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A characterization of exponential polynomials

By LÁSZLÓ SZÉKELYHIDI (Debrecen)

Abstract. Using spectral synthesis on finite dimensional varieties and some addi-

tional ring-theoretical tools we give a new proof for the fact that exponential polyno-

mials on Abelian groups can be characterized by the property that they span a finite

dimensional translation invariant linear space. In particular, we characterize exponential

monomials, too.

1. Introduction

Throughout this paper C denotes the set of complex numbers and G is an

Abelian group equipped with the discrete topology, further CG denotes the lo-

cally convex topological vector space of all complex valued functions defined on G,

equipped with the pointwise operations and the product topology. For each func-

tion f in CG we define f̌(x) = f(−x), whenever x is in G. By a ring we always

mean a commutative ring with unit.

The dual of CG can be identified withMc(G), the space of all finitely sup-

ported complex measures on G. This space is also identified with the set of all

finitely supported complex valued functions on G in the following obvious way. If

the point mass concentrated at the element x is denoted by δx, then each measure

µ inMc(G) has a unique representation in the form

µ =
∑
x∈G

µ(x)δx
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with some finitely supported function µ : G→ C. “Identification” means that we

use the same letter µ for both the measure and the representing function. In this

sense δx is the characteristic function of the singleton {x}. The pairing between

CG andMc(G) is given by the formula

⟨µ, f⟩ =
∫
f dµ =

∑
x∈G

f(x)µ(x).

Convolution onMc(G) will be defined by

µ ∗ ν(x) =
∫
µ(x− y) dν(y) =

∑
y∈G

µ(x− y)ν(y)

for any µ, ν inMc(G) and x in G. Convolution converts the linear spaceMc(G)

into a commutative algebra with unit δ0, 0 being the identity in G. One realizes

immediately, that the algebra Mc(G) is identical with the finite group algebra

of G. Hence we can use the alternative notation CG for Mc(G), which may be

more familiar for algebraists.

We also define convolution of measures in CG with arbitrary functions on G

by the same formula

µ ∗ f(x) =
∫
f(x− y) dµ(y) =

∑
y∈G

f(x− y)µ(y)

for each µ in CG, f in CG and x in G. The linear operators f 7→ µ ∗ f on CG are

called convolution operators.

From the above definition it is clear that convolution operators arise from

translation operators. Translation with the element y in G is the linear operator

mapping the function f in CG onto its translate τyf defined by τyf(x) = f(x+y)

for each x in G. Clearly, τy is a convolution operator, namely, it is the convolution

with the measure δ−y. A subset of CG is called translation invariant, if it contains

all translates of its elements. A closed linear subspace of CG is called a variety

on G, if it is translation invariant. For each function f the smallest variety

containing f is called the variety generated by f and is denoted by τ(f).

Spectral analysis and spectral synthesis deal with the description of varieties

on Abelian groups. The fundamental question of spectral analysis for a given

variety is if there is a nonzero finite dimensional subvariety in the variety. If so,

then we say that spectral analysis holds for the variety. The problem of spectral

synthesis, however, is if there are sufficiently many finite dimensional subvarieties
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in a given variety in the sense that the linear span of them is dense in the variety.

In the affirmative case we say that spectral synthesis holds for the variety. If

spectral analysis, resp. spectral synthesis holds for each nonzero variety on the

group, then we say that spectral analysis, resp. spectral synthesis holds on the

group. For more about spectral analysis, resp. spectral synthesis the reader

should refer to [12], [10], [16], [8], [9].

It turns out that the problems of spectral analysis and spectral synthesis on

varieties is closely related to some basic classes of functions, which have the prop-

erty that they generate finite dimensional varieties. These functions are the so-

called exponential polynomials. These can be considered the basic building bricks

of varieties. In this paper we study exponential polynomials on Abelian groups.

Our purpose is to give new characterizations of these functions using classical

tools from ring theory. Utilizing some classical results from the theory of Noether

rings we obtain new characterization theorems for exponential monomials and for

polynomial functions on Abelian groups, see 12, 13, 17. In particular, we give a

new proof for spectral synthesis on finite dimensional varieties, in Corollary 19.

