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On various concepts of nilpotence for expansions of groups

By ERHARD AICHINGER (Linz) and NEBOJŠA MUDRINSKI (Novi Sad)

Abstract. The group theoretic concept of nilpotence has been generalized in var-

ious ways to arbitrary universal algebras. We establish a relation between two such

generalizations for expansions of groups.

1. Main results

The aim of this paper is to establish some relations between two properties of

an algebraic structure: nilpotence and supernilpotence. Both of these properties

generalize the group theoretic concept of nilpotence from groups to arbitrary

universal algebras. For arbitrary algebras, the first property, nilpotence, has been

studied in commutator theory [23], [10]. The second property, supernilpotence, is

a (usually) stronger concept that appears, implicitly, in [10, Chapter XIV]. The

name “supernilpotence” first appears in [2], [5], and since then, the concept of

supernilpotence has been used in duality theory [6], clone theory [16], and for

describing the structure of certain universal algebras [19]. In this paper, we prove

that for a certain class of expanded groups nilpotence implies supernilpotence. In

the remainder of this section, we give a precise formulation of the main results in

the present paper, and defer a more detailed discussion on the various concepts

of nilpotence to Section 2.
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We call an algebraic structure V = (V, ·,−1, 1, g1, g2, . . .) an expanded group

if (V, ·,−1, 1) is a group. In expanded groups, every congruence is uniquely

determined by the congruence class of 1; if a subset A of V is the congru-

ence class of 1 for some congruence relation of V, then A is called an ideal

of V (cf. [15]). An n-ary operation f on V is called a polynomial of V if

there are l ∈ N, v1, . . . , vl ∈ V , and a term t in the language of V such that

f(x1, . . . , xn) = tV(v1, . . . , vl, x1, . . . , xn) for all x1, . . . , xn ∈ V . The set of all n-

ary polynomials of V will be abbreviated by Poln(V). The concept of nilpotence

can be described by using the binary commutator operation, which has been de-

fined for arbitrary algebras in [23], [10]. For expanded groups, commutators can

be defined as follows.

Definition 1.1. Let V be an expanded group, and let A, B be ideals of V.

Then their commutator [[A,B]] is the ideal of V that is generated by the set

{p(a, b) | a ∈ A, b ∈ B, p ∈ Pol2(V), p(x, 1) = p(1, x) = 1 for all x ∈ V }.

This definition is consistent with the definitions given in [10] and [21].

Definition 1.2. For k ∈ N0, we define an expanded group V to be k-nilpotent

if and only if the lower central series of V defined by γ1(V) := V , γn(V) :=

[[V, γn−1(V)]] for n ≥ 2, satisfies γk+1(V) = {1}. The expanded group V is

nilpotent if there exists a k ∈ N0 such that V is k-nilpotent, and V is nilpotent

of class k if k is minimal such that V is k-nilpotent.

The concept with which we compare nilpotence is supernilpotence, which we

introduce in the next two definitions.

Definition 1.3. Let V be an expanded group, let n ∈ N, and let p be an

n-ary operation on V. Then p is absorbing if for all x1, . . . , xn ∈ V with 1 ∈
{x1, . . . , xn}, we have p(x1, . . . , xn) = 1.

Definition 1.4. Let k ∈ N0, and let V be an expanded group. Then V is k-

supernilpotent if every (k+1)-ary absorbing polynomial of V is constant. We say

that V is supernilpotent if there exists a k ∈ N0 such that V is k-supernilpotent,

and V is supernilpotent of class k if k is minimal such that V is k-supernilpotent.

From these definitions, it is easy to see that V is 1-nilpotent if and only if

[[V, V ]] = {1}, which is equivalent to V being 1-supernilpotent; in this case, V is

called abelian.

There are several connections between nilpotence and supernilpotence, one

being that every k-supernilpotent expanded group is k-nilpotent, hence supernilpo-

tence implies nilpotence. We will review these results in Section 2. In the
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present note, we present a class of expanded groups for which nilpotence im-

plies supernilpotence; moreover, we will obtain an upper bound for the class of

supernilpotence of these expanded groups. This class is the class of multilinear

expanded groups, which we will define now. We call an n-ary operation g on

a group (V, ·,−1, 1) multilinear if n ≥ 1 and for all i ∈ {1, . . . , n} and for all

(v1, . . . , vn) ∈ V n, the mapping x 7→ g(v1, . . . , vi−1, x, vi+1, . . . , vn) is a group

endomorphism. Such operations are always absorbing. For m ∈ N, an expanded

group V = (V, ·,−1, 1, g1, g2, . . .) is m-multilinear if m ≥ 2, all gi are multilinear

operations, and the arity of each gi is at most m. V is multilinear if there is an

m ∈ N such that V is m-multilinear; the smallest m for which V is m-multilinear

is called the degree of multilinearity of V. We note that by definition, this degree

is always at least 2; for example, every group (with no further operations) is mul-

tilinear of degree 2. There are several examples of multilinear expanded groups:

every group and every ring is a multilinear expanded group of degree 2; general-

izing the second example, every distributive near-ring (cf. [8]) is 2-multilinear.

Now our first result is the following theorem.

Theorem 1.5. Let k,m ∈ N, m ≥ 2, and let V be a multilinear expanded

group with degree m of nilpotence class k. Then V is mk−1-supernilpotent.

The proof of this theorem will be given in Section 5. Although this bound is

not tight for groups (for groups, mk−1 can be replaced by k in the statement of

the theorem, see Section 2), it is tight in general:

Proposition 1.6. Let k,m ∈ N, m ≥ 2, and let p be a prime. Then there

exists a finite multilinear expanded group V with |V | = pk, multilinearity degree

m, nilpotence class k, and supernilpotence class mk−1.

The proof will be given by providing an example of such an expanded group in

Section 6. Another example will show that neither the functions on an expanded

group that preserve congruences and the nilpotence class, nor the functions that

perserve congruences and the supernilpotence class, will form a clone in general.

On the way to prove Theorem 1.5, we will introduce higher commutators,

and we establish a result (Theorem 4.10) that allows to compute these higher

commutators in multilinear expanded groups.

2. An introduction to nilpotence for universal algebras

We start our comparison of two concepts of nilpotence from the following

well-known Proposition:
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Proposition 2.1. Let G be a finite group. Then the following properties

are equivalent.

(1) G is nilpotent;

(2) G is a direct product of groups of prime power order;

(3) there is a polynomial p ∈ Q[x] such that the free algebra over n generators

in the variety generated by G has at most 2p(n) elements.

The equivalence of (1) and (2) is well known in finite group theory [22, 6.4.14].

The equivalence with condition (3) is given in [11] (cf. [20, Corollary 24.52]) and

discussed, e.g., in [12, p. 163].

