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A characterization of type A real hypersurfaces
in complex projective space

By JUAN DE DIOS PÉREZ (Granada) and YOUNG JIN SUH (Taegu)

Abstract. We classify real hypersurfaces in complex projective space whose shape

operator is of Codazzi type with respect to a generalized Tanaka–Webster connection

with a condition on the principal curvature of the structure vector field. As a conse-

quence we classify real hypersurfaces in complex projective space whose shape operator

is generalized Tanaka–Webster parallel with the same condition.

1. Introduction

Let CPm, m ≥ 2, be a complex projective space endowed with the metric g

of constant holomorphic sectional curvature 4. Let M be a connected real hyper-

surface of CPm without boundary, ∇ the Levi–Civita connection on M and J

the complex structure of CPm. Take a locally defined unit normal vector field N

on M and denote by ξ = −JN . This is a tangent vector field to M called the

structure vector field onM . OnM there exists an almost contact metric structure

(ϕ, ξ, η, g) induced by the Kaehlerian structure of CPm, where ϕ is the tangent

component of J and η is an one-form given by η(X) = g(X, ξ) for any X tangent

to M . Let us denote by A the shape operator on M associated to N . We will

say that M is Hopf if the structure vector field is principal, that is, Aξ = αξ for
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708 Juan De Dios Pérez and Young Jin Suh

a certain function α on M . We will also denote by D the maximal holomorphic

distribution on M , given by all vector fields orthogonal to ξ.

The classification of homogeneous real hypersurfaces in CPm was obtained

byTakagi, see [8], [9], [10] and consists in six different types of real hypersurfaces.

Kimura, [4], also proved that they are the unique Hopf real hypersurfaces with

constant principal curvatures.

Type A1 are geodesic hyperspheres of radius r, 0 < r < π
2 . They have 2

distinct constant principal curvatures, 2 cot(2r) with eigenspace R[ξ] and cot(r)

with eigenspace D.

Type A2 are tubes of radius r, 0 < r < π
2 , over totally geodesic complex

projective spaces CPn, 0 < n < m − 1. They have 3 distinct constant princi-

pal curvatures, 2 cot(2r) with eigenspace R[ξ], cot(r) and − tan(r). The corre-

sponding eigenspaces of cot(r) and − tan(r) are complementary and ϕ-invariant

distributions in D.

From now on, we will call type A real hypersurfaces to both of either type

A1 or type A2.

Type B are tubes of radius r, 0 < r < π
4 , over the complex quadric. They

have 3 distinct constant principal curvatures, 2 cot(2r) with eigenspace R[ξ],

cot
(
r− π

4

)
and − tan

(
r− π

4

)
whose corresponding eigenspaces are complementary

and equal dimensional distributions in D such that ϕTcot(r−π
4 ) = T− tan(r−π

4 ).

Type C are tubes of radius r, 0 < r < π
4 , over the Segre embedding of

CP 1 × CPn, where 2n + 1 = m and m ≥ 5. They have 5 distinct constant

principal curvatures, 2 cot(2r) with eigenspace R[ξ], cot
(
r−π

4

)
with multiplicity 2,

cot
(
r − π

2

)
= − tan(r) with multiplicity m− 3, cot

(
r − 3π

4

)
, with multiplicity 2

and cot(r−π) = cot(r) with multiplicity m−3. Moreover ϕTcot(r−π
4 ) = Tcot(r− 3π

4 )

and T− tan(r) and Tcot(r) are ϕ-invariant.

Type D are tubes of radius r, 0 < r < π
4 , over the Plucker embedding of the

complex Grassmannian manifold G(2, 5) in CP 9. They have the same principal

curvatures as type C real hypersurfaces, 2 cot(2r) with eigenspace R[ξ], and the

other 4 principal curvatures have the same multiplicity 4 and their eigenspaces

have the same behaviour with respect to ϕ as in type C.

