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Irrationality of infinite products

By JAROSLAV HANČL (Ostrava) and ONDŘEJ KOLOUCH (Ostrava)

Abstract. This paper deals with a sufficient condition for the infinite product of

infinite series of rational numbers to be an irrational number. The proof is based on an

idea of Erdős. As an example we obtain that the number
∏∞

m=1

(
1 +

∑∞
n=m

1

2(n+1)!+1

)
is irrational.

1. Introduction

In 1975 Erdős [5] proved that if {an}∞n=1 is an increasing sequence of positive

integers such that limn→∞ a
1
2n
n = ∞ then the number

∑∞
n=1

1
an

is irrational. We

prove the following result:

Theorem 1. Let {an}∞n=1 be an increasing sequence of positive integers with

limn→∞ a
1
n!
n = ∞. Then the number

∏∞
m=1

(
1 +

∑∞
n=0

1
an+m+n

)
is irrational.

We say that the number y is Liouville if for each n there exist integers p and

q such that 0 <
∣∣y− p

q

∣∣ < p
qn . The authors do not know if the number

∏∞
m=1

(
1+∑∞

n=0
1

2(n+m)!+n

)
is irrational although we know from another result of Erdős

(e.g., [5] page 6, line 9) that the number
∑∞

n=1
1

2n!+n
is Liouville. We are also not

able to find a sequence {an}∞n=1 of positive integers with lim infn→∞ a
1
n!
n > 1 and

such that the number
∏∞

m=1

(
1 +

∑∞
n=0

1
an+m

)
is rational.
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The irrationality and transcendence of infinite products has a great history.

Badea [1] proved that if {an}∞n=1 and {bn}∞n=1 are two sequences of positive

integers such that an+1 > bn+1

bn
a2n + bn+1(bn−1)

bn
an + 1− bn+1 holds for every suffi-

ciently large n then the number
∏∞

n=1

(
1 + bn

an

)
is irrational. Using Brun’s crite-

rion, Laohakosol and Kuhapatanakul [13]–[15] worked in the spirit of Badea.

Some approximations of the numbers
∏∞

n=1

(
1+ z

qn

)
can be found in the paper of

Väänänen [18]. Zhou and Lubinski [20] demostrated some irrationality results

regarding
∏∞

j=0(1± q−jr + q−2js). See also Hančl and Kolouch [7].

In 2000 Zhu [21] proved several criteria for infinite products to be transcen-

dental. Nyblom [16] constructed a certain set of transcendental valued infinite

products with the help of second order linear recurrence sequences. Using theta

series Kim and Koo [12] described some interesting infinite products. Utilizing

a result of Corvaja and Zannier [3] or [4], Corvaja and Hančl [2] estab-

lished a condition for certain infinite products to be transcendental. Tachiya

[17] considered infinite products in several variables of certain algebraic numbers

and proved that these products are transcendental numbers. Zhou [19] worked

with similar products and obtained some irrationality results. All this shows that

metric properties of infinite products is of considerable current interest.

Erdős [5] (e.g., [5] page 6, line 9) proved that if a = {an}∞n=1 is an increasing

sequence of positive integers such that limn→∞
1
n log log an = ∞ then the express-

ible set Ea =
{∑∞

n=1
1

ancn
, cn ∈ N

}
consists only of Liouville numbers. Using this

idea of Erdős, Hančl, Nair and Šustek [8] found some necessary conditions

for the Lebesgue measure of Ea to be equal to zero. For other applications of the

method of Erdős see e.g. [6], [9], [10] or [11]. It seems that this method still has

great potential.

The main result of this paper is Theorem 2 which says that certain infinite

products of infinite series are irrational numbers. Its proof is complicated but

does not require any deep results. Note that the product x in Theorem 2 can

contain infinitely many factors that are Liouville numbers.

Let Z+ be the set of all positive integers. For n ∈ Z+ and δ a real number

with 0 ≤ δ < 1 let (n+δ)! =
∏n

j=1(j+δ). Functions log x and lnxmean logarithm

of x to base 2 and e respectively.