It is a natural question how this equivalence can be generalized to arbitrary

universal algebras. For such algebras, commutator theory [10] provides a defini-

tion of nilpotence that generalizes the group theoretic concept. If one specializes

the binary commutator operation defined in [10] or [18, Definition 4.150] to ex-

panded groups, one obtains the commutator of two ideals defined via absorbing

binary polynomials as it was introduced in Section 1; this is proved, e.g., in

[3, Lemma 2.9]. Thus, in Section 1, nilpotence of expanded groups was defined

in such a way that it is a special case of the concept of nilpotence defined for

arbitrary algebras as defined in [12, p. 68], [10]. However, with this definition

we obtain nilpotent finite expanded groups that fail to decompose into a direct

product of algebras of prime power order. An example is the algebra N6 de-

fined by N6 := (Z6,+, f), where f is the unary function with f(0) = f(3) = 3,

f(1) = f(2) = f(4) = f(5) = 0. This algebra and its clone of polynomial func-

tions were studied in [3]. From this paper, we obtain that N6 is nilpotent, directly

indecomposable, and the free algebra in the variety generated by N6 has at least

22
n

elements.

If we take G to be a finite algebra with finitely many fundamental operations

in a congruence modular variety, then, as a consequence of [7], [13, Theorem 3.14]

and [12, Lemma 12.4], we obtain that the condition (3) of Proposition 2.1 holds

if and only if G satisfies both of the conditions (1) and (2). Additionally, for a

finite expanded group G, condition (3) is equivalent to G being supernilpotent.

A discussion of this last equivalence for expanded groups can be found in [1].

The definition of supernilpotence has been extended to all universal algebras [5,

Definition 7.1], and the equivalence of (1) ∧ (2) with (3) then carries over to all

finite algebras with a Mal’cev term.

It is now natural to ask for the logical connections between nilpotence and

supernilpotence. The main results are:
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Theorem 2.2 ([5, Lemma 7.5]). Let k ∈ N0, and let V be a k-supernilpotent

expanded group. Then V is k-nilpotent.

In [5], this is proved for all algebras with a Mal’cev term. A simpler proof

for expanded groups is given in [1].

Theorem 2.3 ([2, Theorem 6.8] and [5, Corollary 6.15]). Let k ∈ N0, and

let G be a group. Then G is k-supernilpotent if and only if it is k-nilpotent.

Nilpotence does in general not imply supernilpotence. Examples are the

algebras N6 and the following algebra of infinite type:

B := (Z4, 2x1, 2x1x2, 2x1x2x3, . . .). This algebra B is nilpotent of class 2, but not

supernilpotent. However, [7, Theorem 2] by J. Berman and W. Blok yields, as

a special case, the following result.

Theorem 2.4 ([7]). Let V be a finite expanded group with finitely many

fundamental operations. We assume that V is nilpotent and a direct product of

expanded groups of prime power order. Then V is supernilpotent.

Even for expanded groups, there is currently no proof of this result avoid-

ing the methods of [10, Chapter VII] developed there for arbitrary congruence

modular algebras. As a consequence, we cannot easily determine an upper bound

on the class of supernilpotence of a given nilpotent algebra; in fact, from Propo-

sition 1.6 one sees that for k ≥ 2, there are finite k-nilpotent expanded groups

of prime power order with arbitrary high degree of supernilpotence. While this

shows that we cannot bound the supernilpotence class from above by a function

of the nilpotence class alone, we can give such a bound if we restrict ourselves to

multilinear expanded groups of given multilinearity degree. In fact, Theorem 1.5

provides such a bound for multilinear expanded groups. This class has been in-

vestigated in another context as well: In 2007, R. Willard remarked that every

finite multilinear expanded group has a polynomial time algorithm for the sub-

power membership problem [24] (cf. [17]). We also remark that Theorem 1.5 is

not restricted to finite structures.

On the way to establish Theorem 1.5, we will calculate the higher commu-

tators for multilinear expanded groups. For an arbitrary universal algebra, the

definition of higher commutators given in [9] is quite technical, but since in the

present note, we work with expanded groups, a much easier introduction of higher

commutators is possible. In fact, in [5, Corollary 6.12] it is shown that the higher

commutators introduced by Bulatov in [9] specialize to the lattice of ideals of

an expanded group V as follows:
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Definition 2.5. Let V be an expanded group, and let A1, . . . , An be ideals

of V. We define the n-ary commutator ideal of A1, . . . , An, and abbreviate it by

[[A1, . . . , An]], as the ideal of V that is generated by all p(a1, . . . , an), where p is

an n-ary absorbing polynomial of V, and a1 ∈ A1, . . . , an ∈ An.

For n = 1, we get [[A]] = A for every ideal A ofV, and for n = 2, we obtain the

classical binary commutator operation for expanded groups (for a more detailed

discussion, we refer to Section 2 of [3]; the definition of binary commutators for

expanded groups was also given, independent of commutator theory, in [21]).

Hence, an expanded group V is k-supernilpotent if and only if [[V, . . . , V ]] = 0

(k + 1 repetitions of V ). We will explain how to compute higher commutators

in a multilinear expanded group of degree m from those higher commutators

involving at most m arguments (Theorem 4.10). The guiding example is that in

every group, the ternary commutator operation can be expressed by using binary

commutators; for example (see [16]) for normal subgroups N1, N2, N3 of a group,

we have [[N1, N2, N3]] = [[N1, [[N2, N3]]]] · [[N2, [[N1, N3]]]] · [[N3, [[N1, N2]]]] (one of the

three terms on the right hand side can actually be omitted by the three subgroups

lemma, but this lemma does not generalize to binary commutators on arbitrary

expanded groups). Indeed, for groups, all higher commutator operations can be

computed similarly from the binary commutator operation. The main tool will

be a version of commutator calculus and its detailed discussion in [2].

3. Expressions using commutators

Since the commutator of given ideals is computed using absorbing polyno-

mials, we need to study some properties of polynomial maps. For example, it is

obvious that in a group G, the function φ : (x1, x2, x3) 7→ [x1, [x2, x3]] satisfies

φ(N1 × N2 × N3) ⊆ [[N1, [[N2, N3]]]] for all normal subgroups N1, N2, N3 of G.

In this section, we establish similar results for higher commutators in expanded

groups. To be more specific, let us consider an expanded group V = (V, ·,−1, g1),

where g1 is a ternary absorbing operation on V. Let A1, A2, A3 be ideals of V,

and let a1 ∈ A1, a2 ∈ A2, a3 ∈ A3. Then the purpose of Lemma 3.1 is to show

that g1(a1, a2, a2)
−1 ·a−1

3 ·g1(a1, a2, a2)·a3 lies in the ideal [[[[A1, A2, A2]], A3]] of V.

Lemma 3.2 guarantees [[[[A1, A2, A2]], A3]] ⊆ [[A1, A2, A3]]. Lemma 3.3 yields that

omitting certain ideals from our “commutator expression”, we obtain the same or

a larger ideal, hence [[[[A1, A2, A2]], A3]] ⊆ [[[[A2, A2]], A3]]. Finally, Lemma 3.4 will

yield an upper bound for [[[[A1, A2, A2]], A3]] that contains each Ai at most once,

namely [[[[A1, A2]], A3]].
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Except for Lemma 3.1, these properties of the higher commutator operation

are almost immediate consequences of the eight properties of higher commutators,

(HC1) to (HC8), which were established in [5] and some of which we list here for

easier reference. Actually, for all n ∈ N and for all ideals I1, . . . , In, J1, . . . , Jn of

an expanded group V, we have:

(HC2) If I1 ≤ J1, . . . , In ≤ Jn, then [[I1, . . . , In]] ≤ [[J1, . . . , Jn]];

(HC3) [[I1, . . . , In]] ≤ [[I2, . . . , In]];

(HC4) If π ∈ Sn, then [[I1, . . . , In]] = [[Iπ(1), . . . , Iπ(n)]];

(HC8) [[I1, . . . , Ik, [[Ik+1, . . . , In]]]] ≤ [[I1, . . . , In]] for k ∈ {0, . . . , n− 1}
As consequences, we obtain the following inequalities.

