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Arithmetic progressions and Pellian equations

By JULIÁN AGUIRRE (Bilbao), ANDREJ DUJELLA (Zagreb)
and JUAN CARLOS PERAL (Bilbao)

Abstract. We consider arithmetic progressions on Pellian equations x2−d y2 = m,

i.e. integral solutions such that the y-coordinates are in arithmetic progression. We

construct explicit infinite families of d,m for which there exists a five-term arithmetic

progression in the y-coordinate, and we prove the existence of infinitely many pairs d, m

parametrized by points of an elliptic curve of positive rank for which the corresponding

Pellian equations have solutions whose y-component form a six-term arithmetic progres-

sion. Then we exhibit many six-term progressions whose elements are the y-components

of solutions for an equation of the form x2 − d y2 = m with small coefficients d, m and

also several particular seven-term examples. Finally we show a procedure for search-

ing five-term arithmetic progressions for which there exist a couple of pairs (d1,m1)

and (d2,m2) for which the progression is a solution of the associated Pellian equations.

These results extend and complement recent results of Dujella, Pethő and Tadić,

and Pethő and Ziegler.

1. Introduction

The existence of arithmetic progressions in sets of relevance in the theory

of numbers is a classical problem studied by many authors. Probably the most

famous among them is the problem of primes in arithmetic progressions, solved

by B. Green and T. Tao in [GT]. Bremner considered in [Br1] the existence of
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arithmetic progressions on elliptic curves and constructed elliptic curves with 8 ra-

tional points (x, y) whose x-components are in arithmetic progression. Bremner,

Silverman and Tzanakis [BST] showed that the elliptic curve y2 = x(x2 − n2)

of rank 1 does not have non-trivial integral arithmetic progressions. Campbell

[Ca] found an infinite family of elliptic curves with 9 integral points in arithmetic

progression; later on Ulas [U1] improved this result to an infinite family with

arithmetic progressions of 12 points. Finally MacLeod [ML] got new families

of 12 terms and some examples of progressions with 14 terms. Further examples

of similar problems and results can be found in [Al], [Br2], [U2].

The case of Pellian equations x2 − d y2 = m has been studied in the the

papers of Dujella, Pethő and Tadić [DPT] and Pethő and Ziegler [PZ].

Dujella, Pethő andTadić [DPT] have shown that for any four-term arithmetic

progression, except {0, 1, 2, 3} and {−3,−2,−1, 0}, there exist infinitely many

pairs d, m, with d non-square and gcd(d,m) square-free, such that the terms of

the given progression are y-components of solutions of the equations

x2 − d y2 = m.

They also exhibit several examples of six-term progressions and an example of

a seven-term progression. Pethő and Ziegler [PZ] have shown that in the

case of five-term arithmetic progressions (with different absolute values) there

exist at most a finite number of pairs d, m, with d non-square and gcd(d,m)

square-free, such that the elements of the given progression are y-components of

solutions. Recently, Bérczes and Ziegler [BZ] have considered similar problems

for geometric progressions on Pellian equations.

In this note we look for arithmetic progressions of length N whose terms are

the y coordinates of solutions of Pellian equations, that is, we look for integers

m, d, a, ∆ > 0 and N > 0 as large as possible such that

d(a+ j∆)2 +m = �, 0 ≤ j ≤ N, (1)

where � denotes any perfect square; a is the first term of the arithmetic progres-

sion and ∆ the difference. Furthermore, we require that gcd(a,∆) = 1, gcd(d,m)

is square-free, and |a + i∆| ≠ |a + j∆| if i ̸= j. The reason to study only the

y-component is that a three term arithmetic progression can appear only a finite

number of times as the x-component of a Pellian equation (see [PZ]).

We construct, by two different methods, explicit infinite families of pairs d,

m for which there exist five-term arithmetic progressions. We also prove the

existence of infinitely many pairs d, m parametrized by points of an elliptic curve
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of rank 3 for which the corresponding Pellian equation has a six-term solution. We

also show the existence of infinitely many 5-term arithmetic progressions for which

there exist a couple of essentially different pairs (d1,m1) and (d2,m2) for which

the members of the progression are solutions of the associated Pellian equations.

Finally we give examples of six and seven term progressions, and of five term

progressions which are solutions of two different equations.

2. The first method: direct search

We look for solutions imposing directly that they must satisfy equation (1).

To make things somewhat simpler, we divide by ∆2, let α = a/∆, and look for

solutions in Q with ∆ = 1. We begin with 3-term solutions:

d(α+ j)2 +m = x2
j , j = 0, 1, 2.