2. Main result

Theorem 2. Let ε be a positive real number. Assume that (an,m)m,n≥1

and (bn,m)m,n≥1 are two infinite matrices of positive integers. Suppose that the
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sequence {an,1}∞n=1 is non-decreasing with

lim sup
n→∞

a
1
n!
n,1 = ∞ (1)

and for all sufficiently large n

n1+ε ≤ an,1, (2)

n∑
j=1

bn−j+1,j

an−j+1,j
≤ a

1

log3+ε log an,1
−1

n,1 (3)

and
n∏

j=1

an−j+1,j ≤ a
1

log3+ε log an,1
+n

n,1 . (4)

Then the number x =
∏∞

m=1

(
1 +

∑∞
n=1

bn,m

an,m

)
is irrational.

Example 1. As an immediate consequence of Theorem 2 we obtain that the

products of the series

∞∏
m=1

(
1 +

∞∑
n=m

1

2(n+1)!

)
=

∞∏
m=1

(
1 +

∞∑
n=1

1

2(n+m)!

)
,

∞∏
m=1

(
1 +

∞∑
n=m

1

2(n+1)! + 1

)
=

∞∏
m=1

(
1 +

∞∑
n=1

1

2(n+m)! + 1

)
,

∞∏
m=1

(
1 +

∞∑
n=m

n

2(n+1)! +m

)
=

∞∏
m=1

(
1 +

∞∑
n=1

n+m

2(n+m)! +m

)
,

∞∏
m=1

(
1 +

∞∑
n=m

1

2nn

)
=

∞∏
m=1

(
1 +

∞∑
n=1

1

2(n+m)n+m

)
and

∞∏
m=1

(
1 +

∞∑
n=m

n!

2nn +mn

)
=

∞∏
m=1

(
1 +

∞∑
n=1

(n+m)!

2(n+m)n+m +mn+m

)
are irrational numbers.

Remark 1. Let us note that if we omit finite number of the terms in the

sequence of the Erdős theorem then it does not have any influence on the irra-

tionality. On the other side it is more complicate in the case of Theorems 1 and

2 since the products consist of the irrational numbers.
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3. Proofs

Theorem 1 is an immediate consequence of Theorem 2 when we set bn,m = 1

and an,m = an+m−1 + n− 1 for all n,m ∈ Z+. Then

N∑
j=1

bN−j+1,j

aN−j+1,j
=

N∑
j=1

1

aN +N − j
≤ 2N

aN +N − 1
≤ a

1

log3+ε log aN,1
−1

N,1

and

N∏
j=1

aN−j+1,j =
N∏
j=1

(aN +N − j) ≤
N∏
j=1

(aN +N − 1) ≤ a
1

log3+ε log aN,1
+N

N,1

hold for every sufficiently large N since aN,1 = aN +N − 1 > 2N !.

Lemma 1. Let the sequence {an,1}∞n=1 satisfy all conditions stated in The-

orem 2. Then
∞∑
j=0

a
1

log3+ε log an+j,1
−1

n+j,1 < a
− ε

2(1+ε)

n,1 (5)

holds for every sufficiently large n.

Proof. (of Lemma 1)

From (2) and the fact that the sequence {an,1}∞n=1 is non-decreasing we obtain

∞∑
j=0

a
1

log3+ε log an+j,1
−1

n+j,1 =
∑

n+j<a
1

1+ε
n,1

a
1

log3+ε log an+j,1
−1

n+j,1 +
∑

n+j≥a
1

1+ε
n,1

a
1

log3+ε log an+j,1
−1

n+j,1

≤ a
1

log3+ε log an,1
−1

n,1 a
1

1+ε

n,1 +
∑

n+j≥a
1

1+ε
n,1

a
1

log3+ε log an+j,1
−1

n+j,1

≤ a
1

log3+ε log an,1
−1

n,1 a
1

1+ε

n,1 +
∑

n+j≥a
1

1+ε
n,1

(n+ j)
(1+ε)

(
1

log3+ε log(n+j)1+ε −1
)

≤ a
1

log3+ε log an,1
−1

n,1 a
1

1+ε

n,1 +
∑

n+j≥a
1

1+ε
n,1

(n+ j)−(1+ 2ε
3 ) ≤ a

− ε
2(1+ε)

n,1 . �

Lemma 2. Let the sequence {an,1}∞n=1 satisfy all conditions stated in The-

orem 2 and instead of (2) we have

2n < an,1 (6)
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for every sufficiently large n. Then

∞∑
j=0

a
1

log3+ε log an+j,1
−1

n+j,1 < a

1

log
3+ ε

2 log an,1

−1

n,1 (7)

holds for every sufficiently large n.