(HC3’) If k, i1, . . . , ik ∈ {1, . . . , n} and i1, . . . , ik are all distinct, then

[[I1, . . . , In]] ≤ [[Ii1 , . . . , Iik ]].

(HC8’) If j ∈ {0, . . . , n− 1} and k ∈ {j + 1, . . . , n}, then

[[I1, . . . , Ij , [[Ij+1, . . . , Ik]], Ik+1, . . . , In]] ≤ [[I1, . . . , In]].

These properties have been proved for the commutator operations of general

Mal’cev algebras in [5]. Now using [5, Corollary 6.12], they follow from the cor-

responding properties established in [5]. Using our definition of the commutator

operations through absorbing polynomials, (HC2), (HC3), and (HC4) can be seen

directly from this definition.

In order to express what we mean by a “commutator expression”, we let

F be the language with operation symbols f1, f2, . . . , where each fi has arity i

(i ∈ N). We will often abbreviate a term fk(t1, . . . , tk) by [t1, . . . , tk]. For an

expanded group V = (V, ·,−1 , 1, g1, g2, . . . ), we define the language FV as the

language that contains all operation symbols in F , and the following symbols

that are added:

• one nullary symbol c(v) for each v ∈ V ,

• an r-ary symbol g for each r-ary nonconstant fundamental operation g of

V except for the binary group multiplication · and the group inverse opera-

tion −1.

Finally, the language of V will, as usually, consist of the function symbols

{·,−1, 1, g1, g2, . . . } of V.

We will now define two algebras with language FV. The first one is V′

with universe V , c(v)V
′
:= v for each v ∈ V , and gV

′

i := gi for all noncon-

stant fundamental operations gi of V. Furthermore, fV
′

1 (x) := x for all x ∈ V ,
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fV
′

2 (x, y) := x−1y−1xy for all x, y ∈ V , and fV
′

l (x1, . . . , xl) := 1 for l ≥ 3 and

x1, . . . , xl ∈ V .

The other algebra is I(V) whose universe is the set I(V) of all ideals of V.

We define c(v)I(V) := V for all v ∈ V , f
I(V)
l (A1, . . . , Al) := [[A1, . . . , Al]] for each

l ∈ N and g
I(V)
i (A1, . . . , Ar) := [[A1, . . . , Ar]] for each i, where r ∈ N is the arity

of gi. For a term t in the language FV over the variables {x1, . . . , xn} we define

the length of t by l(xi) = l(c(v)) = 1 and l(h(t1, . . . , tk)) := 1+
∑k

i=1 l(ti), where h

is a k-ary operation symbol of FV.

Lemma 3.1. Let V = (V, ·,−1, 1, g1, g2, . . .) be an expanded group such

that each gi is an absorbing operation of arity at least 1, let t be a term in the

language FV over the variables {x1, . . . , xn}, let A1, . . . , An be ideals of V, and

let a1 ∈ A1, . . . , an ∈ An. Then we have tV
′
(a1, . . . , an) ∈ tI(V) (A1, . . . , An).

Proof. We proceed by induction on the length of t. If t = c(v), then

tV
′
(a1, . . . , an) = v ∈ V = tI(V)(A1, . . . , An). If t = xi, then tV

′
(a1, . . . , an) =

ai ∈ Ai = tI(V)(A1, . . . , An). For the induction step, we fix a term t of length at

least 2. We distinguish the following cases.

• Case t = gm(t1, . . . , tk): Then we have tV
′

i (a1, . . . , an) ∈ t
I(V)
i (A1, . . . , An)

for all i ∈ {1, . . . , k} by the induction hypothesis. Since gm is absorbing, we

have

gm(tV
′

1 (a1, . . . , an), . . . , t
V′

k (a1, . . . , an))

∈ [[t
I(V)
1 (A1, . . . , An), . . . , t

I(V)
k (A1, . . . , An)]],

which can be rewritten as

tV
′
(a1, . . . , an) ∈ gI(V)

m (t
I(V)
1 (A1, . . . , An), . . . , t

I(V)
k (A1, . . . , An))

= tI(V)(A1, . . . , An).

• Case t = f1(t1): Then we have tV
′

1 (a1, . . . , an) ∈ t
I(V)
1 (A1, . . . , An) by the

induction hypothesis. Hence, fV
′

1 (tV
′

1 (a1, . . . , an)) = tV
′

1 (a1, . . . , an) ∈
t
I(V)
1 (A1, . . . , An) = f

I(V)
1 (t

I(V)
1 (A1, . . . , An)).

• Case t = f2(t1, t2): Then, we have tV
′

i (a1, . . . , an) ∈ t
I(V)
i (A1, . . . , An) for

i ∈ {1, 2}, by the induction hypothesis. Using that fV
′

2 is an absorbing

polynomial of V, we obtain

tV
′
(a1, . . . , an) = fV

′

2 (tV
′

1 (a1, . . . , an), t
V′

2 (a1, . . . , an))

∈ [[t
I(V)
1 (A1, . . . , An), t

I(V)
2 (A1, . . . , An)]]

= f
I(V)
2 (t

I(V)
1 (A1, . . . , An), t

I(V)
2 (A1, . . . , An)) = tI(V)(A1, . . . , An).
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• Case t = fk(t1, . . . , tk) for k ≥ 3: Then, we have tV
′
(a1, . . . , an) = 1 ∈

tI(V)(A1, . . . , An). �

For each term t in the languages F or FV, we denote the set of those variables

that occur in t by Var(t).

Lemma 3.2. Let V be an expanded group, let n ∈ N, let t be a term in the

language F over the variables {x1, . . . , xn} such that all of these variables occur

in t, i.e., such that Var(t) = {x1, . . . , xn}. Then for all ideals A1, . . . , An of V we

have

tI(V)(A1, . . . , An) ≤ [[A1, . . . , An]]. (3.1)

Proof. We proceed by induction on the length of t. If t = x1, then the left

hand side of (3.1) is equal to the right hand side. For the induction step, we let t

be an F-term and assume that (3.1) holds for all ideals A1, . . . , An and all terms

of length smaller than the length of t. Let k ∈ N be such that t = fk(t1, . . . , tk).

Now we compute tI(V)(A1, . . . , An) = [[t
I(V)
1 (A1, . . . , An), . . . , t

I(V)
k (A1, . . . , An)]].

By the induction hypothesis, each t
I(V)
j (A1, . . . , An) is ≤ [[Aij,1 , . . . , Aij,mj

]], where

Var(tj) = {xij,1 , . . . , xij,mj
}. Hence using monotonicity (HC2), we obtain

tI(V)(A1, . . . ,An)≤[[[[Ai1,1 , . . . , Ai1,m1
]], [[Ai2,1 , . . . , Ai2,m2

]], . . . , [[Aik,1
, . . . , Aik,mk

]]]].

