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§0. Introduction

In a previous paper [3], we have investigated a generalized metric space
Mn = (MT , gij(x, y)). Here let us consider the Finsler space F ∗n(g) =
(MT , F (x, y)) associated with Mn, where its Finsler metric is given by
F (x, y) :=

√
gijyiyj .

It is noticed that the metric tensor gij(x, y) used here is positively
homogeneous of degree 0 in y. Sometimes a generalized metric space
Mn = (MT , gij(x, y)) was considered under the supposition that the met-
ric gij is (a) p-homogeneous, (b) non-homogeneous and (c) irrespective of
homogeneity. On the other hand, H. Rund [9] showed, in his book: The
Hamilton-Jacobi theory in the calculus of variations, that the case (a) cor-
responds to Metric Differential Geometry and Relativistic Mechanics and
(b) to Geometrical Optics and Non-relativistic Mechanics. So, in the se-
quel, we shall call Mn, for (a) a generalized metric space ([3], [4], [5], [15]),
(b) a generalized Lagrange space ([7]) and (c) a generalized Finsler space
([1], [2], [6], [12], [13], [14]).

The geometry of a generalized metric space Mn is closely related to
that of F ∗n(g). However, its geometry is in contrast with that of (ordinary)
Finsler space Fn := (MT , F (x, y)). That is, there exist two characteristic
tensors Cij and P i

j . For a given metric tensor gij in Mn, the metric tensor
g∗ij of its associated Finsler space F ∗n(g) is related as

(0.1) g∗ij = gij + Cij , Cij := yh∂̇jgih ([3], (2.8)(b)),
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where the tensor Cij satisfies Cij = Ci
0
j and Cij = Cji ([3],(2.9)). Van-

ishing of the tensor Cij means that the Mn itself reduces to a Finsler
space.

To determine the non-linear connection N , we assume that geodesics
in Mn are coincident with those in F ∗n(g), that is,

(A0) 2Gi = N i
jy

j .

Therefore another characteristic tensor P i
k satisfies the following relations:

(0.2) N i
k = Gi

k − P i
k, P i

0 = 0, Cij/0 = 2g∗ihPh
j , ([3], (2.16)(f)),

where Gi
j is a unique non-linear connection of F ∗n(g) and N i

k is an arbitrary
non-linear connection in Mn. (0.2) shows that the arbitrary tensor P i

k has
disappeared in Finsler geometry. The fact that some differential equation
does not contain the tensor P i

j explicitly, implies that the geometrical
property described by this equation is free from any choice of the non-
linear connection.

However, examples of a generalized metric space are very few. Let us
consider the following metric in an Mn:

(0.3) gij(x, y) = aij(x)− α(x, y)hij(x, y), Cij = αhij (cf. [5]),

where the tensor aij(x) is a Riemannian metric. This metric defines a
generalized metric space Mn which is not a Finsler space and its associated
Finsler space is a Riemannian space (cf. §3).

It is well known that in a Finsler space F ∗n(g) we can define three
types of connection: [C∗], [R∗] and [B∗] (cf. §2) in a natural way. On
the other hand, in a space Mn([3]) we defined three types of connection:
[C], [R] and [B] (cf. §1). However, the connection [B] in Mn and the
connection [B∗] in F ∗n(g) are coincident. In a same underlying space MT ,
we can consider five connections: [C], [R], [B], [C∗] and [R∗] originating
from only one structure: the metric tensor gij(x, y).

One of the purposes of the present paper is to find the relations be-
tween [C] in a space Mn and [C∗] in a space F ∗n(g). In virtue of these
equations, the properties of Mn are investigated by means of well-known
theorems in a Finsler space F ∗n(g), which suggest some properties in Mn.
As we see, the tensor Cij holds a key to investigate the geometry of spaces
Mn. Especially, the most important fact is that the connection parame-
ters Fj

i
k of [C] and ∗Γj

i
k of [C∗] are coincident if and only if Cij/k = 0

(Theorem 2.4).
Roughly speaking, if a generalized metric space Mn itself is a Finsler-,

a Riemannian- or a g-Minkowski space, then its associated Finsler space
F ∗n(g) preserves this property. Our interest is in the inverse problem.
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§1 is the summary of results obtained in Mn. §2 is devoted to deriving
the relations between [C] and [C∗] in terms of the tensors in Mn. In §§3,
4, we investigate a generalized metric space whose associated Finsler space
is a Riemannian or a Minkowski space. We shall show that
[A] If an RMn space satisfies the condition Cij/k = 0, then the space Mn

is a g-Berwald space (Theorem 3.7).
[B] A necessary and sufficient condition for a space Mn to be a g-Minkow-
ski space is that the curvature tensors Kh

i
jk and Fh

i
jk vanish (Theorem

4.1).
[C] A necessary and sufficient condition for a space Mn to be an MMn

space is that the curvature tensors Hh
i
jk and Gh

i
jk vanish (Theorem 4.2).