Proof. (of Lemma 2)

From (6) and the fact that the sequence {an,1}∞n=1 is non-decreasing we obtain

∞∑
j=0

a
1

log3+ε log an+j,1
−1

n+j,1 =
∑

n+j<log an,1

a
1

log3+ε log an+j,1
−1

n+j,1 +
∑

n+j≥log an,1

a
1

log3+ε log an+j,1
−1

n+j,1

≤ a
1

log3+ε log an,1
−1

n,1 log an,1 +
∑

n+j≥log an,1

a
1

log3+ε log an+j,1
−1

n+j,1

≤ a
1

log3+ε log an,1
−1

n,1 log an,1 +
∑

n+j≥log an,1

2
(n+j)

(
1

log3+ε log 2(n+j)
−1
)

≤ a
1

log3+ε log an,1
−1

n,1 log an,1 +

∫ ∞

log an,1

2
u
(

1

log
3+ 2ε

3 log 2u
−1
)
du. (8)

We have for sufficiently large x(
−2

x
(

1

log
3+ 3ε

5 log 2x
−1
))′

= −(ln 2)2
x
(

1

log
3+ 3ε

5 log 2x
−1
)(

1

log3+
3ε
5 log 2x

− 1−
3+ 3ε

5

ln 2

log4+
3ε
5 log 2x

)

≥ 2
x
(

1

log
3+ 2ε

3 log 2x
−1
)
.

Hence ∫ ∞

log an,1

2
u
(

1

log
3+ 2ε

3 log 2u
−1
)
≤ a

1

log
3+ 3ε

5 log an,1

−1

n,1 .

From this and (8) we obtain

∞∑
j=0

a
1

log3+ε log an+j,1
−1

n+j,1 ≤ a
1

log3+ε log an,1
−1

n,1 log an,1 +

∫ ∞

log an,1

2
u

(
1

log
3+ 2ε

3 log 2u
−1

)
du

≤ a
1

log3+ε log an,1
−1

n,1 log an,1 + a

1

log
3+ 3ε

5 log an,1

−1

n,1 ≤ a

1

log
3+ ε

2 log an,1

−1

n,1 . �
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Lemma 3. Let δ be a real number with 0 ≤ δ < 1 and let {an}∞n=1 be a

non-decreasing sequence of positive real numbers such that

lim
n→∞

sup a
1

(n+δ)!
n = ∞. (9)

Then for infinitely many N

a
1

(N+1+δ)!

N+1 >

(
1 +

1

N2

)
max

k=1,...,N
a

1
(k+δ)!

k (10)

and

aN+1 >

(
1 +

1

N2

)(N+1+δ)!( N∏
n=1

ann

)( N∏
n=1

an

)δ

. (11)

Proof. (of Lemma 3)

From (9) we obtain that there exist infinitely many N such that (10) holds oth-

erwise there exists N0 such that for each N > N0

a
1

(N+δ)!

N ≤
(
1 +

1

(N − 1)2

)
max

k=1,...,N−1
a

1
(k+δ)!

k

≤
(
1 +

1

(N − 1)2

)(
1 +

1

(N − 2)2

)
max

k=1,...,N−2
a

1
(k+δ)!

k < · · ·

≤
(
1 +

1

(N − 1)2

)(
1 +

1

(N − 2)2

)
. . .

(
1 +

1

N2
0

)
max

k=1,...,N0

a
1

(k+δ)!

k

≤ 5 max
k=1,...,N0

a
1

(k+δ)!

k ,

which contradicts (9). From (10) we obtain that for infinitely many N

aN+1 > (1 +
1

N2
)(N+1+δ)!

(
max

k=1,...,N
a

1
(k+δ)!

k

)(N+1+δ)!

>

(
1+

1

N2

)(N+1+δ)!(
max

k=1,...,N
a

1
(k+δ)!

k

)(N+δ)(N+δ)!+(N−1+δ)(N−1+δ)!+···+(1+δ)(1+δ)!