Flattening the right hand side by repeated application of (HC8’), omitting re-

peated occurrences of each Aj by using (HC3’), and finally sorting the Aj ’s by

using (HC4), we obtain the result. �

According to Lemma 3.2 we have that [[[[A1, A2]], [[A3, A3]]]] ≤ [[A1, A2, A3]].

Sometimes it will be desirable that the commutators that occur in the upper

bound on the right hand side do not have larger arity than those on the left

hand side. An upper bound for [[[[A1, A2]], [[A3, A3]]]] of the desired form would be

[[[[A1, A2]], A3]]. Such an upper bound can be found using the following lemmas.

The first lemma tells how to drop unwanted variables, and the second one gets

rid of repeated occurrences.

Lemma 3.3. Let V be an expanded group, let k ≥ 2, and let t be a term in

the language {f1, . . . , fk}. If S is a nonempty subset of Var(t), then there exists

a term s in the language {f1, . . . , fk} such that Var(s) = S and

tI(V)(A1, . . . , An) ≤ sI(V)(A1, . . . , An) (3.2)

for all A1, . . . , An ∈ I(V). Furthermore, each variable in S has the same number

of occurrences in s and t.
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Proof. If S = Var(t), then we choose s := t. Hence we will now assume

that S is a proper nonempty subset of Var(t); in this case t is not a variable. Since

we can drop the variables in Var(t) \ S one by one, it is sufficient to show that

for each term t in the language {f1, . . . , fk} that contains at least two different

variables, and for each variable x ∈ Var(t), there exists a term s in the language

{f1, . . . , fk} such that s satisfies the inequality (3.2) and Var(s) = Var(t) \ {x}.
We prove this statement by induction on the length of t. For t = f2(x1, x2), let

x2 be the variable that we want to omit. In this case, we define s := x1. Clearly,

we have tI(V)(A1, A2) = [[A1, A2]] ≤ A1 = sI(V)(A1, A2) by (HC3’). For the

induction step, let t be a term in the language {f1, . . . , fk} with |Var(t)| ≥ 2, and

let x ∈ Var(t) be the variable that we want to omit. Since t contains at least two

variables, we have t = fl(t1, . . . , tl) for an l ∈ {1, . . . , k}. Now we group the terms

ti into three classes: those ti’s that do not contain x (they will be copied), those

ti’s that contain the variable x, but no other variables (they will be omitted), and

those ti’s that contain x and at least one other variable (they will be processed

by induction). Doing this formally, we let i1 < · · · < ir be the distinct elements

of the set {i | x ̸∈ Var(ti)}, we define T := {i | Var(ti) = {x}}, and we let

j1 < · · · < jp be the distinct elements of the set {1, . . . , l}\(T ∪ {i1, . . . , ir}).
Since t contains at least one variable other than x, we have 1 ≤ r + p ≤ k. Now

for all i ∈ {j1, . . . , jp}, we use the induction hypothesis to find a term si in the

language {f1, . . . , fk} with Var(si) = Var(ti) \ {x} and

t
I(V)
i (A1, . . . , An) ≤ s

I(V)
i (A1, . . . , An)

for all ideals A1, . . . , An of V and the additional property that all variables in
Var(t) \ {x} have the same number of occurrences in ti and si. Then we define
s := fr+p(ti1 , . . . , tir , sj1 , . . . , sjp). The term s contains only operation symbols
from {f1, . . . , fk}, we have Var(s) = Var(t) \ {x}, all variables from Var(t) \ {x}
occur in s as often as they do in t, and by (HC3’), (HC4) and (HC2) we have

tI(V)(A1, . . . , An)

≤ [[t
I(V)
i1

(A1, . . . , An), . . . , t
I(V)
ir

(A1, . . . , An), t
I(V)
j1

(A1, . . . , An), . . . , t
I(V)
jp

(A1, . . . , An)]]

≤ [[t
I(V)
i1

(A1, . . . , An), . . . , t
I(V)
ir

(A1, . . . , An), s
I(V)
j1

(A1, . . . , An), . . . , s
I(V)
jp

(A1, . . . , An)]]

= sI(V)(A1, . . . , An). (3.3)

�

Lemma 3.4. Let V be an expanded group, let n ∈ N, and let t be a term

in the language FV such that Var(t) = {x1, . . . , xn}. Let m ∈ N be the maximal

arity of operation symbols that occur in t. Then there is a term s in the language
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{f1, . . . , fm} that contains each xi exactly once such that

tI(V)(A1, . . . , An) ≤ sI(V)(A1, . . . , An) (3.4)

for all A1, . . . , An ∈ I(V).

Proof. We proceed by induction on the length of t. First, we note that the

case that t is a nullary operation symbol cannot occur because |Var(t)| = n ≥ 1.

If t = xi for an i ∈ {1, . . . , n}, then we define s := t. For the induction step, we

let t be a term of length at least 2 in the language FV with Var(t) ̸= ∅. Let h be

its outermost operation symbol and let k be the arity of h; hence t = h(t1, . . . , tk)

with 1 ≤ k ≤ m. All k-ary operation symbols in FV induce the function f
I(V)
k :

(Y1, . . . , Yk) 7→ [[Y1, . . . , Yk]] on I(V). Let i1 < · · · < ir be the elements of the set

{i ∈ {1, . . . , k} | Var(ti) ̸= ∅}. By assumption, Var(t) ̸= ∅, and thus r ≥ 1; also

r ≤ k. Then we have

tI(V)(A1, . . . , An) = [[t
I(V)
1 (A1, . . . , An), . . . , t

I(V)
k (A1, . . . , An)]]

≤ [[t
I(V)
i1

(A1, . . . , An), . . . , t
I(V)
ir

(A1, . . . , An)]]

= fI(V)
r (t

I(V)
i1

(A1, . . . , An), . . . , t
I(V)
ir

(A1, . . . , An)) (3.5)

for all A1, . . . , An ∈ I(V). By the induction hypothesis, there exist terms s1, . . . , sr
in the language {f1, . . . , fm} such that

t
I(V)
ij

(A1, . . . , An) ≤ s
I(V)
j (A1, . . . , An)

for all A1, . . . , An ∈ I(V) and for each j ∈ {1, . . . , r}, every variable of tij occurs

exactly once in sj . For j ∈ {1, . . . , r} let I1 := Var(s1) and Ij := Var(sj) \
(Var(s1) ∪ · · · ∪ Var(sj−1)) for j ∈ {2, . . . , r}. Let j1 < · · · < jr′ be the elements

of {j ∈ {1, . . . , r} | Ij ̸= ∅}. Clearly, Ij1 ∪ · · · ∪ Ijr′ = {x1, . . . , xn}. For each

l ∈ {1, . . . , r′}, Lemma 3.3 yields a pl in the language {f1, . . . , fm} such that

Var(pl) = Ijl ,

s
I(V)
jl

(A1, . . . , An) ≤ p
I(V)
l (A1, . . . , An)

for all A1, . . . , An ∈ I(V), and pl contains every variable in Ijl exactly once.

