Title: Arithmetic progressions and Pellian equations
Author(s): Julián Aguirre, Andrej Dujella and Juan Carlos Peral
We consider arithmetic progressions on Pellian equations $x^{2}-d y^{2}=m$, i.e. integral solutions such that the y-coordinates are in arithmetic progression. We construct explicit infinite families of d, m for which there exists a five-term arithmetic progression in the y-coordinate, and we prove the existence of infinitely many pairs d, m parametrized by points of an elliptic curve of positive rank for which the corresponding Pellian equations have solutions whose y-component form a six-term arithmetic progression. Then we exhibit many six-term progressions whose elements are the y-components of solutions for an equation of the form $x^{2}-d y^{2}=m$ with small coefficients d, m and also several particular seven-term examples. Finally we show a procedure for searching five-term arithmetic progressions for which there exist a couple of pairs $\left(d_{1}, m_{1}\right)$ and $\left(d_{2}, m_{2}\right)$ for which the progression is a solution of the associated Pellian equations. These results extend and complement recent results of Dujella, Pethő and Tadić, and Pethő and Ziegler.

Address:

Julián Aguirre
Departamento de Matemáticas
Universidad del País Vasco
Aptdo. 644
48080 Bilbao
Spain

Address:

Andrej Dujella
Department of Mathematics
University of Zagreb
Bijenička cesta 30
10000 Zagreb
Croatia

Address:

Juan Carlos Peral
Departamento de Matemáticas
Universidad del País Vasco
Aptdo. 644
48080 Bilbao
Spain