>

(
1 +

1

N2

)(N+1+δ)!( N∏
n=1

ann

)( N∏
n=1

an

)δ

. �

Proof. (of Theorem 2)

Assume that the number x is a positive rational number. Then there exists

(p, q) ∈ Z+ × Z+ such that x = p
q . So for each (P,Q) ∈ Z+ × Z+ the number
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Q )
∣∣ = ∣∣qQ(pq − P

Q

)∣∣ = |pQ− Pq| is an integer. To prove our theorem it

is enough to find (P,Q) ∈ Z+ × Z+ such that

0 < H =

∣∣∣∣qQ(x− P

Q

)∣∣∣∣ < 1. (12)

Let N be a sufficiently large positive integer. Set QN =
∏N

m=1

∏N−m+1
n=1 an,m and

PN =
(∏N

m=1

∏N−m+1
n=1 an,m

)∏N
m=1

(
1 +

∑N−m+1
n=1

bn,m

an,m

)
. Then we have

0 < HN =

∣∣∣∣qQN

(
x− PN

QN

)∣∣∣∣
=

∣∣∣∣q( N∏
m=1

N−m+1∏
n=1

an,m

)( ∞∏
m=1

(
1 +

∞∑
n=1

bn,m
an,m

)
−

N∏
m=1

(
1 +

N−m+1∑
n=1

bn,m
an,m

))∣∣∣∣
= qPN

((
N∏

m=1

(
1 +

∑∞
n=N−m+2

bn,m

an,m

1 +
∑N−m+1

n=1
bn,m

an,m

))( ∞∏
m=N+1

(
1 +

∞∑
n=1

bn,m
an,m

))
− 1

)
.

From this and the fact that x ≥ PN

QN
we obtain that

HN ≤ qQNx

((
N∏

m=1

(
1 +

∑∞
n=N−m+2

bn,m

an,m

1 +
∑N−m+1

n=1
bn,m

an,m

))
( ∞∏

m=N+1

(
1 +

∞∑
n=1

bn,m
an,m

))
− 1

)
. (13)

The facts that N is sufficiently large and that the series
∑∞

m=1

∑∞
n=1

bn,m

an,m
con-

verges absolutely imply that

N∑
m=1

∞∑
n=N−m+2

bn,m
an,m

+
∞∑

m=N+1

∞∑
n=1

bn,m
an,m

≤ 1. (14)

From (13) and (14) we obtain that

HN ≤ qQNx

((
N∏

m=1

(
1 +

∑∞
n=N−m+2

bn,m

an,m

1 +
∑N−m+1

n=1
bn,m

an,m

))( ∞∏
m=N+1

(
1 +

∞∑
n=1

bn,m
an,m

))
− 1

)

= qQNx

(
e
ln

((∏N
m=1

(
1+

∑∞
n=N−m+2

bn,m
an,m

1+
∑N−m+1

n=1
bn,m
an,m

))(∏∞
m=N+1

(
1+

∑∞
n=1

bn,m
an,m

)))
− 1

)
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= qQNx

(
e

∑N
m=1 ln

(
1+

∑∞
n=N−m+2

bn,m
an,m

1+
∑N−m+1

n=1
bn,m
an,m

)
+
∑∞

m=N+1 ln
(
1+

∑∞
n=1

bn,m
an,m

)
− 1

)

≤ qQNx
(
e
∑N

m=1

∑∞
n=N−m+2

bn,m
an,m

+
∑∞

m=N+1

∑∞
n=1

bn,m
an,m − 1

)
This and (14) imply that there exists positive real number K which does not

depend on N and such that

HN ≤ KqQNx

( N∑
m=1

∞∑
n=N−m+2

bn,m
an,m

+

∞∑
m=N+1

∞∑
n=1

bn,m
an,m

)

= KqQNx

∞∑
n=N+1

n∑
j=1

bn−j+1,j

an−j+1,j
.

From this, (3), (4) and the definition of QN we obtain that

HN ≤ KqQNx
∞∑

n=N+1

n∑
j=1

bn−j+1,j

an−j+1,j
≤ Kqx

N∏
m=1

N−m+1∏
n=1

an,m

∞∑
n=N+1

a
1

log3+ε log an,1
−1

n,1

≤ Kqx

N∏
n=1

a
1

log3+ε log an,1
+n

n,1

∞∑
n=N+1

a
1

log3+ε log an,1
−1

n,1 . (15)

Now the proof falls into several cases.

1. Let us assume that (6) holds for every sufficiently large n and there is a

real number δ with 0 < δ < 1 and such that

lim
n→∞

sup a
1

(n+δ)!

n,1 = ∞. (16)

This and Lemma 3 imply that there exist infinitely many N such that

aN+1,1 >

(
1 +

1

N2

)(N+1+δ)!( N∏
n=1

ann,1

)( N∏
n=1

an,1

)δ

.

