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Multidegrees of tame automorphisms with one prime number

By JIANTAO LI (Changchun) and XIANKUN DU (Changchun)

Abstract. Let 3 ≤ d1 ≤ d2 ≤ d3 be integers. We show the following results: (1)

If d2 is a prime number and d1
gcd(d1,d3)

̸= 2, then (d1, d2, d3) is a multidegree of a tame

automorphism if and only if d1 = d2 or d3 ∈ d1N + d2N; (2) If d3 is a prime number

and gcd(d1, d2) = 1, then (d1, d2, d3) is a multidegree of a tame automorphism if and

only if d3 ∈ d1N+ d2N. We also show that the condition d1
gcd(d1,d3)

̸= 2 in (1) cannot be

removed.

1. Introduction

Throughout this paper, let F = (F1, . . . , Fn) : kn → kn be a polynomial

map, where k is a field of characteristic 0. Denote by Aut kn the group of all

polynomial automorphisms of kn. Denote by mdegF := (degF1, . . . ,degFn) the

multidegree of F and by mdeg the mapping from the set of all polynomial maps

into the set Nn, where N denotes the set of all nonnegative integers.

A polynomial automorphism F = (F1, . . . , Fn) of kn is said to be elemen-

tary if

F = (x1, . . . , xi−1, αxi + f, xi+1, . . . , xn)

for some 1 ≤ i ≤ n, α ∈ k∗ and f ∈ k[x1, . . . , xi−1, xi+1, . . . , xn]. Denote by

Tame kn the subgroup of Aut kn that is generated by all the elementary auto-

morphisms. An element in Tame kn is called a tame automorphism. The clas-
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sical Jung-van der Kulk theorem [4], [17] says that every polynomial auto-

morphism of k2 is tame. In 2004, Shestakov and Umirbaev [14], [15] proved

Aut k3 ̸= Tame k3 by showing that the famous Nagata automorphism is not tame.

The multidegree plays an important role in the description of polynomial

automorphisms. For example, the Jacobian conjecture is equivalent to the asser-

tion that, if (F1, F2) is a polynomial map satisfying the Jacobian condition, then

mdegF = (degF1,degF2) is principal, that is, degF1 | degF2 or degF2 | degF1

[1]. But it is difficult to describe the multidegrees of polynomial maps in higher

dimensional cases, even in the case of dimension three. Recently, some authors

present papers concerning the multidegrees of tame automorphisms in dimension

three, see [5], [6], [7], [8], [10], [16].

In [5], Karaś proposed the following conjecture.

Conjecture 1.1 ([5, Conjecture 4.1]). Let 3 ≤ p1 ≤ d2 ≤ d3 be integers

with p1 a prime number. Then (p1, d2, d3) ∈ mdeg(Tame k3) if and only if p1 | d2
or d3 ∈ p1N+ d2N.

In [6], Karaś showed that if d3

d2
̸= 3

2 or d3

d2
= 3

2 and d2 > 2p1−4, then Conjec-

ture 1.1 is valid. In [16], Sun and Chen gave a stronger result that Conjecture 1.1

is true if d3

d2
̸= 3

2 , or if
d3

d2
= 3

2 and d2 > 2p1 − 5.

In this paper, we consider a variation of the conjecture of Karaś. Let 3 ≤
d1 ≤ d2 ≤ d3 be integers. We show the following results: (1) If d2 is a prime

number and d1

gcd(d1,d3)
̸= 2, then (d1, d2, d3) ∈ mdeg(Tame k3) if and only if d1 =

d2 or d3 ∈ d1N + d2N; (2) If d3 is a prime number and gcd(d1, d2) = 1, then

(d1, d2, d3) ∈ mdeg(Tame k3) if and only if d3 ∈ d1N + d2N. We also show that

the condition d1

gcd(d1,d3)
̸= 2 in (1) cannot be removed.