Continuing the calculations from (3.5) and using (HC2) and (HC3’), we have

fI(V)
r (t

I(V)
i1

(A1, . . . , An), . . . , t
I(V)
ir

(A1, . . . , An))

≤ fI(V)
r (s

I(V)
1 (A1, . . . , An), . . . , s

I(V)
r (A1, . . . , An))

≤ f
I(V)
r′ (p

I(V)
1 (A1, . . . , An), . . . , p

I(V)
r′ (A1, . . . , An))

for all A1, . . . , An ∈ I(V). Now the term s := fr′(p1, . . . , pr′) is a term in the

languange {f1, . . . , fm}, contains every variable in {x1, . . . , xn} exactly once, and

satisfies the inequality (3.4). �
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4. The commutator calculus

In this section, we will bring every polynomial term of a multilinear expanded

group V into a specified form. Here, by polynomial term we mean a term in the

language of V with the constant symbols {c(v) | v ∈ V } added.

The first task is to multiply out. For a binary multilinear operation g on the

group (V, ·,−1, 1), we clearly have g(a · b, c · d) = g(a, c) · g(b, c) · g(a, d) · g(b, d) =
g(a, c) · g(a, d) · g(b, c) · g(b, d); in Lemma 4.1 we provide a general version of this

expansion. First, we define how the product symbol
∏

has to be read. The

expression
∏n

i=1 ai stands for a1 · a2 · · · · · an. If the index set of the product

is a subset of Nn, we order the factors in a lexicographic way. Writing m as an

abbreviation of {1, . . . ,m}, we therefore define∏
(i1,...,ik)∈m1×···×mk

a(i1, . . . , ik)

:=



m1∏
j=1

a(j) if k = 1,

m1∏
j=1

( ∏
(i2,...,ik)∈m2×···×mk

a(j, i2, . . . , ik)

)
if k > 1.

Then we have

Lemma 4.1. LetV = (V, ·,−1, 1, g1, g2, . . .) be a multilinear expanded group.

For k,m1, . . . ,mk ∈ N and a k-ary multilinear operation g of V , we have:

g

(
m1∏
j=1

a1,j , . . . ,

mk∏
j=1

ak,j

)
=

∏
(i1,...,ik)∈m1×···×mk

g(a1,i1 , . . . , ak,ik),

for all a1,1, . . . , a1,m1 , . . . , ak,1, . . . , ak,mk
∈ V .

Proof. We use induction on k and the multilinearity of g. �

The next task is to adapt the commutator calculus known from group theory

to our setting. We will do this by extending the procedure given in [2, Sec-

tions 5 and 6].

Definition 4.2. Let n ≥ 0, let V = (V, ·,−1 , 1, g1, g2, . . . ) be an expanded

group and let X be a set of variables. We denote {x−1 | x ∈ X} by X−1, and we

define C(V,X) to be the smallest set of terms in the language FV such that:

• {c(v) | v ∈ V } ∪X ∪X−1 ⊆ C(V,X),
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• if u1, u2 ∈ C(V,X), then f2(u1, u2) = [u1, u2] ∈ C(V,X), and

• if k ≥ 1, gi is a k-ary operation from V and u1, . . . , uk ∈ C(V,X), then

gi(u1, . . . , uk) ∈ C(V,X).

Let V be an expanded group, let X be a set of variables, and let A be a

subset of X. By C(V,X,A), we abbreviate the set of all terms t in C(V,X) such

that Var(t) = A.

Proposition 4.3. LetV be a multilinear expanded group, letX={x1, . . . ,xk}
be a set of variables, let p ∈ C(V,X), let pV be the k-ary function that p induces

on V, let i ∈ {1, . . . , k} be such that xi ∈ Var(p), and let a1, . . . , ak ∈ V . Then

pV(a1, . . . , ai−1, 1, ai+1, . . . , ak) = 1.

Proof. We prove the statement by induction on the length of p. If p = xi
or p = x−1

i , then the statement is true. For the induction step we distinguish the

following cases:

• Case p = [u, v] for some u, v ∈ C(V,X): Then xi ∈ Var(u) or xi ∈ Var(v), and

therefore, by the induction hypothesis, uV(a1, . . . , ai−1, 1, ai+1, . . . , ak) = 1

or vV(a1, . . . , ai−1, 1, ai+1, . . . , ak) = 1. Thus

pV(a1, . . . , ai−1, 1, ai+1, . . . , ak)

= [uV(a1, . . . , ai−1, 1, ai+1, . . . , ak), v
V(a1, . . . , ai−1, 1, ai+1, . . . , ak)] = 1.

• Case p = g(u1, . . . , ur) for an r-ary operational symbol in the language of

V with g ̸∈ {·,−1, 1} and u1, . . . , ur ∈ C(V,X): Then xi ∈ Var(u1) ∪ · · · ∪
Var(ur). Let j ∈ {1, . . . , r} be such that xi ∈ Var(uj). Then by the induction

hypothesis, uVj (a1, . . . , ai−1, 1, ai+1, . . . , ak) = 1. Since gV is multilinear, it

is absorbing, and therefore pV(a1, . . . , ai−1, 1, ai+1, . . . , ak) = 1. �

Proposition 4.4. Let V = (V, ·,−1 , 1, g1, g2, . . . ) be a multilinear expanded

group, and let p ∈ C(V,X). Then there exists a d ∈ C(V,X) such that dV =

(p−1)V.

Proof. We proceed by induction on the length of p. If p ∈ X, then p−1 ∈
X−1 ⊆ C(V,X) and we define d := p−1. If p ∈ X−1, then there is an x ∈ X ⊆
C(V,X) such that xV = (p−1)V. If p ∈ {c(v) | v ∈ V }, then we take d := c(v−1).

For the induction step, we consider the following cases:

• Case p = [u1, u2] for some u1, u2 ∈ C(V,X) : Then we have p−1 = [u1, u2]
−1.

Hence, we obtain (p−1)V = ([u1, u2]
−1)V = [u2, u1]

V. Clearly, [u2, u1] ∈
C(V,X) which completes the induction step in this case.
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• Case p = gi(u1, . . . , uk) for some u1, . . . , uk ∈ C(V,X): By the induction

hypothesis, there exists t ∈ C(V,X) such that tV = (u−1
1 )

V
. Since gVi = gi

is multilinear, it satisfies (gVi (a1, a2, . . . , ak))
−1 = gVi (a−1

1 , a2, . . . , ak) for all

a1, . . . , ak ∈ V . Hence

(p−1)
V

= (gi(u1, . . . , uk)
−1)V = (gi(t, u2, . . . , uk))

V,

which finishes the induction step because gi(t, u2, . . . , uk) ∈ C(V,X). �

Proposition 4.5. LetV be a multilinear expanded group, letX={x1,. . . ,xn},
and let q be a polynomial term in the language of V = (V, ·,−1 , 1, g1, g2, . . . ).

Then there are k ∈ N and pi ∈ C(V,X), i ∈ {1, . . . , k} such that

s :=
k∏

i=1

pi

and q induce the same function on V.

Proof. We proceed by induction on the length of q. If q∈{c(v) | v ∈V }∪X,

then we choose k = 1 and define p1 := q. If q is a nullary operational symbol in

the language of V, we choose k = 1 and define p1 := c(qV). For the induction

step, we consider the following cases.