[D] If an MMn space satisfies the condition Cij/k = 0, then the space is
a g-Minkowski space (Theorem 4.4).

We raise or lower the indices by means of gij only without comment.

§1. Preliminaries in Mn

The purpose of this section is to summarize the connections in Mn.

1.1. Assumptions on the metric tensor gij(x, y).

Let M be an n-dimensional manifold of class C∞ with local co-
ordinates (xi) and T (M) its tangent vector bundle with local coordi-
nates (xi, yi). Let us denote by MT a manifold of non-vanishing tan-
gent vectors: MT := T (M) − {0}. A generalized metric space is a pair
Mn = (MT , gij(x, y)), where the metric tensor gij satisfies the following
conditions:

(A1) gij(x, y) is positively homogeneous of degree 0 in y,
(A2) gijX

iXj is positive definite,
(A3) g∗ij := 1

2 ∂̇i∂̇jF
2 is non-degenerate, where F (x, y)=

√
gijyiyj

and ∂̇j := ∂/∂yj .
From conditions (A2) and (A3) a pair F ∗n(g) = (MT , F (x, y)) is a

Finsler space (called the associated Finsler space of Mn). In [3], we intro-
duced the following three types of connection:
[C] the metrical connection CΓ(N) : ωi

j = Fj
i
kdxk +Cj

i
kδyk; δyk = dyk +

Nk
hdxh such that δgij = dgij − ωh

i ghj − ωh
j gih = gij/kdxk + gij/(k)δy

k = 0,
where

gij/k := dkgij − Fi
h

kghj − Fj
h

kgih = 0, dk := ∂k −Nr
k ∂̇r,

gij/(k) := gij(k) − Ci
h

kghj − Cj
h

kgih = 0, gij(k) := ∂̇kgij ,
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and satisfies the following conditions:

(A4) (a) N i
k = Fj

i
kyj , (b) Fj

i
k = Fk

i
j , (c) Cj

i
k = Ck

i
j .

[R] the h-metrical connection RΓ(N) : ωi
j = Fj

i
kdxk so that gij/k = 0.

[B] the non-metrical connection BΓ(G) : ωi
j = Gj

i
kdxk; Gj

i
k := ∂̇kGi

j ,
where

Gi
j := ∂̇jG

i, 4Gi := g∗ih(yj∂j ∂̇hF 2 − ∂hF 2),

∂h = ∂/∂xh, g∗ihg∗hj = δi
j .

It is evident that [B] in Mn is coincident with [B∗] in F ∗n(g). However,
the general non-linear connection N i

j of [C] satisfies (A0) N i
jy

j = 2Gi

implicitly. So differentiating this equation, we have

(1.1) N i
j = Gi

j − P i
j , P i

j :=
1
2
(yh∂̇jN

i
h −N i

j), P i
0 := P i

jy
j = 0,

where the index 0 means the transvection with y.
The conditions (A1) and (A4)(c) give

(1.2)

(a) g∗ij = gij + Cij , Cij := yh∂̇jgih = Cji ([3],(2.8)),

(b) C0
i
k = Cj

i
0 = 0,

(c) C0
0
k =

1
2
ghj(k)y

hyj = 0 ([3], (2.3), (2.6)).

The connection parameters for CΓ(N) are given by

(1.3)
Fj

i
k =

1
2
gih(dkghj + djghk − dhgjk),

Cj
i
k =

1
2
gih(ghj(k) + ghk(j) − gjk(h)), Ci

0
j = Cij .

Then we have

(1.4)
(a) yj = gijy

i = g∗ijy
i, yi = g∗ihyh, yi

(j) = yi
/(j) = δi

j ,

(b) yi(j) = g∗ij , yi/(j) = gij , yi/j = 0.

Remark. The homogeneous condition (A1) implies that if there ex-
ists a coordinate system such that the metric gij is expressed by gij =
e2σ(x,y)aij(x) ([6],[14]), then the metric itself is Riemannian. In fact, be-
cause the scalar σ(x, y) must be p–homogeneous of degree 0 in y, the
relation Cij = Cji gives yiσ(j) = yjσ(i). This means σ(i) = 0.
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1.2. The curvature and torsion tensors.

For curvature and torsion forms, we defined in [3] as follows:

(1.5)

(a) Ωi
j := [dωi

j ] + [ωi
hωh

j ],

(b) Ω(i) := [δδyi] = [dδyi] + [ωi
hδyh] = Ωi

0,

(c) Ωi := [δdxi] = [ddxi] + [ωi
hdxh].