From this, Lemma 2, (15) and Stirling factorial formula we obtain that for infin-

itely many sufficiently large N

0 < HN < Kqx

N∏
n=1

a
1

log3+ε log an,1
+n

n,1

∞∑
n=N+1

a
1

log3+ε log an,1
−1

n,1
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≤ Kqx

( N∏
n=1

a
1

log3+ε log an,1
+n

n,1

)
a

1

log
3+ ε

2 log aN+1,1

−1

N+1,1

≤ Kqx

( N∏
n=1

a
1

log3+ε log an,1
+n

n,1

)
a

1

log
3+ ε

2 log

(
(1+ 1

N2 )
(N+1+δ)!

(∏N
n=1 an

n,1)(
∏N

n=1 an,1)
δ
)−1

N+1,1

≤
( N∏

n=1

a
1

log3+ε log an,1
+n

n,1

)
a

1

N
3+ ε

2
−1

N+1,1

≤
( N∏

n=1

a
1

log3+ε log an,1
+n

n,1

)((
1 +

1

N2

)(N+1+δ)!
( N∏

n=1

ann,1

)( N∏
n=1

an,1

)δ) 1

N
3+ ε

2
−1

=

( N∏
n=1

a
1

log3+ε log an,1
+ n+δ

N
3+ ε

2
−δ

n,1

)((
1 +

1

N2

)(N+1+δ)!
) 1

N
3+ ε

2
−1

≤
N∏

n=1

a
− δ

2
n,1 < 1.

So (12) holds when we set P = PN , Q = QN , and H = HN .

2. Let us assume that (6) holds for every sufficiently large n and there is not

a real number δ with 1 > δ > 0 and such that (16) holds. From this we see that

for every δ > 0

an,1 < 2(n+δ)! (17)

holds for every sufficiently large n. Let δ be sufficiently small. Lemma 3 and (1)

imply that for infinitely many N

aN+1,1 > (1 +
1

N2
)(N+1)!

( N∏
n=1

ann,1

)
.

This, Lemma 2 and (15) imply that for infinitely many N

0 < HN ≤ Kqx
N∏

n=1

a
1

log3+ε log an,1
+n

n,1

∞∑
n=N+1

a
1

log3+ε log an,1
−1

n,1

≤ Kqx

( N∏
n=1

a
1

log3+ε log an,1
+n

n,1

)
a

1

log
3+ ε

2 log aN+1,1

−1

N+1,1

≤
( N∏

n=1

a
1

log3+ε log an,1
+n

n,1

)
a

1

N
3+ ε

2
−1

N+1,1

≤
( N∏

n=1

a
1

log3+ε log an,1
+n

n,1

)((
1 +

1

N2

)(N+1)!
( N∏

n=1

ann,1

)) 1

N
3+ ε

2
−1

≤
( N∏

n=1

a
1

log3+ε log an,1
+ n

N
3+ ε

2

n,1

)((
1 +

1

N2

)(N+1)!
) 1

N
3+ ε

2
−1

.
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From this, the fact thatN is sufficiently large and (17) we obtain that for infinitely

many N

0 < HN ≤
( N∏

n=1

a
1

log3+ε log an,1
+ n

N
3+ ε

2

n,1

)((
1 +

1

N2

)(N+1)!
) 1

N
3+ ε

2
−1

≤
( N∏

n=1

2
(n+δ)!

(
1

log3+ε log 2(n+δ)!
+ n

N
3+ ε

2

))((
1 +

1

N2

)(N+1)!
) 2

N
3+ ε

2
−1

< 1.

So (12) holds when we set P = PN , Q = QN , and H = HN .

3. Now let us assume that for infinitely many n

an,1 ≤ 2n (18)

and there is a real number δ with 0 < δ < 1 such that (16) holds. Let A be a

sufficiently large positive integer and δ sufficiently small. From (16) we see that

there exists n such that

a
1

(n+δ)!

n,1 > A. (19)

Let k be the least positive integer satisfying (19) and s be the greatest positive

integer less than k such that (18) holds. So

ak,1 > A(k+δ)! = 2(log2 A)(k+δ)!. (20)

Then there is a positive integer n such that

a
1

(n+δ)!

n,1 > 2. (21)

Let t be the least positive integer greater than s such that (21) holds. It follows

that for every r = s, s+ 1, . . . , t− 1

ar,1 < 2(r+δ)! (22)

and

at,1 > 2(t+δ)!. (23)