Solving for m, d and α we get

d =
x2
0 − 2x2

1 + x2
2

2
,

m =
−x4

0 + 8x2
0 x

2
1 − 16x4

1 + 2x2
0 x

2
2 + 8x2

1 x
2
2 − x4

2

8(x2
0 − 2x2

1 + x2
2)

,

α =
−3x2

0 + 4x2
1 − x2

2

2(x2
0 − 2x2

1 + x2
2)

. (2)

2.1. Four-term progressions. With the above values ofm, d and α, we impose

that α+ 3 is also a solution in the following way:

d(α+ 3)2 +m = x2
0 − 3x2

1 + 3x2
2 = (x0 + x3)

2

(we denote the fourth square by (x0 + x3)
2, and not x2

3, to simplify further nota-

tion). From here we get

x0 =
−3x2

1 + 3x2
2 − x2

3

2x3
.

Substituting the above value of x0 in (2) we obtain

d = 2(9x4
2 − 18x2

2 x
2
1 + 9x4

1 − 2x2
2 x

2
3 − 2x2

1 x
2
3 + x4

3),

m = −2(3x2 − 3x1 − x3)(x2 − x1 − x3)(x2 + x1 − x3)(3x2 + 3x1 − x3)

× (3x2 − 3x1 + x3)(x2 − x1 + x3)(x2 + x1 + x3)(3x2 + 3x1 + x3)

× (9x4
2 − 18x2

2 x
2
1 + 9x4

1 − 2x2
2 x

2
3 − 2x2

1 x
2
3 + x4

3),

α = −27x4
2 + 54x2

2 x
2
1 − 27x4

1 + 14x2
2 x

2
3 − 2x2

1 x
2
3 − 3x4

3. (3)
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2.2. Five-term progressions. Next we force α+ 4 as another solution, which

gives the quartic equation

27x4
2 − 54x2

1 x
2
2 + 27x4

1 + 6x2
2 x

2
3 − 14x2

1 x
2
3 + 3x4

3 = �. (4)

This admits the parametric solution
x1 = 24u v,

x2 = −23u2 − v2,

x3 = 23(v − u)(v + u).

The corresponding values for d, m, a and ∆ once simplified and taking off common

factors are:

d = 279841u4 − 153410u2 v2 + 34849 v4,

m = 576(23u− 13 v)(23u− 11 v)(23u− 5 v)v2(23u+ 5 v)

× (23u+ 11 v)(23u+ 13 v)(279841u4 − 153410u2 v2 + 34849 v4),

a = −279841u4 + 89930u2 v2 − 52009 v4,

∆ = 279841u4 − 153410u2 v2 + 34849 v4. (5)

An alternative way to parametrize the quartic equation (4) is to take x2 =

x1 + g x3. Then the left-hand side of (4) becomes

x2
3

(
−8x2

1 + 108 g2 x2
1 + (12 g x1 + 108 g3 x1)x3 + (3 + 6 g2 + 27 g4)x2

3

)
.

It is enough to choose particular values of g for which 3+ 6 g2 +27 g4 is a perfect

square and then parametrize the inner conic in x3. This can be achieved because

the quartic h2 = 3 + 6 g2 + 27 g4 is equivalent to the elliptic curve y2 = x3 +

60x2 +864x whose rank is equal to 1. Moreover, for any g such that −8+108 g2

is a square, we can parametrize the inner conic in x1. This is possible because

−8 + 108 g2 = h2 has a particular solution, for instance g = 1, h = 10.

2.3. Six-term progressions. Finally, the condition that

d(a+ 5∆)2 +m = �,

where m, d, a and ∆ are given in (5), yields the quartic equation

279841u4 − 166106u2 v2 + 26269 v4 = �.

The corresponding curve is birationally equivalent to the elliptic curve of rank 3

y2 = x3 + 157x2 − 405x,

giving infinitely many values of the parameters u, v, for which the Pellian equation

defined by the parameters in (5) has a six-term solution.
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3. The second method: adjusting polynomials

It is based on the fact that for any monic polynomial P2n ∈ Q[z] of degree 2n

there exist a monic polynomial Qn ∈ Q[z] of degree n and Rn−1 ∈ Q[z] of degree

n− 1 such that P2n = Q2
n −Rn−1. If z ∈ Q is a root of P2n, then Rn−1(z) = �.

This idea has been used in [F], [ACP] to construct elliptic curves of high rank.