• Case q = u1 · u2 for some polynomial terms u1 and u2: By the induction

hypothesis, there are m,n ∈ N and p1, . . . , pm, d1, . . . , dn ∈ C(V,X) such

that uV1 =
∏m

i=1 p
V
i and uV2 =

∏n
j=1 d

V
j . Therefore, q and p1·· · ··pm ·d1·· · ··dn

induce the same function on V.

• Case q = u−1 for a polynomial term u of V: By the induction hypothesis,

there are k ∈ N and pi ∈ C(V,X), i ∈ {1, . . . , k} such that uV =
∏k

i=1 p
V
i .

Therefore, (u−1)V =
∏k

i=1(p
−1
k+1−i)

V. By Proposition 4.4 we know that

there exist di ∈ C(V,X), i ∈ {1, . . . , k} such that dVi = (p−1
k+1−i)

V
for all

i ∈ {1, . . . , k}. Now q and d1 · · · · · dk induce the same function on V.

• Case q = gi(u1, . . . , uk) for a k ∈ N and polynomial terms u1, . . . , uk: By the

induction hypothesis, there exist m1, . . . ,mk ∈ N and p1,1, . . . , p1,m1 , . . . ,

pk,1, . . . , pk,mk
∈ C(V,X) such that uVi =

∏mi

j=1 p
V
i,j for all i ∈ {1, . . . , k}.

Then, we obtain:

qV = gi

(
m1∏
j=1

pV1,j , . . . ,

mk∏
j=1

pVk,j

)
=

∏
(i1,...,ik)∈m1×···×mk

gi(p
V
1,i1 , . . . , p

V
k,ik

),

by Lemma 4.1. Clearly, gi(p1,i1 , . . . , pk,ik) ∈ C(V,X) for all (i1, . . . , ik) ∈
m1 × · · · ×mk. This finishes the induction step. �
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For a multilinear expanded group V and a nonempty set X of variables, we

let C(V,X)∗ denote the set of all finite words over the alphabet C(V,X), including

the word λ of length 0. For a word w = w1w2 . . . wk ∈ C(V,X)∗, the function wV

that w induces on V is defined as the product
∏k

i=1 w
V
i of the functions induced

by the single letters; in other words, the juxtaposition of words is read as their

product; the empty word λ is defined to induce a constant function with value 1.

Lemma 4.6. Let V be a multilinear expanded group, let X = {x1, . . . , xn},
and let a, z ∈ C(V,X)∗, A,B ⊆ {x1, . . . , xn}, r ∈ N, p1, . . . , pr ∈ C(V,X,A)

and d ∈ C(V,X,B). Then there exist r′ ∈ N, p′1, . . . , p′r′ ∈ C(V,X,A), t ∈ N0

and e1, . . . , et ∈ C(V,X,A∪B) such that a(
∏r

i=1 pi)dz and ad(
∏r′

i=1 p
′
i)(
∏t

i=1 ei)z

induce the same function on V.

Proof. We repeat the proof of [2, Lemma 6.2]. �

Lemma 4.7. Let V be a multilinear expanded group, let X = {x1, . . . , xn},
and let a, z ∈ C(V,X)∗, A,B ⊆ {x1, . . . , xn}, r, s ∈ N, p1, . . . , pr ∈ C(V,X,A)

and d1, . . . , ds ∈ C(V,X,B). Then there exist r′ ∈ N, p′1, . . . , p′r′ ∈ C(V,X,A),

t ∈ N0 and e1, . . . , et ∈ C(V,X,A ∪ B) such that a(
∏r

i=1 pi)(
∏s

i=1 di)z and

a(
∏s

i=1 di)(
∏r′

i=1 p
′
i)(
∏t

i=1 ei)z induce the same function on V.

Proof. We repeat the proof of [2, Lemma 6.3], using Lemma 4.6 instead of

[2, Lemma 6.2]. �

For the sequel, we fix a set X = {x1, . . . , xn} of variables and a total order ≤
on the subsets of X that is a refinement of the subset relation. For A1, A2 ⊆ X,

we write A1 < A2 if A1 ≤ A2 and A1 ̸= A2.

Proposition 4.8. LetV be a multilinear expanded group, letX={x1,. . . ,xn},
and let q be a polynomial term over X in the language of V. Then there are

subsets A1, . . . , Ak of X such that A1 < · · · < Ak, and there are pi,j such that

pi,j lies in C(V,X,Ai) for all i, j and furthermore

s :=
k∏

i=1

mi∏
j=1

pi,j

and q induce the same function on V.

Proof. Using Lemma 4.7 instead of [2, Lemma 6.3], we repeat the proof of

[2, Lemma 6.5]. �

Lemma 4.9. Let V be a multilinear expanded group, let X = {x1, . . . , xn},
and let p be an n-ary absorbing polynomial of V. Then, there are r ≥ 0 and
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p1, . . . , pr ∈ C(V,X,X) such that each pVi is an n-ary absorbing polynomial and

p(x1, . . . , xn) =
r∏

i=1

pVi (x1, . . . , xn)

for all (x1, . . . , xn) ∈ V n.

Proof. Let p be an absorbing n-ary polynomial. In the case that p is

constant, we set r := 0, so we can assume that p is not constant. By Proposition

4.8 there are subsets A1, . . . , As of {x1, . . . , xn} such that A1 < · · · < As, and

there are di,j such that di,j lies in C(V,X,Ai) for all i, j and for

p :=
s∏

i=1

(
mi∏
j=1

di,j

)
, (4.1)

we have p = pV. By Proposition 4.3 each dVi,j evaluates to 1 if one of the variables

in Ai is set to 1.

We will now prove by induction on s that for all products

q =
s∏

i=1

(
mi∏
j=1

ci,j

)
(4.2)

with ci,j ∈ C(V,X,Ai) and A1 < · · · < As such that q induces a nonconstant

absorbing polynomial, we have qV = (
∏ms

j=1 cs,j)
V, and As = X. If s = 1, then

A1 = {x1, . . . , xn}, because p, as a nonconstant absorbing polynomial, depends

on all its arguments. For the induction step, we let s ≥ 2. Then A1 ̸= X. We

observe that each of the sets Ai (i = 2, . . . , s) is not a subset of A1; hence each

Ai has an element that is not contained in A1. In (4.2), we now set all variables

that are not elements of A1 to 1. Since qV is absorbing, the left hand side of (4.2)

then evaluates to 1. Looking at the right side, for i ≥ 2, each ci,j is an element of

C(V,X) that contains all variables in Ai; at least one of these is set to 1, and so

by Proposition 4.3, ci,j evaluates to 1 for i ≥ 2. Thus we obtain from (4.2) that∏m1

j=1 c
V
1,j is identically 1. Hence, we have qV = (

∏s
i=2(

∏mi

j=1 ci,j))
V. Now, the

assertion follows from the induction hypothesis.

Therefore, we have As = X and p = (
∏ms

j=1 ds,j)
V. So, we can set r := ms

and pj := ds,j . �

The following theorem tells that in a multilinear expanded group of degreem,

all higher commutators can be computed from the commutator operations of arity

at most m.
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Theorem 4.10. Let V be a multilinear expanded group of degree m, let

n ≥ 2, and let A1, . . . , An be ideals of V. Let T be the set of those terms in the

language {f2, . . . , fm} that contain each of the variables x1, . . . , xn exactly once.