Let us note that k, s and t depend on A and if A tends to infinity then also k, s

and t tend to infinity. From (18), (22) and the fact that the sequence {an,1}∞n=1

is non-decreasing we obtain that

t−1∏
n=1

a
1

log3+ε log an,1
+n

n,1 =

( s∏
n=1

a
1

log3+ε log an,1
+n

n,1

)( t−1∏
n=s+1

a
1

log3+ε log an,1
+n

n,1

)
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≤
( s∏

n=1

2
s
(

1

log3+ε log 2s
+s
))( t−1∏

n=s+1

a
1

log3+ε log an,1
+n

n,1

)

≤ 2s
3

( t−1∏
n=s+1

a
1

log3+ε log an,1
+n

n,1

)
≤ 2s

3

( t−1∏
n=s+1

2
(n+δ)!

(
1

log3+ε log 2(n+δ)!
+n
))

≤ 2(t+δ)!− δ
2 (t−1+δ)!. (24)

Lemma 1, Lemma 2 and (23) imply

∞∑
n=t

a
1

log3+ε log an,1
−1

n,1 =

k−1∑
n=t

a
1

log3+ε log an,1
−1

n,1 +

∞∑
n=k

a
1

log3+ε log an,1
−1

n,1

≤ a

1

log
3+ ε

2 log at,1

−1

t,1 + a
− ε

2(1+ε)

k,1 ≤ 2
(t+δ)!

(
1

log
3+ ε

2 log 2(t+δ)!
−1

)
+ a

− ε
2(1+ε)

k,1

≤ 2(t−2+δ)!−(t+δ)! + a
− ε

2(1+ε)

k,1 .

From this, (15), (20) and (24) we obtain

0 < Ht−1 ≤ Kqx
t−1∏
n=1

a
1

log3+ε log an,1
+n

n,1

∞∑
n=t

a
1

log3+ε log an,1
−1

n,1

≤ Kqx2(t+δ)!− δ
2 (t−1+δ)!

(
2(t−2+δ)!−(t+δ)! + a

− ε
2(1+ε)

k,1

)
≤ Kqx2(t+δ)!− δ

2 (t−1+δ)!
(
2(t−2+δ)!−(t+δ)! + 2−

ε
2(1+ε)

(log2 A)(k+δ)!
)

= Kqx
(
2(1−

δ
2 (t−1+δ))(t−2+δ)! + 2−

ε
2(1+ε)

(log2 A)(k+δ)!+(t+δ)!− δ
2 (t−1+δ)!

)
< 1

when we take sufficiently large t and A. So (12) holds when we set P = Pt−1,

Q = Qt−1, and H = Ht−1.

4. Finally let us assume that for infinitely many n inequality (18) holds and

there is no real number δ with 1 > δ > 0 and such that (16) holds. This implies

that for every δ > 0 and sufficiently large n inequality (17) holds. Let δ be

sufficiently small and A sufficiently large. From (1) we obtain

a
1
n!
n,1 > A (25)

for infinitely many n. Let k be the least positive integer satisfying (25). Then

ak,1 > Ak! = 2(log2 A)k!. (26)
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Let s be the greatest positive integer less than k such that (18) holds. From (1)

and Lemma 3 we obtain that (10) with δ = 0 holds for infinitely many N . Let t

be the least positive integer greater than s satisfying

a
1
t!
t,1 >

(
1 +

1

t2

)
max

j=s,...,t−1
a

1
j!

j,1 (27)

and

a
1
r!
r,1 ≤

(
1 +

1

r2

)
max

j=s,...,r−1
a

1
j!

j,1 (28)

for every r = s + 1, . . . , t − 1. Inequality (27) and the fact that ar,1 ≤ 2s for all

r = 1, 2, . . . , s yield

at,1 >
((

1 +
1

t2

)
max

j=s,...,t−1
a

1
j!

j,1

)t!
=
(
1 +

1

t2

)t!(
max

j=s,...,t−1
a

1
j!

j,1

)t!
≥
(
1 +

1

t2

)t!(
max

j=s,...,t−1
a

1
j!

j,1

)(t−1)!(t−1)+(t−2)!(t−2)+···+(s+1)!(s+1)

2s!