3.1. Adjusting with polynomials of degree 6. Consider the polynomial of

degree 6

P (z) = (z − a− u∆)
4∏

j=0

(z − a− j∆),

where u is a free parameter. Then

P (z) = (q(z))2 −m−Az − d z2,

where q(x) is a degree 3 polynomial and

m = 2−8∆4
(
256 a2 + 256 a∆u+ 320 a2 u2 + 1600 a∆u2 + 1600∆2 u2

− 160a2 u3 − 800 a∆u3 − 800∆2 u3 + 20 a2 u4 + 120 a∆u4

+ 180∆2 u4 − 4 a∆u5 − 20∆2 u5 +∆2 u6
)
,

A = 2−8∆4
(
−512 a− 256∆u− 640 a u2 − 1600∆u2 + 320 a u3

+ 800∆u3 − 40 a u4 − 120∆u4 + 4∆u5
)
,

d = 2−8∆4
(
256 + 320u2 − 160u3 + 20u4

)
.

Now we make A = 0 with

∆ =
2 a(64 + 80u2 − 40u3 + 5u4)

u(−64− 400u+ 200u2 − 30u3 + u4)
.

After simplifying we get the following uniparametric family of five-term solutions

d = 64 + 80u2 − 40u3 + 5u4,

m = 4(−8 + u)(−6 + u)(−4 + u)2(−2 + u)2u2(2 + u)(4 + u)

× (64 + 80u2 − 40u3 + 5u4),

a = u(−64− 400u+ 200u2 − 30u3 + u4),

∆ = 2(64 + 80u2 − 40u3 + 5u4). (6)
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3.2. Adjusting with polynomials of degree 4. Given 0 ≤ k ≤ 4, we consider

the polynomial of degree 4 defined by

Pk(z) =
∏

0≤j≤4
j ̸=k

(z − a− j∆).

It can be written as

Pk(z) =
(
qk(z)

)2 −mk − dk z
2,

where qk is a monic polynomial of degree 2 and dk, mk are rational functions

of a and ∆. The equation mk + dk y
2 = � has {a + j∆ : 0 ≤ j ≤ 4, j ̸= k} as

solutions. In order to complete the five-term progression we have to impose the

missing term, y = a+k∆, as a new solution. This produces a quadratic equation,

whose solutions can be parametrized and give a family of Pellian equations with

five-term solutions. When k = 0, k = 2 or k = 4, these families turn out to be

trivial.

When k = 1 we have

m1 =
∆3(15 a3 + 166 a2∆+ 552 a∆2 + 576∆3)

(4 a+ 9∆)2
,

d1 = − 15∆3

4(4 a+ 9∆)
.

Then m1 + d1(a+∆)2 = � if

409 a2 + 1878 a∆+ 2169∆2 = �.

Parametrizing this conic and eliminating denominators and superfluous squares

we arrive to the following family

d1(U,W ) = −15(3U −W )(27U +W )(153U2 + 32U W −W 2),

m1(U,W ) = 32(18U −W )(33U −W )(9U −W )(7U +W )(12U +W )

× (9U + 2W )(153U2 + 32U W −W 2),

a1(U,W ) = 2(162U2 + 39U W −W 2),

∆1(U,W ) = −153U2 − 32U W +W 2, (7)

satisfying d1 (a1 + j∆1)
2 +m1 = � for 0 ≤ j ≤ 4.

The condition d1 (a1 + 5∆1)
2 +m1 = � translates into the quartic

� = −699111U4 + 242028U3 W + 89046U2 W 2 − 468U W 3 − 71W 4. (8)
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Since it has a rational point (e.g. with U/W = 1/3), it is birationally equivalent

to the elliptic curve y2 = x3 + 12x2 − 180x whose rank is 2, so again we find

infinitely many pairs (d1,m1) having six-term solutions for the corresponding

Pellian equation x2 − d1 y
2 = m1.

A similar construction can be made for k = 3. In this case we get the

following family:

d3(U,W ) = −(3U −W )(U −W )(85U2 − 36U W −W 2),

m3(U,W ) = 32U(11U − 5W )(5U − 3W )(7U −W )(4U −W )(2U −W )

× (85U2 − 36U W −W 2),

a3(U,W ) = 2(80U2 − 39U W +W 2),

∆3(U,W ) = −85U2 + 36U W +W 2. (9)

The condition d3 (a3 + 5∆3)
2 +m3 = � gives the quartic

� = −1319U4 + 2396U3 W − 930U2 W 2 − 52U W 3 + 49W 4. (10)

Since it has a rational point (e.g. with U = 0), it is birationally equivalent to the

elliptic curve y2 = x3 + 27x2 − 360x of rank 3. Thus, as in the preceding case,

infinitely many Pellian equations with six-term progressions as solutions can be

derived from it.