We shall denote

[C] CΓ(N) : Ωi
j = −1

2
Rj

i
kl[k, l]− Pj

i
kl[k, (l)]− 1

2
Sj

i
kl[(k), (l)],

Ω(i) = −1
2
Ri

kl[k, l]− P i
kl[k, (l)], Ωi = −Cj

i
k[j, (k)];

[R] RΓ(N) : Ωi
j = −1

2
Kj

i
kl[k, l]− Fj

i
kl[k, (l)],

Ω(i) = −1
2
Ri

kl[k, l]− P i
kl[k, (l)], Ωi = 0;

[B] BΓ(G) : Ωi
j = −1

2
Hj

i
kl[k, l]−Gj

i
kl[k, (l)∗],

Ω(i) = −1
2
Hi

kl[k, l], Ωi = 0,

where [k, l] := [dxk, dxl], [k, (l)] := [dxk, δyl], [(k), (l)] := [δyk, δyl] and

[k, (l)∗] := [dxk, δ∗yl] = [dxk, δyl + P l
hdxh] = [k, (l)] + P l

h[k, h].

The covariant derivatives for a vector vi(x, y) with respect to xk and

yk are defined as follows:

vi
/k := dkvi + Fj

i
kvj , vi

/(k) := vi
(k) + Cj

i
kvj for [C], [R],

vi
//k := d̄kvi + Gj

i
kvj , vi

(k) := ∂̇kvi for [B],

where d̄k := ∂k −Gh
k ∂̇h = dk − Ph

k∂̇h.

We shall list the identities for curvature and torsion tensors in Mn:

(1.6)
(a) C0j = Ci0 = 0, P i

0 = P 0
k = 0, (b) gij(k) = Cijk + Cjik,

(c) P i
0k = 2P i

k ([3], Proposition 2.6),
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(1.7)

(a) Rh
i
jk = Kh

i
jk + Ch

i
rR

r
jk, Fh

i
jk := ∂̇kFh

i
j ,

Ph
i
jk = Fh

i
jk − Ch

i
k/j + Ch

i
mPm

jk, P i
jk = N i

j(k) − Fk
i
j ,

(b) R0
i
jk = K0

i
jk = Ri

jk, H0
i
jk = Hi

jk,

P0
i
jk = F0

i
jk = Fj

i
0k = P i

jk, S0
i
jk = 0,

(c) R0
jk = 0, P 0

jk = 0, P i
j0 = 0, H0

jk = 0,

(d) Rh
0
jk = −ghrR

r
jk, Kh

0
jk = −g∗hrR

r
jk,

Hh
0
jk = −g∗hrH

r
jk, Fh

0
jk = Chk/j − g∗hrP

r
jk,

Sh
0
jk = Chj(k) + Chjk − j|k = 0,

(1.8)

(a) Rhijk + Rihjk = 0, Phijk + Pihjk = 0, Shijk + Sihjk = 0,

(b) Khijk + Kihjk = −ghi(r)R
r
jk,

(c) Fhijk + Fihjk = ghi(k)/j − ghi(r)P
r
jk,

(1.9)

(a) Chj/k − Chk/j = g∗jrP
r
kh − g∗krP

r
jh,

(b) ghi(k)/0 = girP
r
hk + ghrP

r
ik + 2ghi(r)P

r
k,

(c) Cjk/0 = 2g∗jrP
r
k = g∗jrP

r
k + g∗krP

r
j ,

(1.10)

(a) Hi
jk(h) = Hh

i
jk,

(b) Hi
k(j) − j|k = 3Hi

jk, Hi
k := Hi

0k,

(c) Hhj := Hh
i
ji = Hj(h), Hj := Hi

ji,

where j|k means the interchange of the indices j, k in the foregoing terms.

1.3. Relations between [C] and [B]; Difference tensor Dj
i
k.

It is easily seen that for a vector vi we find
(1.11)
vi

//k = d̄kvi + Gh
i
kvh = vi

/k + Dh
i
kvh−Ph

kvi
(h), Dh

i
k := Gh

i
k −Fh

i
k.

Hence we have for the metric tensor gij

(1.12)

(a) gij//k = −Di
h

kghj −Dj
h

kgih − Ph
kgij(h),

(b) − 2Dj
i
k = gih(ghj//k + ghk//j − gjk//h + ghj(r)P

r
k

+ ghk(r)P
r
j − gjk(r)P

r
h),

(c) gij//0 = −gihPh
j − gjhPh

i.
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Proposition 1.1 ([3], Proposition 3.1). The difference tensor Dj
i
k is

expressed by

(1.13) Dj
i
k = P i

jk + P i
j(k) = Dk

i
j ,

and satisfies the following relations:

(1.14)
(a) D0

i
k = P i

k, (b) Dj
0
k = −g∗jhPh

k,

(c) Dj
i
k(l) = Gj

i
kl − Fj

i
kl, (d) Dj

i
k(l)y

j = −P i
kl.