≥
(
1 +

1

t2

)t!(t−1∏
r=1

arr,1

)
2s!−s3 ≥

(
1 +

1

t2

)t!(t−1∏
r=1

arr,1

)
. (29)

From (28) we obtain

a
1
r!
r,1 ≤

(
1 +

1

r2

)
max

j=s,...,r−1
a

1
j!

j,1 ≤
(
1 +

1

r2

)(
1 +

1

(r − 1)2

)
max

j=s,...,r−2
a

1
j!

j,1

≤ · · · ≤
r∏

j=s+1

(
1 +

1

j2

)
a

1
s!
s,1 ≤ D,

where D < 2
∏∞

j=1

(
1 + 1

j2

)
is a positive real constant which does not depend on

A and k. It follows that

ar,1 ≤ Dr! = 2(log2 D)r! (30)

for every r = s+1, . . . , t− 1. From this together with as,1 < 2s and the fact that

the sequence {an,1}∞n=1 is nondecreasing, we obtain

t−1∏
r=1

a
1

log3+ε log ar,1
+r

r,1 =

( s∏
r=1

a
1

log3+ε log ar,1
+r

r,1

)( t−1∏
r=s+1

a
1

log3+ε log ar,1
+r

r,1

)

≤
( s∏

r=1

22s
2

)( t−1∏
r=s+1

2(log2 D)(r!r+(r−3)!)

)
≤2s

3

2(log2 D)(t!+(t−3)!−s!) ≤ 2(log2 D)(t!+(t−3)!). (31)
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Similarly
t−1∏
r=1

a
1

log3+ε log ar,1

r,1 ≤ 2(log2 D)(t−3)! (32)

and
t−1∏
r=1

arr,1 ≤ 2(log2 D)t!. (33)

Note that (26), (30) and the definitions of k, t and s yield that s < t ≤ k and if

A tends to infinity then also k, t and s tend to infinity. Lemma 1, Lemma 2, (29)

and (33) imply

∞∑
n=t

a
1

log3+ε log an,1
−1

n,1 =

k−1∑
n=t

a
1

log3+ε log an,1
−1

n,1 +

∞∑
n=k

a
1

log3+ε log an,1
−1

n,1

≤ a

1

log
3+ ε

2 log at,1

−1

t,1 + a
− ε

2(1+ε)

k,1

≤
((

1 +
1

t2

)t!(t−1∏
r=1

arr,1

)) 1

log
3+ ε

2 log

((
1+ 1

t2

)t!(∏t−1
r=1 ar

r,1

))−1

+ a
− ε

2(1+ε)

k,1

≤
((

1 +
1

t2

)t!(t−1∏
r=1

arr,1

)) 1

t
3+ ε

2
−1

+ a
− ε

2(1+ε)

k,1

=
(
1 +

1

t2

)t!( 1

t
3+ ε

2
−1
)(t−1∏

r=1

arr,1

) 1

t
3+ ε

2

(t−1∏
r=1

arr,1

)−1

+ a
− ε

2(1+ε)

k,1

≤
(
1 +

1

t2

)t!( 1

t
3+ ε

2
−1
)(
2(log2 D)t!

) 1

t
3+ ε

2

(t−1∏
r=1

arr,1

)−1

+ a
− ε

2(1+ε)

k,1

≤ 2−
1
2 (t−2)!

(t−1∏
r=1

arr,1

)−1

+ a
− ε

2(1+ε)

k,1 .

From this, (15), (31) and (32) we obtain

0 < Ht−1 ≤ Kqx

t−1∏
n=1

a
1

log3+ε log an,1
+n

n,1

∞∑
n=t

a
1

log3+ε log an,1
−1

n,1

≤ Kqx

t−1∏
n=1

a
1

log3+ε log an,1
+n

n,1

(
2−

1
2 (t−2)!

(t−1∏
r=1

arr,1

)−1

+ a
− ε

2(1+ε)

k,1

)

= Kqx

(( t−1∏
n=1

a
1

log3+ε log an,1

n,1

)
2−

1
2 (t−2)! +

t−1∏
n=1

a
1

log3+ε log an,1
+n

n,1 a
− ε

2(1+ε)

k,1

)
≤ Kqx

(
2(log2 D)(t−3)!2−

1
2 (t−2)! + 2(log2 D)(t!+(t−3)!)2−

ε
2(1+ε)

(log2 A)k!) < 1.
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So (12) holds when we set P = Pt−1, Q = Qt−1, and H = Ht−1. �
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[5] P. Erdős, Some problems and results on the irrationality of the sum of infinite series, J.

Math. Sci. 10 (1975), 1–7.
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