Then [[A1, . . . , An]] is the join of all ideals in the set

{tI(V)(A1, . . . , An) | t ∈ T}.
Proof. Let B :=

∨
{tI(V)(A1, . . . , An) | t ∈ T}. From Lemma 3.2 we obtain

B ≤ [[A1, . . . , An]]. To prove the opposite inequality, we will show that all of the

generators of [[A1, . . . , An]] of the form p(a1, . . . , an) with p an absorbing n-ary

polynomial of V and a1 ∈ A1, . . . , an ∈ An are elements of B. By Lemma 4.9

there exist r ≥ 1 and p1, . . . , pr ∈ C(V,X) such that each pVi is an absorbing

n-ary polynomial and

p(a1, . . . , an) =
r∏

i=1

pVi (a1, . . . , an).

Let i ∈ {1, . . . , r}. We will prove that pVi (a1, . . . , an)∈B. Using Lemma 3.1 we

have pVi (a1, . . . , an) ∈ p
I(V)
i (A1, . . . , An). Now we notice that pi is a term in

C(V,X), and therefore, all operation symbols of pi have arity at most m. By Lem-

ma 3.4, there exists a term s′i in the language {fj | j ≤ m} such that every variable

x1, . . . , xn occurs exactly once in s′i and p
I(V)
i (A1, . . . , An) ≤ s′i

I(V)
(A1, . . . , An)

by Lemma 3.4. Now replacing all subterms of the form f1(t) by t, we obtain

a term si that induces the same function on I(V) as s′i, but does not con-

tain f1. Hence, pVi (a1, . . . , an) ∈ s
I(V)
i (A1, . . . , An) and since si ∈ T , we obtain

that pVi (a1, . . . , an) ∈ B. Since B, as an ideal, is closed under multiplication, we

get p(a1, . . . , an) ∈ B. This completes the proof that all generating elements of

[[A1, . . . , An]] belong to B and therefore [[A1, . . . , An]] ≤ B. �

Hence in a multilinear expanded group of degree 2, the 4-ary commutator

[[A1, A2, A3, A4]] is the join of all [[Aπ(1), [[Aπ(2), [[Aπ(3), Aπ(4)]]]]]] and

[[[[Aπ(1), Aπ(2)]], [[Aπ(3), Aπ(4)]] with π ∈ S4. Furthermore, if a multilinear expanded

group of degree 2 satisfies the property [[[[Y,Z]], X]] ≤ [[Y, [[X,Z]]]]∨ [[Z, [[X,Y ]]]] for

all ideals X, Y , Z, then for every n ∈ N the n-ary commutator can be computed

as the join of all [[Aπ(1), [[Aπ(2), [[. . .]]]]]] with π ∈ Sn; for groups, the above property

is a consequence of the three subgroups lemma.

5. Connections between nilpotence and supernilpotence

Let t be a term in the language F . The depth of a term is defined by d(x) = 0

if x is a variable, and d(fk(t1, . . . , tk)) := 1 +max {d(ti) | i ∈ {1. . . . , k}}. We will



600 Erhard Aichinger and Neboǰsa Mudrinski

now relate the result of tI(V)(V, . . . , V ) to the lower central series of V, which is

defined by γ1(V) := V , γn(V) := [[V, γn−1(V)]] (n ≥ 2).

Lemma 5.1. Let t be a term of depth d in the language {fi | i ≥ 2} over

the variables {x1, . . . , xn}. Then we have tI(V)(V, . . . , V ) ≤ γd+1(V).

Proof. We proceed by induction on d. For d = 0, we have tI(V)(V, . . . , V ) =

V = γ1(V). Now assume d(t) = d ≥ 1. Then tI(V)(V, . . . , V )= f
I(V)
k (t1(V, . . . , V ),

. . . , tk(V, . . . , V )). Let i be such that ti is the term in t1, . . . , tk with maximal

depth, and let j be an element in {1, . . . , k}\{i}. Then we have f
I(V)
k (t1(V, . . . , V ),

. . . , tk(V, . . . , V )) ≤ f
I(V)
2 (ti(V, . . . , V ), tj(V, . . . , V )). By the induction hypothe-

sis, ti(V, . . . , V ) ≤ γd(V), and therefore f
I(V)
2 (ti(V, . . . , V ), tj(V, . . . , V )) =

[[ti(V, . . . , V ), tj(V, . . . , V )]] ≤ [[γd(V), V ]] = γd+1(V). �

From these results, we will now derive Theorem 1.5.

Proof of Theorem 1.5. Let n := mk−1+1. By Theorem 4.10, [[V, . . . , V︸ ︷︷ ︸
n

]]

can be computed as the join of all tI(V)(V, . . . , V ), where t is a term in the language

{f2, . . . , fm} that contains each of the variables x1, . . . , xn exactly once. Let t be

one such term, and let d be its depth. Then t, seen as a tree, has exactly n leaves.

Since this tree is at most m-ary, we obtain n ≤ md, and hence n− 1 < md, which

implies k − 1 < d, and thus k ≤ d. By Lemma 5.1, tI(V)(V, . . . , V ) ≤ γk+1(V),

and γk+1(V) = {1} because V is nilpotent of class k. Now from Theorem 4.10,

we obtain [[V, . . . , V︸ ︷︷ ︸
n

]] = {1}, and therefore V is mk−1-supernilpotent. �

6. An example of a multilinear expanded group

In this section, we provide examples of expanded groups that prove that the

bound in Theorem 1.5 is sharp. To this end, we first construct expanded groups

all of whose higher commutators are easy to calculate. In contrast to the previous

sections, we will now write groups in additive notation.

Proposition 6.1. Let p be a prime, m,n ∈ N with m ≥ 2, let V := Zp
n, let

(e1, . . . , en) be the canonical basis of V as a vector space over Zp, let e0 := 0 and

let f : Zp
n → Zp

n be the linear mapping defined by f(ei) = ei−1 for i ∈ {1, . . . , n}.
Let δ : {1, . . . , n} → {0, . . . , n} be such that δ(i) ≤ i for all i ∈ {1, . . . , n}. We

define an m-ary multilinear operation g on V by

g(ei1 , . . . , eim) := eδ(min(i1,...,im))
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for all i1, . . . , im ∈ {1, . . . , n}. For each i ∈ {0, . . . , n}, let Ei be the subgroup of

(V,+) generated by {e0, . . . , ei} (hence E0 = {0} and En = V ). Then we have:

(1) For all i ∈ {1, . . . ,m}, v ∈ V m, a ∈ Ei
m, we have g(v + a)− g(v) ∈ Eδ(i).

(2) The expanded group V := (V,+,−, 0, f, g) has exactly the ideals

E0, E1, . . . , En.

(3) For all k ∈ {2, . . . ,m} and i1, . . . , ik ∈ {1, . . . , n}, the k-ary commutator

operation of V satisfies [[Ei1 , . . . , Eik ]] = Eδ(min(i1,...,ik)).