2. Preliminaries

Recall that, in [14], [15], a pair f, g ∈ C[x1, . . . , xn] is said to be ∗-reduced if

(1) f , g are algebraically independent;

(2) f̄ , ḡ are algebraically dependent, where f̄ denotes the highest homogeneous

component of f ;

(3) f̄ /∈ ⟨ḡ⟩ and ḡ /∈ ⟨f̄⟩.
The following inequality plays an important role in the proof of the Nagata

conjecture in [14], [15] and is also essential in our proofs.
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Theorem 2.1 ([14, Theorem 3]). Let f, g ∈ k[x1, . . . , xn] be a ∗-reduced
pair, and G(x, y) ∈ k[x, y] with degy G(x, y) = pq + r, 0 ≤ r < p, where p =

deg f
gcd(deg f,deg g) . Then

degG(f, g) ≥ q(p deg g − deg f − deg g + deg[f, g]) + r deg g.

Here, [f, g] means the Poisson bracket of f and g defined by

[f, g] =
∑

1≤i<j≤n

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
[xi, xj ].

By definition, deg[xi, xj ] = 2 for i ̸= j, deg 0 = −∞, and

deg[f, g] = max
1≤i<j≤n

deg

{(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
[xi, xj ]

}
.

Note that [f, g] ̸= 0 if and only if f, g are algebraically independent over k. If this

is the case, we have

deg[f, g] = 2 + max
1≤i<j≤n

deg

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
≥ 2.

Remark 2.2. The statement of Theorem 2.1 holds if only f and g do not

belong to k due to Kuroda [11, Corollary 3.5] (see also [8], [18]).

Recall that a polynomial automorphism F = (F1, F2, F3) is said to admit

an elementary reduction if there exists a permutation σ of the set {1, 2, 3} and

g ∈ k[x, y] such that

deg(Fσ(1) − g(Fσ(2), Fσ(3))) < degFσ(1).

Theorem 2.3 ([15, Theorem 2]). Let F = (F1, F2, F3) be a tame automor-

phism of k3. If degF1 +degF2 +degF3 > 3, then F admits either an elementary

reduction or a reduction of types I–IV.

We refer to [15, Definitions 1–4] for the definitions of reductions of types

I–IV.

Remark 2.4. It is shown by Kuroda that there is no tame automorphism

on k[x, y, z] admitting reductions of type IV, see [13, Theorem 7.1].

In this paper, we consider when (d1, d2, d3) is a multidegree of a tame au-

tomorphism on k3. Note that, if (F1, F2, F3) is a tame automorphism, then

(Fσ(1), Fσ(2), Fσ(3)) is also a tame automorphism for any permutation σ of {1, 2, 3}.
If d1 ≤ d2 ≤ d3 and d1 < 3, then (d1, d2, d3) ∈ mdeg(Tame k3) by [8, Example 3.1].

Thus, without loss of generality, we can assume that 3 ≤ d1 ≤ d2 ≤ d3.



700 Jiantao Li and Xiankun Du

3. Multidegree (d1, p2, d3) with p2 a prime number

In this section, let 3 ≤ d1 ≤ p2 ≤ d3 be integers with p2 a prime number. We

start with the following lemma.

Lemma 3.1. If (d1, p2, d3) ∈ mdeg(Tame k3), then there exists a tame au-

tomorphism with multidegree (d1, p2, d3) which admits an elementary reduction.

Proof. Let F be a tame automorphism with mdegF = (d1, p2, d3). By

Theorem 2.3 and Remark 2.4, F admits an elementary reduction or a reduction

of types I–III.

If F admits a reduction of type III, then by [15, Definition 3] there exists

n ∈ N such that

n < d1 ≤ 3

2
n, p2 = 2n, d3 = 3n; or (3.1)

d1 =
3

2
n, p2 = 2n,

5n

2
< d3 ≤ 3n. (3.2)

Since p2 is a prime number greater than 3, (3.1) and (3.2) cannot be satisfied.

Thus, F admits no reduction of type III.