2. Polynomial functions

Using translation one introduces difference operators ∆y = τy−τ0 and higher

order difference operators ∆y1,y2,...,yn = Πn
i=1∆yi for each y1, y2 . . . , yn in G.

Obviously, ∆y1,y2,...,yn is a convolution operator, namely

∆y1,y2,...,ynf = Πn
i=1(δ−yi − δ0) ∗ f ,

where Π denotes convolution product.

Difference operators, in particular, higher order difference operators are re-

lated to an important function class. A function f : G→ C is called a generalized

polynomial, if there is a nonnegative integer n such that

∆y1,y2,...,yn+1f = 0 (1)

holds for each y1, y2, . . . , yn+1 in G. In this case we say that f is of degree at most

n and the degree of f is the smallest n for which f is of degree at most n.

A homomorphism of G in the additive group of complex numbers is called

an additive function. Clearly, every nonzero additive function is a generalized

polynomial of degree 1.

A special class of generalized polynomials is formed by functions of the form

p(x) = P
(
a1(x), a2(x), . . . , ak(x)

)
, (2)
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where P : Ck → C is an ordinary polynomial in k variables and ai : G → C is

additive for i = 1, 2, . . . , k. These functions are called simply polynomials. In

particular, additive functions are polynomials. The fact, that polynomials are

generalized polynomials is proved in the following theorem, together with their

characterization.

Theorem 1. Let G be an Abelian group. Then every polynomial on G is

a generalized polynomial. Moreover, the following statements are equivalent for

any f : G→ C:
(i) f is a polynomial;

(ii) all functions ∆yf for y in G lie in a finite dimensional linear space of poly-

nomials;

(iii) f is a generalized polynomial and τ(f) is finite dimensional.

Proof. Suppose first, that f : G→ C has the form (2). We assume that P

has degree n > 0. By the Taylor Formula we have for each x, y in G

f(x+ y) = P
(
a1(x) + a1(y), a2(x) + a2(y), . . . , ak(x) + ak(y)

)
=

∑ 1

α1! . . . αk!
∂α1
1 . . . ∂αk

k P
(
a1(x), . . . , ak(x)

)
a1(y)

α1 , . . . , ak(y)
αk , (3)

where the summation extends to all multi-indices α = (α1, α2, . . . , αk) in Nk with

|α| = α1 + α2 + · · ·+ αk ≤ n.
It follows

∆yf(x) =
∑

1≤|α|≤n

1

α1! . . . αk!
∂α1
1 . . . ∂αk

k P
(
a1(x), . . . , ak(x)

)
a1(y)

α1 , . . . , ak(y)
αk ,

that is, ∆yf(x) = Qy

(
a1(x), a2(x), . . . , ak(x)

)
holds for each x in G with some

polynomial Qy : Ck → C of degree at most n − 1. Repeating this argument we

get, that

∆y1,y2,...,ynf(x) = Qy1,y2,...,yn

(
a1(x), a2(x), . . . , ak(x)

)
for all x, y1, y2, . . . , yn in G, and Qy1,y2,...,yn is a constant, hence

∆y1,y2,...,yn,yn+1f(x) = 0

for all x, y1, y2, . . . , yn, yn+1 in G, showing, that f is a generalized polynomial, as

it was to be proved.
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Observe, that if f is a polynomial, then, by (3), τ(f) is generated by the

finite set of functions {∂α1
1 . . . ∂αk

k P
(
a1(x), . . . , ak(x)

)
: |α| ≤ n}, hence it is finite

dimensional. This means, that the conditions given in (ii)–(iii) are necessary for f

to be a polynomial.

