persistent

under blow-ups. In the two-dimensional case, it is easy to see that a simple point

of type A) takes the form I with γ(f, p) = ∞ and a simple point of type B) and a

non-dicritical simple corner has adapted order 0 (see [9] for precise definitions).
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