The following relations are known:

(1.15) yi
//k = 0, yj//k = 0,

(1.16)

(a) Hhijk + Hihjk = −ghi//j//k + ghi//k//j − ghi(r)H
r
jk,

(b) Gh
0
jk = g∗hj//k = ghj//k + Chj//k,

(c) Ghijk + Gihjk = −ghi//j(k) + ghi(k)//j ,

(1.17)

(a) Hh
i
jk = Kh

i
jk + Eh

i
jk,

Eh
i
jk := Dh

i
j/k + Dh

r
jDr

i
k −Gh

i
jrP

r
k − j|k,

(b) Ei
jk := E0

i
jk = Hi

jk −Ri
jk = P i

j/k + P r
jDr

i
k − j|k.

1.4. Projection to the indicatrix.

Let us denote by p · T the projection of a tensor T to the indicatrix,
e.g., for a tensor T i

j , we shall define p · T i
j := hi

aT a
bh

b
j . If p · T = T

holds, then the tensor T is called an indicatric tensor. For example, as the
torsion vector Cj := Cj

k
k is p-homogeneous of degree −1, we find

(1.18) Fp · Cj/(k) = Fha
j hb

kCa/(b) = FCj/(k) + ljCk + lkCj .

Proposition 1.2 (cf. [10], (3.18)). Let K(x, y) be a scalar, p-homoge-

neous of degree 0 in y, and put Kj := FK(j), Kjk = Kkj := Fp ·Kj(k) and

Khjk := Fp ·Kjk(h). Then we have

(1.19) Khjk + Khh∗jk − h|j = 0, h∗jk = hjk + Cjk.

Therefore the scalar K is independent of y if Kj = 0 or Kjk = 0 holds.
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§2. The associated Finsler space F ∗n(g) of Mn

In this section, we shall find the relations in which the connections
and curvature and torsion tensors of F ∗n(g) are expressed in terms of Mn.

2.1. Connection parameters of [C∗] and [C].

As usual, we can define the connections in F ∗n(g).
[C∗] the metrical connection CF ∗(G) : ω∗i

j := ∗Γj
i
kdxk + C∗j

i
kδ∗yk,

δ∗yk := δyk + P k
hdxh such that δ∗g∗ij = 0,

∗Γj
i
k = ∗Γk

i
j , C∗j

i
k = 1

2g∗ihg∗hj(k).
[R∗] the h-metrical connection RF ∗(G) : ω∗i

j := ∗Γj
i
kdxk, g∗ij

∗
/k = 0.

Let us put

ω∗i
j = ωi

j + tij , tij := Aj
i
kdxk + Bj

i
kδyk.

Accordingly we have

(2.1) (a) ∗Γj
i
k = Fj

i
k +Aj

i
k−C∗j

i
hPh

k, (b) C∗j
i
k = Cj

i
k +Bj

i
k,

and using the symmetric property of ∗Γj
i
k, Fj

i
k, C∗j

i
k and Cj

i
k, we see

(2.2)
Aj

i
k + Ak

i
j = 2(∗Γj

i
k − Fj

i
k) + C∗j

i
hPh

k + C∗k
i
hPh

j ,

Aj
i
k −Ak

i
j = C∗j

i
hPh

k − C∗k
i
hPh

j , Bj
i
k = Bk

i
j .

To determine the tensors Aj
i
k and Bj

i
k, we give

Lemma 2.1. The form tij satisfies the following relation:

(2.3) δCij = thi g∗hj + thj g∗hi.

Proof. Because both connections are metrical, we see

0 = δ∗g∗ij = dg∗ij − ω∗h
i g∗hj − ω∗h

j g∗hi

= dgij + dCij − (ωh
i + thi )(ghj + Chj)− (ωh

j + thj )(ghi + Chi)

= δgij + δCij − thi g∗hj − thj g∗hi.

Hence the condition δgij = 0 gives (2.3). ¤

From (2.3) we see

(2.4) Cij/k = Ai
h

kg∗hj + Aj
h

kg∗hi, Cij/(k) = Bi
h

kg∗hj + Bj
h

kg∗hi.

Now, applying the Christoffel process to (2.4) and using (2.2), we obtain
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Proposition 2.2. Two tensors Aj
i
k and Bj

i
k are given by

(2.5)

(a) Aj
i
k =

1
2
g∗ih(Chj/k + Chk/j − Cjk/h)− C∗k

i
rP

r
j + g∗ihC∗jkrP

r
h,

(b) Bj
i
k =

1
2
g∗ih(Chj/(k) + Chk/(j) − Cjk/(h)),

and satisfy the following relations:

(2.6)

(a) A0
i
k = Ak

i
0 = P i

k, Aj
0
k = −1

2
Cjk/0 = −g∗jhPh

k,

(b) B0
i
k = Bk

i
0 = 0, Bj

0
k = −Cjk,

(c) ti0 = P i
kdxk.