Now suppose, that f : G → C has the property that all the differences ∆yf

for y in G lie in a finite dimensional linear space X of polynomials. We show, that

f is a polynomial. Let a1, a2, . . . , ak be linearly independent additive functions

on G such that all elements of X are ordinary polynomials of these functions. We

write a = (a1, a2, . . . , ak), then we have, that

∆yf(x) =
∑
|α|≤n

cα(y)a(x)
α, (4)

where n is an upper bound for the degrees of the polynomials ∆yf with y in G

and cα : G→ C are functions for |α| ≤ n. Here

a(x)α = a1(x)
α1a2(x)

α2 . . . ak(x)
αk

for each x in G and multi-index α = (α1, α2, . . . , αk). Then f satisfies

∆y1,y2,...,yn+2f(x) = 0

for each x, y1, y2, . . . , yn+2 in G. We remark, that if n = 0, then obviously f is

additive plus constant, hence it is a polynomial. In general, it follows, that f is

a generalized polynomial of degree at most n + 1, hence, by the results of [3], it

has a unique representation in the form

f(x) =

n+1∑
j=0

A
(j)
j (x) (5)

for each x in G, where Aj : Gj → C is a j-additive symmetric function for

j = 1, 2, . . . , n+ 1, A
(0)
0 is a constant, and

A
(j)
j (x) = Aj(x1, x2, . . . , xj)

with x1 = x2 = · · · = xj = x for j = 1, 2, . . . , n + 1. Here A
(j)
j is called the

homogeneous term of degree j of f for j = 0, 1, . . . , n + 1. More generally, we

write for 1 ≤ i ≤ j − 1

A
(i)
j (x, y) = Aj(x1, x2, . . . , xj)
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with x1 = x2 = · · · = xi = x and xi+1 = xi+2 = · · · = xj = y. From (4) and (5)

we have
n+1∑
j=0

[
A

(j)
j (x+ y)−A(j)

j (x)
]
=

∑
|α|≤n

cα(y)a(x)
α (6)

for each x, y in G. Using the uniqueness of the representations of the form (5)

and comparing the homogeneous terms of the same degree on both sides, by the

obvious binomial identity

A
(j)
j (x+ y) = A

(j)
j (x) +

j−1∑
i=1

(
j

i

)
A

(i)
j (x, y) +A

(j)
j (y)

we have, that the homogeneous terms of highest degree on the left and on the

right hand side in (6) are equal:

(n+ 1)A
(n)
n+1(x, y) =

∑
|α|=n

cα(y)a(x)
α (7)

for each x, y in G. As the functions aα are linearly independent for |α| = n (see

[15], Lemma 2.7, p. 29.), there are elements xβ , |β| = n such that the matrix(
a(xβ

)α
|α|,|β|=n

)
is regular. Substituting x = xβ in (7) we get a system of linear

equations for the unknowns cα(y) (|α| = n) with regular fundamental matrix, from

which it follows, that the functions cα – as linear combinations of the additive

functions y 7→ A
(n)
n+1(xβ , y) – are additive. Then putting y = x in (7) we obtain,

that An+1 is a polynomial. Now we let fn = f − An+1 and we infer, that the

differences of fn lie in a finite dimensional space of polynomials of degree at most

n− 1. Applying induction we arrive at our statement. This means, that (i) and

(ii) are equivalent.

Now suppose, that f is a generalized polynomial and τ(f) is finite dimen-

sional. The statement is obviously true for generalized polynomials of degree at

most 1 – they are actually additive plus constant, hence they are polynomials. We

continue by induction: for each y in G the degree of the generalized polynomial

∆yf is one less than deg f . As τ(∆yf) is a subset of τ(f), and all polynomials

of degree at most deg f − 1 in a finite dimensional linear space form a finite di-

mensional linear space of polynomials, hence, by (ii), f is a polynomial and the

theorem is proved. �
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3. Exponential polynomials

Another basic function class is formed by the joint eigenfunctions of all trans-

lation operators, that is, by those nonzero functions φ : G→ C satisfying

τyφ = m(y) · φ (8)

with some m : G→ C, that is

φ(x+ y) = m(y)φ(x) (9)

for all x, y in G. It follows

φ(y) = φ(0) ·m(y),

which implies, that φ(0) ̸= 0 and, by (9),

m(x+ y) = m(x)m(y) (10)

for all x, y in G. Nonzero functions m : G → C satisfying (10) for each x, y

in G are called exponentials. Clearly, every exponential generates a one dimen-

sional variety, and, conversely, every one dimensional variety is generated by an

exponential.