Type E are tubes of radius r, 0 < r < π
4 , over the canonical embedding of

the Hermitian symmetric space SO(10)/U(5) in CP 15.They also have the same

principal curvatures as type C real hypersurfaces, 2 cot(2r) with eigenspace R[ξ],

cot
(
r− π

4

)
and cot

(
r− 3π

4

)
have multiplicities equal to 6 and − tan(r) and cot(r)

have multiplicities equal to 8. Their corresponding eigenspaces have the same

behaviour with respect to ϕ as in type C.

The Tanaka–Webster connection, [11], [13], is the canonical affine connection
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defined on a non-degenerate, pseudo-Hermitian CR-manifold. As a generaliza-

tion of this connection, Tanno, [12], defined the generalized Tanaka–Webster

connection for contact metric manifolds by

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)ϕY. (1.1)

Using the naturally extended affine connection of Tanno’s generalized Tanaka–

Webster connection, a g-Tanaka–Webster connection ∇̂(k) for a real hypersurface

M in CPm is given, see [2], [3], by

∇̂(k)
X Y = ∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY (1.2)

for any X,Y tangent to M where k is a non-zero real number. Then ∇̂(k)η = 0,

∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)ϕ = 0. In particular, if the shape operator of a real

hypersurface satisfies ϕA+Aϕ = 2kϕ, the g-Tanaka–Webster connection coincides

with the Tanaka–Webster connection.

From the Codazzi equation (see paragraph 2) it is very easy to see that there

do not exist real hypersurfaces in CPm satisfying (∇XA)Y = (∇Y A)X, for any

X,Y tangent to M .

Our purpose is to study a similar condition for a g-Tanaka–Webster connec-

tion. We will say that the shape operator of M is of Codazzi type with respect

to a g-Tanaka–Webster connection if it satisfies

(∇̂(k)
X A)Y = (∇̂(k)

Y A)X (1.3)

for any X,Y tangent to M . Thus we will prove the following theorems

Theorem 1.1. Let M be a real hypersurface of CPm, m ≥ 3, whose shape

operator is of Codazzi type with respect to a g-Tanaka–Webster connection ∇̂(k).

Then M must be a Hopf hypersurface.

Theorem 1.2. Let M be a Hopf hypersurface of CPm, m ≥ 2 and let ∇̂(k)

be a g-Tanaka–Webster connection. Then M is of Codazzi type with respect to

∇̂(k) and α ̸= 2k if and only if M is locally congruent to a real hypersurface of

type A.

As a consequence we obtain the

Corollary 1.3. Let M be a real hypersurface in CPm, m ≥ 3, with α ̸= 2k.

Then its shape operator is g-Tanaka–Webster parallel if and only if M is locally

congruent to a real hypersurface of type A.
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2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered

of class C∞ unless otherwise stated. Let M be a connected real hypersurface in

CPm, m ≥ 2, without boundary. Let N be a locally defined unit normal vector

field on M . Let ∇ be the Levi–Civita connection on M and (J, g) the Kaehlerian

structure of CPm.

For any vector field X tangent to M we write JX = ϕX + η(X)N , and

−JN = ξ. Then (ϕ, ξ, η, g) is an almost contact metric structure on M , see [1].

That is, we have

ϕ2X = −X + η(X)ξ, η(ξ) = 1, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ) (2.1)

for any tangent vectors X,Y to M . From (2.1) we obtain

ϕξ = 0, η(X) = g(X, ξ). (2.2)

From the parallelism of J we get

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ (2.3)

and

∇Xξ = ϕAX (2.4)

for anyX, Y tangent toM , where A denotes the shape operator of the immersion.