By the definitions of reductions of types I and II, if F admits a reduction of

type I or II, then there exists a tame automorphism with the same multidegree

that admits an elementary reduction (see [6, Proposition 20]). �

To prove our main theorem, we also use the following well-known result (see

e.g. [2]).

Lemma 3.2. If a, b are positive integers with gcd(a, b) = 1, then l ∈ aN+bN
for all integers l ≥ (a− 1)(b− 1).

We are now in a position to show our main result in this section.

Theorem 3.3. Let 3 ≤ d1 ≤ p2 ≤ d3 be integers with p2 a prime number.

If d1

gcd(d1,d3)
̸= 2, then (d1, p2, d3) ∈ mdeg(Tame k3) if and only if d1 = p2 or

d3 ∈ d1N+ p2N.

Proof. Thanks to [8, Proposition 2.2], it suffices to prove the “only if” part.

Suppose that d1 < p2 and d3 /∈ d1N+ p2N. Then, we have d3 < (d1 − 1)(p2 − 1)

by Lemma 3.2. We prove that no tame automorphism has multidegree (d1, p2, d3)

by contradiction. If the assertion is false, then there exists a tame automorphism

F = (F1, F2, F3) with mdegF = (d1, p2, d3) admitting an elementary reduction

by Lemma 3.1. There exist three cases to be considered as follows.
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Case 1 : If F admits an elementary reduction for some g ∈ k[x, y] such

that deg(F3 − g(F1, F2)) < degF3, then we have degF3 = deg g(F1, F2). Since

F is a polynomial automorphism, Fi, Fj (i, j = 1, 2, 3, i ̸= j) are algebraically

independent, and hence deg[Fi, Fj ] ≥ 2. Moreover, F̄i /∈ ⟨F̄j⟩ since otherwise we

have degFi | degFj , which contradicts that d1 - p2 and d3 /∈ d1N+p2N. Note that
degF1

gcd(degF1,degF2)
= d1. Set degy g(x, y) = d1q + r, 0 ≤ r < d1. By Theorem 2.1

and Remark 2.2,

d3 = degF3 = deg g(F1, F2) ≥ q(d1p2 − d1 − p2 + deg[F1, F2]) + rp2

≥ q(d1p2 − d1 − p2 + 2) + rp2.

Since d3 < (d1−1)(p2−1), we have q = 0. Hence, we get degy g(x, y) = r. Noting

that 0 ≤ r < d1, we can write g(x, y) = g0(x) + g1(x)y + · · ·+ gd1−1(x)y
d1−1. It

follows from gcd(d1, p2) = 1 that the sets d1N, d1N+ p2, . . . , d1N+ (d1 − 1)p2 are

disjoint. Thus,

d3 = deg g(F1, F2) = deg(g0(F1) + g1(F1)F2 + · · ·+ gd1−1(F1)F
d1−1
2 )

= max
0≤i≤d1−1

{degF1 deg gi + idegF2} = max
0≤i≤d1−1

{d1 deg gi + ip2},

which contradicts d3 /∈ d1N+ p2N.
Case 2 : If F admits an elementary reduction for some g ∈ k[x, y] such

that deg(F1 − g(F2, F3)) < degF1, then degF1 = deg g(F2, F3). Note that
degF2

gcd(degF2,degF3)
= p2. Set degy g(x, y) = p2q + r, 0 ≤ r < p2. Then

d1 = degF1 = deg g(F2, F3) ≥ q(p2d3 − p2 − d3 + deg[F2, F3]) + rd3

≥ q(3d3 − p2 − d3 + 2) + rd3 ≥ q((d3 − p2) + d3 + 2) + rd3.

Since d1 < (d3−p2)+d3+2 and d1 < d3, it follows that q = r = 0. Hence, g(x, y)

belongs to k[x]. Thus, d1 = degF1 = deg g1(F2) belongs to p2N. This contradicts
d1 < p2.