We shall prove

Proposition 2.3. In a generalized metric space, we have that

(a) Aj
i
k = 0 is equivalent to Cij/k = 0,

(b) Bj
i
k = 0 is equivalent to Cij/(k) = 0,

(c) Cij/(k) = 0 is equivalent to Cij = 0.

Proof. If Aj
i
k = 0 or Bj

i
k = 0, we have from (2.4) Cij/k = 0 or

Cij/(k) = 0, respectively. The inverse of (a) is obvious from (1.9)(c) and
(2.5)(a). (b) and (c) are evident. ¤

By means of Cjk/0 = 2g∗jrP
r
k and (2.5)(a), the relation (2.1)(a)

shows the following

Theorem 2.4. A necessary and sufficient condition for the connection
parameters Fj

i
k of [C] and ∗Γj

i
k of [C∗] to be coincident is that the

condition Cij/k = 0 holds.

2.2. Curvature forms of [C∗] and [C].

Lemma 2.5. The curvature forms Ω∗i
j of CF ∗(G) and Ωi

j of CΓ(N)
are related as follows:

(2.7) Ω∗i
j = Ωi

j + [δtij ] + [tihthj ].

Proof. From the definition and the relation ω∗ = ω + t (without
indices), we see

Ω∗ = [dω∗] + [ω∗ω∗] = [dω] + [dt] + [(ω + t)(ω + t)]

= [dω] + [ωω] + [dt] + [ωt] + [tω] + [tt] = Ω + [δt] + [tt],
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where we used the matrix product rule. ¤
We remark that

[tω] = [tihωh
j ] = −[ωh

j tih] = −[ωt] (for the 1-form tij),

[δtij ] := [dtij ] + [ωi
hthj ]− [ωh

j tih] (definition).

As usual in a Finsler space F ∗n(g), we put

Ω∗i
j = −1

2
R∗j

i
kl[k, l]− P ∗j

i
kl[k, (l)∗]− 1

2
S∗j

i
kl[(k)∗, (l)∗],

where [(k)∗, (l)∗] := [(k), (l)]+P k
r[r, (l)]+P l

r[(k), r]+P k
rP

l
s[r, s]. Hence

we get

(2.8)
Ω∗i

j = −1
2
(R∗j

i
kl + P ∗j

i
krP

r
l − P ∗j

i
lrP

r
k + S∗j

i
rsP

r
kP s

l)[k, l]

− (P ∗j
i
kl + S∗j

i
rlP

r
k)[k, (l)]− 1

2
S∗j

i
kl[(k), (l)].

Let us now carry out the following calculations:

(2.9)

(a) [δtij ] = [δ(Aj
i
kdxk + Bj

i
kδyk)]

= [δAj
i
k, dxk] + [δBj

i
k, δyk] + Aj

i
h[δdxh] + Bj

i
h[δδyh]

= −1
2
(Aj

i
k/l −Aj

i
l/k + Bj

i
hRh

kl)[k, l]

− (Aj
i
k/(l) −Bj

i
l/k + Aj

i
hCk

h
l + Bj

i
hPh

kl)[k, (l)]

−Bj
i
k/(l)[(k), (l)],

(b) [tihthj ] = −Aj
h

kAh
i
l[k, l]− (Aj

h
kBh

i
l −Bj

h
lAh

i
k)[k, (l)]

−Bj
h

kBh
i
l[(k), (l)],

where we used (1.5)(c) and (b). By means of (2.8) and (2.9), the relation
(2.7) gives us the following

Proposition 2.6. In a space Mn, the curvature tensors of CF ∗(G)
and CΓ(N) are connected by the following relations:

(2.10)

(a) R∗j
i
kl + P ∗j

i
krP

r
l − P ∗j

i
lrP

r
k + S∗j

i
rsP

r
kP s

l

= Rj
i
kl + Bj

i
hRh

kl + (Aj
i
k/l + Aj

h
kAh

i
l − k|l),

(b) P ∗j
i
kl + S∗j

i
rlP

r
k

= Pj
i
kl + Aj

i
k/(l) −Bj

i
l/k + Aj

i
hCk

h
l + Bj

i
hPh

kl

+ Aj
h

kBh
i
l −Bj

h
lAh

i
k,

(c) S∗j
i
kl = Sj

i
kl + (Bj

i
k/(l) + Bj

h
kBh

i
l − k|l).
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2.3. Torsion forms of [C∗] and [C].