Proof. (1) For each k ∈ {1, . . . ,m} we take α
(k)
1 , . . . , α

(k)
i ∈ Zp such that

ak =
∑i

j=1 α
(k)
j ∗ej . Then g(v+a) = g(v1+

∑i
j=1 α

(1)
j ∗ej , . . . , vm+

∑i
j=1 α

(m)
j ∗

ej). Using multilinearity, we expand the last expression into (i + 1)m sum-

mands. One summand is g(v1, . . . , vm), each other summand is of the form

g(w1, . . . , wk−1, α
(k)
j ∗ ej , wk+1, . . . , wm) where j ≤ i. Now in each of this sum-

mands, we write each wl as
∑n

r=1 β
(l)
r ∗ er and expand using multilinearity; in

this way we obtain nm−1 summands each of which lies in Eδ(i). Altogether

g(v + a) − g(v) ∈ Eδ(i), which completes the proof of (1). For proving (2),

we let I be an ideal of V; let d be its dimension as a vector space over Zp.

As an ideal of V, I is an f -invariant subspace. Since the restriction f |I is a

nilpotent linear mapping on the d-dimensional space I, its characteristic polyno-

mial is xd and therefore by the Cayley-Hamilton Theorem, fd(I) ⊆ E0. Hence

I ⊆ {x ∈ V | fd(x) = 0} = Ed. Since I and Ed have the same dimension, we ob-

tain I = Ed. For proving that each Ei is really an ideal of V, we have to show that

for all i ∈ {0, . . . , n}, k ∈ N, j ∈ {1, . . . , k}, for all k-ary fundamental operations

h of V and for all v1, . . . , vk ∈ V and w ∈ Ei, we have h(v1, . . . , vj−1, vj +

w, vj+1, . . . , vk) − h(v1, . . . , vk) ∈ Ei. For h = f , this follows from the fact

that f is linear and Ei is an f -invariant subspace. For h = g, we obtain from

item (1) that g(v1, . . . , vj−1, vj+w, vj+1, . . . , vk)−g(v1, . . . , vk) lies in Eδ(i). Since

δ(i) ≤ i, the result follows. For establishing (3), we first consider the polyno-

mial p(x1, . . . , xk) := g(x1, . . . , xk, xk, . . . , xk). Since p is absorbing, we have

p(ei1 , . . . , eik) ∈ [[Ei1 , . . . , Eik ]], which implies eδ(min(i1,...,ik)) ∈ [[Ei1 , . . . , Eik ]].

Therefore Eδ(min(i1,...,ik)) ≤ [[Ei1 , . . . , Eik ]]. For proving the other inclusion, let

i1, . . . , ik ∈ {0, 1, . . . , n}, let j be such that ij is minimal among i1, . . . , ik, and

let l be an element of {1, . . . , k} \ {j}. Then we have [[Ei1 , . . . , Eik ]] ≤ [[Eij , Eil ]].

We will now show

[[Eij , Eil ]] ≤ Eδ(ij). (6.1)

From [14] (cf. [4, Proposition 5.2], [3, Proposition 2.3 and Lemma 2.4]) we obtain

that it is sufficient for (6.1) to show that every fundamental operation of V
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preserves the relation {(x1, x2, x3, x4) ∈ V 4 | x1 − x2 ∈ Eij , x2 − x3 ∈ Eil , x1 −
x2 + x3 − x4 ∈ Eδ(ij)}. Let y ∈ V m, a ∈ Em

ij
, b ∈ Em

il
and z ∈ V m such that

(y + a)− y + (y + b)− z ∈ Eδ(ij); we would like to show

g(y + a)− g(y) + g(y + b)− g(z) ∈ Eδ(ij). (6.2)

From item (1), we obtain g(y + a) − g(y) ∈ Eδ(ij). By assumption, we have

(y + a) − y + (y + b) − z = (y + a + b) − z ∈ Eδ(ij). Since g is congruence

preserving, we have g(y + a+ b)− g(z) ∈ Eδ(ij). Now, using (1) again, we know

that g(y + b) − g(y + a + b) ∈ Eδ(ij). Therefore, (g(y + a) − g(y)) + (g(y + b) −
g(y+ a+ b)) + (g(y+ a+ b)− g(z)) ∈ Eδ(ij), which implies (6.2). This completes

the proof of (6.1); therefore also the ≤-inclusion of item (3) is proved. �

The following example proves Proposition 1.6.

Example 6.2. Let n ∈ N, m ∈ N, and let V be the multilinear expanded

group V = (Zp
n,+,−, 0, f, g) with the m-ary multilinear operation g defined by

g(ei1 , . . . , eim) := emin(i1,...,im)−1 for i1, . . . , im ∈ {1, . . . , n};

this is the operation that is obtained from the construction of Proposition 6.1 us-

ing δ(i) := i− 1 for i ∈ {1, . . . , n}. Then from item (3) of Proposition 6.1, we can

compute the lower central series of V as γi(V) = En+1−i for i ∈ {1, . . . , n + 1}.
Hence V is nilpotent of class n. Now consider the terms tk (k ∈ {1, . . . , n − 1})
defined by the following recursion; each term tk will have exactlymk variables. We

define t1:= fm(x1, . . . , xm), tk:= fm(tk−1(x1, . . . , xmk−1), tk−1(xmk−1+1, . . . , x2mk−1),

. . . , tk−1(xmk−mk−1+1, . . . , xmk)). From Proposition 6.1, we obtain that t
I(V)
i =

En−i for i ∈ {1, . . . , n}. Setting i := n− 1, we obtain that t
I(V)
n−1 (V, . . . , V ) ̸= E0,

and therefore, by Lemma 3.2, [[V, . . . , V︸ ︷︷ ︸
mn−1

]] ̸= E0. From this, we see that V is not

(mn−1 − 1)-supernilpotent. By Theorem 4.10, V is mn−1-supernilpotent, and

therefore V is supernilpotent of class mn−1. �

Example 6.3. We will now give an example of an expanded group V =

(V,+,−, 0, f, g1, g2) such that for V1 := (V,+,−, 0, f, g1) and

V2 := (V,+,−, 0, f, g2) we have [[Vi, [[Vi, Vi]]]] = [[Vi, Vi, Vi]] = 0 (i = 1, 2), but

in V, we have [[V, [[V, V ]]]] ̸= 0 and [[V, V, V ]] ̸= 0. This example shows that the

operations that preserve the nilpotence class (or supernilpotence class) of a given

expanded group need not form a clone. We will construct both examples on

Zp
3 by using the construction of Proposition 6.1. The binary operation g1 is

defined by using δ1 with δ1(3) = δ1(2) = 1 and δ1(1) = 0; the binary operation
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g2 is constructed setting δ2(3) = 2, δ2(2) = δ2(1) = 0. From Proposition 6.1,

we see that both expanded groups satisfy [[E3, [[E3, E3]]]] = E0 = 0, and hence

Theorem 4.10 yields that both V1 and V2 satisfy [[E3, E3, E3]] = 0. However, in

V, the absorbing polynomial g2 yields [[E3, E3]] ≥ E2; now g1 shows [[E3, E2]] ≥
E1. Altogether, V satisfies [[V, [[V, V ]]]] ̸= 0, and therefore using (HC8), also

[[V, V, V ]] ̸= 0.
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