4. Five-term progressions for several equations

It is shown in [PZ] that for each five-term progression (with different absolute

values) there are at most finitely many d,m ∈ Z such that d is not a square,

gcd(d,m) is square-free and such that these five numbers are y-components of

solutions to x2 − d y2 = m. In this section we use the two five-term families

given by (7) and (9) in order to get examples of five-term arithmetic progressions

having at least two essentially different pairs (d,m) such that these are solutions

of the corresponding Pellian equations.

Based on the expressions of ∆1 and ∆3, we look for values of the parameters

u, v, v′, w such that ∆1(u+ 2 v, w+ 16u+ 39 v) = ∆3(u− 2 v′, w− 18u− 39 v′).

We have

∆1(u+ 2 v, w + 16u+ 39 v) = −409u2 − 1636u v − 1587 v2 + 14 v w + w2,

∆3(u− 2 v′, w − 18u− 39 v′) = −409u2 + 1636u v′ + 3989 v′2 − 150 v′ w + w2.
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Thus we get

w =
1636(v + v′)u+ (1587 v2 + 3989 v′2)

2(7 v + 75 v′)
.

With this value of w we let v′=λv, λ∈Q, and impose a1(9u+18v, w+16u+39v)=

a3(u−2v′, w−18u−39v′), which is equivalent to the second degree equation in v

− 904904λ2 u2 − 4437872λu2 + 1793880u2 + 2030908λ3 u v

− 11116828λ2 u v − 9004588λu v + 4069164u v + 2400871λ4 v2

− 2522100λ3 v2 − 11857862λ2 v2 − 4554900λ v2 + 2306007 v2 = 0.

The discriminant of this equation with respect to v is given by

(75λ+ 7)2(1111λ2 − 2402λ+ 1111)(128161λ2 + 136506λ+ 12969)u2.

So for a rational solution to exist, this expression must be a square, which happens

when

(1111λ2 − 2402λ+ 1111)(128161λ2 + 136506λ+ 12969) = �.

But since the polynomial on the left hand side assumes a square value for λ =

−1, this quartic curve is birationally equivalent to the elliptic curve y2 = x3 −
34682x2 + 293420281x whose rank is 2, so there are infinitely many solutions

λ ∈ Q for which the Pellian equations corresponding to the pairs (d1,m1) and

(d3,m3) admit a common five-term progression as solutions.

In some cases the values of (d1,m1) and (d3,m3) are essentially the same.

In fact, this happens exactly when λ is a rational zero of the resultant of the

polynomials a1 − a3 and d1 m3 − d3 m1, and these zeros are −1, −7/75, 27/41

and 699/457. Therefore, there are infinitely many λ ∈ Q which produce different

pairs (d1,m1) and (d3,m3). We show next that this construction produces in-

finitely many (essentially) different pairs (a,∆) which give five-term progressions

satisfying Pellian equations for two different pairs (d1,m1) and (d3,m3).

Let λ′ ∈ Q produce the pair (a′,∆′), and certain pairs (d1,m1) and (d3,m3).

We are interested in the question how many other rational λ can produce the

(essentially) identical pair (a′,∆′). Let z = a′/∆′ be given. Then we seek for

λ ∈ Q which satisfy the system a1 − a3 = 0 and a1 − z∆1 = 0. After eliminating

the denominators, we look at the resultant of the polynomials a1−a3 and a1−z∆1

(as polynomials in v). The condition that the resultant is equal to 0 gives a (non-

zero) polynomial of degree 8 in λ, the leading coefficient being

8642970851449 z2 + 34571883405796 z − 2625169872622968,
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so it has at most 8 rational solutions λ. Assume that our procedure gives only

finitely many different pairs (a,∆). Then infinitely many λ produce the (essen-

tially) identical pair (a,∆). However, this contradicts what we proved above that

at most 8 λ can produce the same pair (a,∆). For instance, take z = −36/41.

Then the resultant is equal to 0 for λ = 11/57, 57/11, 297/791, −755/143. It

can be shown that these four numbers correspond to four 2-torsion points on the

elliptic curve induced by the condition a1 − a3 = 0. The smallest values (λ, u, v)

for which the pairs (d1,m1) and (d3,m3) are different are given in Table 1.