Lemma 2.7. The torsions Ω∗i, Ω∗(i) of CF ∗(G) and Ωi, Ω(i) of
CΓ(N) are related as follows:

(2.11)
(a) Ω∗i = Ωi + [tijdxj ],

(b) Ω∗(i) = Ω(i) + [tijδy
j ] + [δti0] + [tihth0 ],

where Ω∗i := [δ∗dxi] and Ω∗(i) := [δ∗δ∗yi] = Ω∗i
0.

Proof. For (a), we see

Ω∗i = [δ∗dxi] = [δdxi] + [tijdxj ] = Ωi + [tijdxj ].

For (b), we see

Ω∗(i) = [δ∗δ∗yi] = [δδ∗yi] + [tihδ∗yh] = [δ(δyi + ti0)] + [tih(δyh + th0 )]

= Ω(i) + [δti0] + [tihδyh] + [tihth0 ].

¤
Let us carry out the following calculations:

Ω∗i = −C∗j
i
k[j, (k)∗] = −C∗j

i
hPh

k[j, k]− C∗j
i
k[j, (k)],

Ωi + [tijdxj ] = −Cj
i
k[j, (k)]−Aj

i
k[j, k]−Bj

i
k[j, (k)],

Ω∗(i) = −1
2
H∗i

jk[j, k]− P ∗ijhPh
k[j, k]− P ∗ijk[j, (k)],

[δti0] = [δP i
k, dxk] + P i

h[δdxh]

= −P i
j/k[j, k]− P i

j/(k)[j, (k)]− P i
hCj

h
k[j, (k)],

[tijδy
j ] = Ak

i
j [j, (k)], (Bj

i
k = Bk

i
j),

[tihth0 ] = −Ph
jAh

i
k[j, k]− Ph

jBh
i
k[j, (k)].

Using the above and (2.2), we see from (2.11)

(2.12)

(a) H∗i
jk + (P ∗ijhPh

k − j|k)

= Ri
jk + (P i

j/k + Ph
jAh

i
k − j|k),

(b) P ∗ijk = P i
jk + P i

j/(k) −Ak
i
j + P i

hCj
h

k + Ph
jBh

i
k

= P i
jk + P i

j(k) −Ak
i
j + Ch

i
kPh

j + Ph
jBh

i
k

= Dj
i
k −Ak

i
j + C∗h

i
kPh

j

= Dj
i
k −Aj

i
k + C∗h

i
jP

h
k.
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If we substitute P ∗ijh in (2.12)(b) into (a), then we have

H∗i
jk −Ri

jk = P i
j/k + Ph

jAh
i
k − (Dj

i
h −Ah

i
j + C∗r

i
hP r

j)Ph
k − j|k

= P i
j/k + Ph

jDh
i
k − j|k = Ei

jk, ((1.17) (b)).

Hence we have

Proposition 2.8. In a space Mn, the torsion tensors of CF ∗(G) and
CΓ(N) are related by the following equations:

(2.13)

(a) P ∗ijk = Dj
i
k −Aj

i
k + C∗j

i
rP

r
k,

∗Γj
i
k − Fj

i
k = Dj

i
k − P ∗ijk = Aj

i
k − C∗j

i
rP

r
k,

(b) H∗i
jk = Ri

jk + Ei
jk = Hi

jk.

2.4. Curvature tensors of [R∗] and [R].

After the similar calculations of the metrical case, we have for the
h-metrical case

Proposition 2.9. In a space Mn, the curvature tensors of RF ∗(G)
and RΓ(N) are related by the following equations:

(2.14)

(a) K∗
j
i
kl + ∗Γj

i
khPh

l − ∗Γj
i
lhPh

k

= Kj
i
kl + {Aj

i
k/l − C∗j

i
h/lP

h
k − C∗j

i
hPh

k/l

+ (Aj
h

k − C∗j
h

rP
r
k)(Ah

i
l − C∗h

i
rP

r
l)− k|l},

(b) ∗Γj
i
kl = Fj

i
kl + Aj

i
k(l) − C∗j

i
h(l)P

h
k − C∗j

i
hPh

k(l).