Case 3 : If F admits an elementary reduction for some g ∈ k[x, y] such

that deg(F2 − g(F1, F3)) < degF2, then degF2 = deg g(F1, F3). It follows from

d3 /∈ d1N+ p2N that gcd(d1, d3) ̸= d1, whence p = d1

gcd(d1,d3)
≥ 2. Moreover, since

d1

gcd(d1,d3)
̸= 2 by assumption, we have p ≥ 3. Let degy g(x, y) = pq+r, 0 ≤ r < p.

Then

p2 = degF2 = deg g(F1, F3) ≥ q(pd3 − d1 − d3 + deg[F1, F3]) + rd3

≥ q(3d3 − d1 − d3 + 2) + rd3 = q((d3 − d1) + d3 + 2) + rd3.

Since p2 < d3, we get q = r = 0. Hence, g(x, y) belongs to k[x]. Thus, p2 =

degF2 = deg g1(F1) belongs to d1N. This contradicts that p2 is a prime number
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with p2 > d1.

Therefore, F cannot admit any elementary reduction, the contradiction im-

plies that there exists no tame automorphism with multidegree (d1, p2, d3) if

d1 < p2 and d3 /∈ d1N+ p2N. �

We claim that the condition d1

gcd(d1,d3)
̸= 2 in Theorem 3.3 cannot be removed.

Indeed, for each positive integers p and q, Kuroda [12] constructed a tame auto-

morphism with multidegree (2m, 2pm+p+1, (2p+1)m) with m = pq+p+q which

admits a reduction of type I. In the special cases where (p, q) = (2, 1), (2, 3),

the multidegrees are equal to (10, 23, 25) and (22, 47, 55), for which we have
d1

gcd(d1,d3)
= 2. We note that, if (p, q) = (2, 1), this tame automorphism is de-

scribed as 
f1 = x+ y2 − g2,

f2 =
256

25
f5
1 + g + h2,

f3 = f2 + h,

where g = z + 3x2y + 3xy3 + y5 and h = y − 6(x+ y2)2g + 8(x+ y2)g3 − 16
5 g5.

From the proof of Theorem 3.3, we see that a more precise lower bound

of deg[F1, F3] gives a better description of mdeg(Tame k3). We mention that

Sun–Chen [16] and Karaś [9] gave notable results on the multidegrees of tame

automorphisms by improving the lower bound of the degrees of Poisson brackets.

4. Multidegree (d1, d2, p3) with p3 a prime number

In this section, let 3 ≤ d1 ≤ d2 ≤ p3 be integers with gcd(d1, d2) = 1 and p3
a prime number.

Lemma 4.1. If (d1, d2, p3) ∈ mdeg(Tame k3) with gcd(d1, d2) = 1 and

p3 a prime number, then there exists a tame automorphism with multidegree

(d1, d2, p3) which admits an elementary reduction.

Proof. Let F be a tame automorphism with mdegF = (d1, d2, p3). By

Theorem 2.3 and Remark 2.4, F admits an elementary reduction or a reduction

of types I–III.

If F admits a reduction of type III, then by [15, Definition 3] there exists

n ∈ N such that

n < d1 ≤ 3

2
n, d2 = 2n, p3 = 3n; or (4.1)
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d1 =
3

2
n, d2 = 2n,

5n

2
< p3 ≤ 3n. (4.2)

Since p3 is a prime number greater that 3, (4.1) cannot be satisfied. If (d1, d2, p3)

satisfies (4.2), it follows from gcd(d1, d2) = 1 that n = 2. Hence 5 < p3 ≤ 6,

and so p3 = 6. This contradicts that p3 is a prime number. Thus, F admits no

reduction of type III.

By [6, Proposition 20], if F admits a reduction of type I or II, then there

exists a tame automorphism with the same multidegree that admits an elementary

reduction. �

We can now formulate our main result in this section.