λ u v

11/57 -46 57

57/11 46 11

319/157 -2134 785

177/95 -36777 26030

-9669/2257 1989770 760609

4073/1095 -4875791 1158510

Table 1. Small values of (λ, u, v)

5. Examples

In this section we present some of the results found in our search for arith-

metic progressions in solutions of Pellian equations. The search was carried out

by looking for solutions of the quartics (8) and (10), and then computing the

parameters of the Pellian equations and of the corresponding arithmetic progres-

sions using the formulas given in (7) and (9). The computations made use of

mwrank [C], Mathematicar [M] and PARI [P].

5.1. Six-term progressions. Table 2 shows some examples of six-term pro-

gressions having small coefficients. We have chosen |d| ≤ 5000.
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d m a ∆

-3416 100096425 -164 61

-2526 65857566775 853 842

-1704 16643051425 -3065 71

-1245 375701326 -295 166

-1091 91408016700 -1913 2182

-1055 27120272256 -5058 211

-10 46046 -67 24

291 2533111350 -3559 1746

631 1115071650 -1335 1262

709 933540300 -3181 1418

795 14889206101 -5711 3392

1065 4548544 -118 71

1171 8967108150 -4525 2342

1731 3934187950 -1571 2308

2226 4296914050 61 424

2370 12731719 -271 158

2905 45752256 -97 83

3095 37309738466 -5689 3714

3865 10250944704 -802 773

4195 33151804686 -1297 1678

4249 3269059200 -1329 607

4249 -62546296725 -4273 9712

4299 14559494950 -4513 2866

Table 2. Six-term examples

5.2. Seven-term progressions. In [DPT] an example of a seven-term progres-

sion was shown. It is included in Table 3 jointly with another five examples that

we have found in our search.

5.3. A particular symmetric progression of six terms. Consider the 6-

term progression symmetric around the origin {−5,−3,−1, 1, 3, 5}, corresponding
to values a = −5, ∆ = 2, and let

d = −(u− 5 v)(u− v)v(u+ v),

m = (u− 3 v)(u− 2 v)(u+ 3 v)(u+ 7 v).
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d m a ∆

-1245 375701326 -461 166

37569 27833977600 -5956 1789

1115646 -747027030131525 -185275 53126

231235 5329956420362574 -294919 92494

505561 12382891041664000 -856524 216669

18529039 18265211513829127697850 -43776175 37058078

Table 3. Seven-term examples

A simple computation shows that d(a+j∆)2+m = � for 0 ≤ j ≤ 5. So there exist

infinitely many non-equivalent pairs (d,m) for which the corresponding Pellian

equation has the same six-term progression as solution. In order to get an extra

solution both in the left and in the right one has to impose that

u4 − 44u3 v + 222u2 v2 + 4u v3 − 119 v4 = �,

and this quartic is equivalent to the elliptic curve

y2 = x3 + 288x2 + 11520x

whose rank is 1. Thus, the 8-term progression {−7,−5,−3,−1, 1, 3, 5, 7} is a

solution of infinitely many Pellian equations. This gives an affirmative answer

to a question posed in Section 8 of [PZ]. The smallest two 8-term solutions

that appear in this way correspond to the values (d,m) = (−105, 5434) and

(d,m) = (570570, 4406791).

5.4. Five-term solutions for more than one equation. In [DPT] various

examples are shown each having a couple of pairs (d,m) of which they are a

solution. In Table 4 we show several additional examples, one of them having

three pairs (d,m). The first one and the two last ones were found by the procedure

of Section 4.
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a ∆ d m

-36 41 87945 160389376
984 1026025
-615 10506496

-97 134 1474 70385175
1005 6170164

-157 97 208065 848087296
81480 -111536711

-174 277 1008280 55523430369

-831 887286400

-453 218 -545 111945834
2289 59230600

-471 362 41811 1406035150
1810 143643591

-514 355 10153 -254454912
-242607 201349747456

-494932 209067 1367646625 18094425353599558656

-179887867255 44134212595620130210304

-180106988 106894461 198348195265985 3829671549427453787897212222976
-43046790856584695 2636877642611872714844692076611584

Table 4. Five-term solutions for more than one equation
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[PZ] A. Pethő and V. Ziegler, Arithmetic progressions on Pell equations, J. Number Theory

128 (2008), 1389–1409.

[Si] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer –
Verlag, New York, 1994.

[U1] M. Ulas, A note on arithmetic progressions on quartic elliptic curves, J. Integer Seq. 8
(2005), Article 05.3.1, 5 pp. (electronic).

[U2] M. Ulas, Rational points in arithmetic progressions on y2 = xn+k, Canad. Math. Bull.
55, no. 1 (2012), 193–207.
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