2.5. The space Mn with Cij/k = 0 or Cij/0 = 0.

Using Proposition 2.3 and Theorem 2.4, we have from (2.10), (2.12)
and (2.14)

Proposition 2.10. In a space Mn with Cij/0 = 0 we have

(2.15)

(a) P i
k = 0, Aj

i
k =

1
2
g∗ih(Chj/k + Chk/j − Cjk/h),

(b) R∗j
i
kl = Rj

i
kl + Bj

i
hRh

kl + (Aj
i
k/l + Aj

h
kAh

i
l − k|l),

(c) K∗
j
i
kl = Kj

i
kl + (Aj

i
k/l + Aj

h
kAh

i
l − k|l),

(d) Hi
jk = Ri

jk, P ∗ijk = P i
jk −Aj

i
k, Ei

jk = 0,

(e) ∗Γj
i
kl = Fj

i
kl + Aj

i
k(l).
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Proposition 2.11. In a space Mn with Cij/k = 0 we have

(2.16)

(a) R∗j
i
kl = Rj

i
kl + Bj

i
hRh

kl,

(b) P ∗j
i
kl = Pj

i
kl −Bj

i
l/k + Bj

i
hPh

kl, P ∗ijk = P i
jk,

(c) K∗
j
i
kl = Kj

i
kl,

∗Γj
i
kl = Fj

i
kl.

§3. A generalized metric space whose associated Finsler
space is a Riemannian space

If the metric gij is independent of y: Cj
i
k = 0, then the space Mn

itself is a Riemannian space and then its associated Finsler space is also a
Riemannian space from the definition.

Definition. A generalized metric space Mn whose associated Finsler
space F ∗n(g) is a Riemannian space (C∗j

i
k = 0) is called an RMn space

(abbreviation). If the Riemannian space is of constant curvature, then the
space Mn is called an RccMn space.

By means of (2.1)(b) and Proposition 2.3, we see

Theorem 3.1. If an RMn space satisfies the condition Cij/(k) = 0,
then the space is a Riemannian space.

From (2.1)(b) and (2.5)(b) we see

(3.1) 3C∗ijk = Cijk + Cjki + Ckij +
1
2
(Cij(k) + Cjk(i) + Cki(j)).

Hence we have the following

Theorem 3.2. A space Mn reduces to an RMn space if the following
condition holds:

Cijk + Cjki + Ckij +
1
2
(Cij(k) + Cjk(i) + Cki(j)) = 0.

S. Numata proved the following theorem ([8],Theorem 2): A Lands-
berg space (in the sense of Finsler geometry) of scalar curvature K is a
Riemannian space of constant curvature provided K 6= 0. Hence we have

Theorem 3.3. An LMn space (cf. §5) of scalar curvature K is an
RccMn space.

C. Shibata proved the following theorem ([11], Theorem 4): If a
Finsler space of scalar curvature satisfies the condition P i

hj/k−j|k = 0 (in
the notation of ordinary Finsler geometry), then the space is a Riemannian
space of constant curvature. Hence we have
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Theorem 3.4. If the Finsler space F ∗n(g) of scalar curvature K satis-
fies the condition P ∗i

hj
∗
/k − j|k = 0, then the space is an RccMn space.

From the theory of Finsler spaces, we see that in an RMn space we
have the following relations:

(3.2)

(a) ∗Γj
i
k = G∗j

i
k = Gj

i
k = {j

i
k},

(b) P ∗ijk = 0, P ∗j
i
kl = ∗Γj

i
kl = G∗j

i
kl = Gj

i
kl = S∗j

i
kl = 0,

(c) R∗j
i
kl = K∗

j
i
kl = H∗

j
i
kl = Hj

i
kl(x),

where {j
i
k} is the Christoffel symbol with respect to g∗ij(x).

Using (2.10), (2.12), (2.13), (2.14) and (3.2), we have

Proposition 3.5. In an RMn space, we have

(3.3)

(a) Aj
i
k = Dj

i
k =

1
2
g∗ih(Chj/k + Chk/j − Cjk/h),

Fj
i
k = {j

i
k} −Aj

i
k, Cj

i
k = −Bj

i
k,

P i
kl = Ak

i
l − P i

k(l),

(b) Hj
i
kl(x) = Kj

i
kl + Ej

i
kl, Hi

jk = Ri
jk + Ei

jk,

Ej
i
kl = Aj

i
k/l + Aj

h
kAh

i
l − k|l,

Ei
jk = P i

j/k + Ph
jAh

i
k − j|k,

(c) Pj
i
kl = −Aj

i
k(l) − Cj

i
l/k + Cj

i
hPh

kl,

Fj
i
kl = −Aj

i
k(l), Gj

i
kl = 0.

Because of g∗ih(k) = 0, Proposition 2.3 and (3.2)(a), we can easily
prove

Lemma 3.6. In an RMn space, the following four conditions are
equivalent:

(a) Aj
i
k = 0, (b) Chj/k = 0, (c) Aj

i
k(l) = 0, (d) Chj/k(l) = 0.

Theorem 3.7. If an RMn space satisfies the condition Chj/k = 0,

then the space Mn is a g-Berwald space (Fj
i
kl = 0, cf. §5).