As the ambient space has holomorphic sectional curvature 4, the equations of

Gauss and Codazzi are given, respectively, by

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

− 2g(ϕX, Y )ϕZ + g(AY,Z)AX − g(AX,Z)AY, (2.5)

and

(∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ (2.6)

for any tangent vectors X,Y, Z to M , where R is the curvature tensor of M . We

will call the maximal holomorphic distribution D on M to the following one: at

any p ∈ M , D(p) = {X ∈ TpM such that g(X, ξ) = 0}.
In the sequel we need the following results:

Theorem 2.1 ([7]). Let M be a real hypersurface of CPm, m ≥ 2. Then

the following are equivalent:

1. M is locally congruent to a real hypersurface of type A.

2. ϕA = Aϕ.

Theorem 2.2 ([5]). Let M be a Hopf real hypersurface of CPm, m ≥ 2,

and let X ∈ D such that AX = λX. Then α = g(Aξ, ξ) is constant and AϕX =
λα+2
2λ−αϕX.
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3. Proof of the Theorem

If we suppose that the shape operator A is of Codazzi type with respect to

a g-Tanaka–Webster connection we obtain

(∇XA)Y − (∇Y A)X = g(ϕAY,AX)ξ − g(ϕAX,AY )ξ − η(AX)ϕAY

+ η(AY )ϕAX − kη(Y )ϕAX + kη(X)ϕAY − g(ϕAY,X)Aξ + g(ϕAX, Y )Aξ

+ η(X)AϕAY − η(Y )AϕAX + kη(Y )AϕX − kη(X)AϕY. (3.1)

From the Codazzi equation (3.1) becomes

η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ = −2g(AϕAX, Y )ξ − η(AX)ϕAY

+ η(AY )ϕAX − kη(Y )ϕAX + kη(X)ϕAY + g((ϕA+Aϕ)X,Y )Aξ

+ η(X)AϕAY − η(Y )AϕAX + kη(Y )AϕX − kη(X)AϕY. (3.2)

for any X,Y tangent to M :

First we suppose that M is not Hopf. So we can write Aξ = αξ+βU locally,

where U is a unit vector field in D and β ̸= 0 is a function on M .

Taking X = ξ in (3.2) and its scalar product with ξ we have

−3βAϕU + β(α+ k)ϕU = 0. (3.3)

As β ̸= 0 it follows

AϕU =
α+ k

3
ϕU. (3.4)

Taking X = ξ, Y = ϕU in (3.2), from (3.4) we get −U = −2β
(
α+k
3

)
ξ +

α
(
α+k
3

)
U − k

(
α+k
3

)
U + αβξ + β2U − α+k

3 AU + kAU . That is,

(α− 2k)AU = β(α− 2k)ξ + (3 + 3β2 + α2 − k2)U. (3.5)

If α = 2k, from (3.5) 3 + 3β2 + 3k2 = 0, which is impossible. Thus

α− 2k ̸= 0 (3.6)

and

AU = βξ +
3 + 3β2 + α2 − k2

α− 2k
U. (3.7)

From (3.4) and (3.7) we have that DU = {X ∈ D/g(X,U) = g(X,ϕU) = 0} is a

holomorphic (that is, ϕ-invariant) and A-invariant distribution. Let now X be a

unit vector field in DU such that AX = λX for a certain function λ on M .
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Introducing such an X in (3.2) and taking its scalar product with ξ we have

−2g(ϕX, Y ) = −2λg(AϕX, Y ) + αg(AϕX, Y ) + αλg(ϕX, Y ), for any Y tangent

to M . This yields

(2λ− α)AϕX = (2 + αλ)ϕX. (3.8)

If α = 2λ, from (3.8) 2 + 2λ2 = 0, which is impossible. Thus

AϕX = µϕX (3.9)

where µ = 2+αλ
2λ−α . If we take such an X ∈ DU and Y = ξ in (3.2) we have

λ(α− k)− λµ+ kµ = −1. (3.10)

Taking Y = ξ and ϕX instead of X in (3.2) we get

µ(k − α) + µλ− kλ = 1. (3.11)

From (3.10) and (3.11) we have (λ−µ)(α−2k) = 0. As from (3.6) α ̸= 2k, λ = µ.