Theorem 4.2. Let 3 ≤ d1 ≤ d2 ≤ p3 be integers with gcd(d1, d2) = 1 and p3
a prime number. Then (d1, d2, p3) ∈ mdeg(Tame k3) if and only if p3 ∈ d1N+d2N.

Proof. Thanks to [8, Proposition 2.2], it suffices to prove the “only if” part.

Suppose that p3 /∈ d1N+ d2N, whence p3 < (d1 − 1)(d2 − 1) by Lemma 3.2. We

prove that no tame automorphism has multidegree (d1, p2, d3) by contradiction.

If the assertion is false, then there exists a tame automorphism F = (F1, F2, F3)

with mdegF = (d1, d2, p3) admitting an elementary reduction by Lemma 4.1.

There exist three cases to be considered as follows.

Case 1 : If F admits an elementary reduction for some g ∈ k[x, y] such

that deg(F1 − g(F2, F3)) < degF1, then degF1 = deg g(F2, F3). Note that
degF2

gcd(degF2,degF3)
= d2. Set degy g(x, y) = d2q + r, 0 ≤ r < d2. Then

d1 = degF1 = deg g(F2, F3) ≥ q(d2p3 − d2 − p3 + deg[F2, F3]) + rp3

≥ q(3p3 − d2 − p3 + 2) + rp3 ≥ q((p3 − d2) + p3 + 2) + rp3.

Thus, q = r = 0. Hence, g(x, y) belongs to k[x]. Thus, d1 = degF1 = deg g1(F2)

belongs to d2N. This contradicts d1 < d2.

Case 2 : If F admits an elementary reduction for some g ∈ k[x, y] such

that deg(F2 − g(F1, F3)) < degF2, then degF2 = deg g(F1, F3). Note that
degF1

gcd(degF1,degF3)
= d1. Set degy g(x, y) = d1q + r, 0 ≤ r < d1. Then

d2 = degF2 = deg g(F1, F3) ≥ q(d1p3 − d1 − p3 + deg[F1, F3]) + rp3

≥ q(3p3 − d1 − p3 + 2) + rp3 = q((p3 − d1) + p3 + 2) + rp3.

Thus, q = r = 0. Hence, g(x, y) belongs to k[x]. Thus, d2 = degF2 = deg g1(F1)

belongs to d1N. This contradicts gcd(d1, d2) = 1.
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Case 3 : If F admits an elementary reduction for some g ∈ k[x, y] such

that deg(F3 − g(F1, F2)) < degF3, then degF3 = deg g(F1, F2). It follows from

gcd(d1, d2) = 1 that degF1

gcd(degF1,degF2)
= d1. Set degy g(x, y) = d1q+r, 0 ≤ r < d1.

Then
p3 = degF3 = deg g(F1, F2) ≥ q(d1d2 − d1 − d2 + deg[F1, F2]) + rd2

≥ q(d1d2 − d1 − d2 + 2) + rd2.

Since p3 < (d1−1)(d2−1), we have q = 0. Hence, we get degy g(x, y) = r. Noting

that 0 ≤ r < d1, we can write g(x, y) = g0(x) + g1(x)y + · · ·+ gd1−1(x)y
d1−1. It

follows from gcd(d1, d2) = 1 that the sets d1N, d1N+ d2, . . . , d1N+ (d1 − 1)d2 are

disjoint. Thus,

p3 = deg g(F1, F2) = deg(g0(F1) + g1(F1)F2 + · · ·+ gd1−1(F1)F
d1−1
2 )

= max
0≤i≤d1−1

{degF1 deg gi + i degF2} = max
0≤i≤d1−1

{d1 deg gi + id2},

which contradicts p3 /∈ d1N+ d2N.
Thus, F admits no elementary reduction, the contradiction implies that there

exists no tame automorphism with multidegree (d1, d2, p3) if p3 /∈ d1N+ d2N. �
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[6] M. Karaś, Multidegrees of tame automorphisms of Cn, Dissertationes Math. (Rozprawy
Mat.) 477 (2011), 55pp.
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