§4. A generalized metric space whose associated
Finsler space is a Minkowski space

Definition. If there exists a coordinate system such that the metric
tensor gij is independent of x: gij(y) and P i

k = 0, then the space Mn
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is called a g-Minkowski space. If Cij = 0, then the g-Minkowski space is
called a Minkowski space.

Definition. A generalized metric space Mn whose associated Finsler
space F ∗n(g) is a Minkowski space is called an MMn space (abbreviation).

Remark. From the definition g∗ij(y) = ∂̇i∂̇j(ghk(y)yhyk)/2, a g-Min-
kowski space is an MMn space. However, from the relation: g∗ij(y) =
gij(x, y) + Cij(x, y), being an MMn space (∂kg∗ij = 0) does not mean
that the space Mn is a g-Minkowski space (∂kgij = 0).

Theorem 4.1 (cf. [6],[12]). A necessary and sufficient condition for a

generalized metric space Mn to be a g-Minkowski space is that the curva-

ture tensors Kj
i
kl and Fj

i
kl vanish (Ωi

j = 0 for RΓ(G)).

Proof. Let us assume that the generalized metric space Mn is a g-
Minkowski space. Then we have F 2(x, y) = F̄ 2 := ḡab(ȳ)ȳaȳb in some
suitable coordinate system, hence ∂cF̄

2 = ∂F̄ 2/∂x̄c = 0. From the defini-
tion in §1, we find

4Ḡa = ḡ∗ab(ȳc∂̇b∂cF̄
2 − ∂bF̄

2) = 0, ∂̇b = ∂/∂ȳb,

N̄a
b = Ḡa

b = 0, ∂cḡab = 0, F̄b
a

c = 0, F̄b
a

cd = 0, K̄b
a

cd = 0.

Conversely, Fj
i
kl = Fj

i
k(l) = 0 means that the connection parameters

Fj
i
k are functions of xi only. Therefore the curvature tensor Kj

i
kl is also

a function of xi only. When Kj
i
kl(x) = 0, we know as in a Riemannian

space that there exists a coordinate system (x̄a) for which the connection
parameters F̄b

a
c vanish, that is,

(4.1) ḡadF̄b
d

c =
1
2
(∂bḡac + ∂cḡab − ∂aḡbc) = 0, N̄a

c = F̄b
a

cȳ
b = 0.

Making +a|c in (4.1), we get ∂aḡbc = 0 which means that ḡbc does not
contain x̄a. Moreover we get P̄ a

b = 0 from (1.1). ¤

Remark. From (1.7)(a), (b) and Theorem 5.14(cf. §5), we see that the
conditions in Theorem 4.2 are equivalent to the conditions Rj

i
kl = 0 and

Cj
i
k/l = 0 for CΓ(N).
By virtue of a well known theorem on Finsler spaces, we have
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Theorem 4.2. A necessary and sufficient condition for a generalized

metric space Mn to be an MMn space is that the curvature tensors Hj
i
kl

and Gj
i
kl vanish (Ωi

j = 0 for BΓ(G)).

From the theory of Finsler spaces, in an MMn space, we have

(4.2)

(a) R∗j
i
kl = K∗

j
i
kl = H∗

j
i
kl = Hj

i
kl = 0,

R∗ijk = H∗i
jk = Hi

jk = 0,

(b) C∗j
i
k
∗
/l = ∗Γj

i
kl = G∗j

i
kl = Gj

i
kl = 0,

P ∗ijk = 0, P ∗h
i
jk = 0.

Using the relations in §2 and (4.2), we obtain

Proposition 4.3. In an MMn space, we have

(a) Dj
i
k = Aj

i
k − C∗j

i
hPh

k, Ri
jk = −Ei

jk,

(b) Rj
i
kl − S∗j

i
rsP

r
kP s

l −Bj
i
hEh

kl = −Aj
i
k/l −Aj

h
kAh

i
l − k|l,

(c) Fj
i
kl = −Aj

i
k(l) + C∗j

i
h(l)P

h
k + C∗j

i
hPh

k(l),

(d) Pj
i
kl = S∗j

i
hlP

h
k −Aj

i
k/(l) + Bj

i
l/k −Aj

i
hCk

h
l −Bj

i
hPh

kl

−Aj
h

kBh
i
l + Bj

h
lAh

i
k.

In virtue of Proposition 2.3 and Cjk/0 = 2g∗jhPh
k, we have that if an

MMn space satisfies the condition Cij/k = 0, then the following relations
hold:

(a) Dj
i
k = 0, (b) Ri

jk = −Ei
jk = 0, P i

jk = 0,

(c) Rj
i
kl = Kj

i
kl = 0, (d) Fj

i
kl = Cj

i
k/l = 0.

Hence we have

Theorem 4.4. If an MMn space satisfies the condition Cij/k = 0,

then the space is a g-Minkowski space.
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