From (3.9) this yields

λ2 − αλ− 1 = 0. (3.12)

From the Codazzi equation (∇XA)ϕX−(∇ϕXA)X = −2ξ. This yieldsX(λ)ϕX+

λ∇XϕX −A∇XϕX − (ϕX)(λ)X − λ∇ϕXX +A∇ϕXX = −2ξ. Taking its scalar

product with ξ we have −2λ2 + 2αλ + βg([ϕX,X], U) = −2. Then from (3.12)

βg([ϕX,X], U) = 0. That is

g([ϕX,X], U) = 0. (3.13)

But taking the scalar product of the above equation with U we get

(γ − λ)g([ϕX,X], U) + 2βλ = 0, where γ = 3+3β2+α2−k2

α−2k . From (3.13) this yields

βλ = 0. As β ̸= 0, λ should vanish, which is impossible from (3.12). We have just

proved that M must be Hopf. This gives a complete proof of our Theorem 1.1 in

the introduction.

Now let us give the proof of Theorem 1.2. Since M is Hopf by Theorem 1.1,

we may write Aξ = αξ and take X ∈ D such that AX = λX. From Theorem 2.1,

AϕX = µϕX where µ = λα+2
2λ−α .

Taking Y = ξ in (3.2) we obtain −ϕX = αλϕX − kλϕX − λAϕX + kAϕX.

That is

(λ− k)AϕX = (1 + λ(α− k))ϕX (3.14)

and the same equation as (3.10). If we take Y = ξ and ϕX instead of X in (3.2)

we obtain the same equation as (3.11).Thus (µ− λ)(2k − α) = 0. As we suppose
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α ̸= 2k, µ = λ, thus we have Aϕ = ϕA and from Theorem 2.1 M must be locally

congruent to a real hypersurface of type A.

If M is a geodesic hypersphere, see [6], α = 2 cot(2r) and for any X ∈ D

AX = cot(r)X. It is very easy to see that these real hypersurfaces satisfy (3.2).

If M is a tube of radius r over a CPn, α = 2 cot(2r) and for any X ∈ D,

either AX = cot(r)X and AϕX = cot(r)ϕX or AX = − tan(r)X and AϕX =

− tan(r)ϕX. It is straightforward to check that they satisfy (3.2) and this finishes

the proof of our Theorem 1.2.

Finally, let us mention the proof of our Corollary in the introduction as

follows: If M satisfies (∇̂(k)
X A)Y = 0 for any X, Y tangent to M , its shape

operator is of Codazzi type with respect to a g-Tanaka–Webster connection. Thus

by Theorem 1.2, M should be of type A. It is very easy to check that the shape

operator of these real hypersurfaces is parallel with respect to a g-Tanaka–Webster

connection ∇̂(k). So the Corollary is proved.

Remark. Let us suppose that α = 2k. From (3.14) M must be a Hopf real

hypersurface such that the principal curvatures in D are not equal to k. As

examples of such situations, we could give the principal curvatures of the six types

in Takagi’s list in the introduction. By virtue of the principal curvatures, we can

easily check that any of the six types naturally satisfies (3.2). On the other hand,

Kimura [4] proved that any Hopf hypersurfaces in CPm with constant principal

curvatures can be divided into 6 type of hypersurfaces in Takagi’s list. So we

conclude that any Hopf real hypersurface with constant principal curvatures for

α = 2k has the shape operator of Codazzi type with respect to a g-Tanaka–

Webster connection.

Remark. If you compare our results with the ones obtained by Cho in [2],

where he asserts that type B real hypersurfaces have g-Tanaka–Webster parallel

shape operator. Though he mentioned that real hypersurfaces of type B satisfy

parallelism of A with respect to a g-Tanaka–Webster connection if we look at his

formula (4.18) in [2], as for a type B real hypersurface λ2 − αλ − c
4 ̸= 0, for an

X ∈ Vλ (∇̂(k)
ξ A)X = 0 if and only if α = 2k. This confirm our results.
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