We shall also use modified difference operators defined as follows: given an

exponential m, a function f and an element y in G, then we let

∆m;yf(x) = f(x+ y)−m(y) f(x)

for each x in G. The iterates are also defined for any positive integer n and for

each y1, y2, . . . , yn in G by

∆m;y1,y2,...,yn = Πn
i=1∆m;yi .

Obviously, these operators are also convolution operators, namely

∆m;y1,y2,...,ynf = Πn
i=1(δ−yi −m(yi) δ0) ∗ f

holds. On the right hand side Π is meant as a convolution. In particular, for

m = 1 we have ∆1;y1,y2,...,yn = ∆y1,y2,...,yn . The following formula can be proved

easily by induction:

∆m;y1,y2,...,ynf(x) = m(x+ y1 + y2 + · · ·+ yn)∆y1,y2,...,yn

(
f · m̌

)
(x) (11)

for every positive integer n, exponential m, function f and arbitrary elements

x, y1, y2, . . . , yn in G.
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Modified difference operators are related to another basic function class. A

complex valued function on G is called an exponential monomial, if it is the

product of a polynomial and an exponential. Linear combinations, or what is the

same, sums of exponential monomials are called exponential polynomials. Further,

a complex valued function f on G is called a generalized exponential monomial,

if it is the product of a generalized polynomial and an exponential, and linear

combinations of generalized monomials are called generalized exponential polyno-

mials.

Similarly to generalized polynomials, generalized exponential monomials can

be characterized by a functional equation, namely, the following theorem holds.

Theorem 2. Given an Abelian group G the function f : G → C is a gen-

eralized exponential monomial if and only if there is a positive integer n and an

exponential m such that

∆m;y1,y2,...,ynf = 0 (12)

holds for each y1, y2, . . . , yn in G. In this case f = pm with some generalized

polynomial p.

Proof. This statement is obvious using formula (11) and the fact, that

exponentials never vanish. �

The following characterization of exponential monomials is also straightfor-

ward.

Theorem 3. On an Abelian group a generalized exponential monomial is

an exponential monomial if and only if it generates a finite dimensional variety.

Proof. Indeed, for any exponential m the map f ←→ f ·m is an isomor-

phism between the varieties τ(f) and τ(f ·m), hence the statement follows from

Theorem 1, (iii). �

4. Ideals and annihilators

For any subset H in G the annihilator of H is the set H⊥ of all measures

in CG, which vanish on H. Clearly, this is an ideal, which is proper if and only

if H is nonzero. For a function f the annihilator of the set {f}, or, what is the

same, of the variety τ(f) is called simply the annihilator of f . Similarly, for any

subset K in CG the annihilator of K is the set K⊥ of all functions in CG, which

are annihilated by all measures in K. Clearly, this is a variety on G, which is

nonzero if and only if K is nonzero. As above, for a measure µ the annihilator
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of the set {µ} is called simply the variety of µ. Clearly, this is the solution space

of the convolution equation µ ∗ f = 0. By the Hahn–Banach Theorem it is clear,

that V ⊥⊥ = V for each variety on G and it is obvious, that I⊥⊥ ⊇ I for any ideal

I in CG. As it is shown in [9], p. 105, actually equality holds here, too.

The basic question of spectral analysis on a variety V in CG can be re-

formulated as follows: does V contain a nonzero exponential monomial? In [8]

M. Laczkovich and G. Székelyhidi presented a complete characterization of

Abelian groups having spectral analysis: spectral analysis holds on G if and only

if the torsion free rank of G is less than the continuum.

The basic problem of spectral synthesis on a variety V can be reformulated in

terms of exponential monomials, too: given a variety V in CG, do the exponential

monomials in this variety span a dense subspace? This is the case, for instance,

if G is a finitely generated free Abelian group, by a result of M. Lefranc [10].

In [4] R. J. Elliot presented a theorem stating, that spectral synthesis holds

for any Abelian group, however, his proof was defective, and, as it was shown

in [16], actually Elliot’s theorem is false. In [9] the authors proved that spectral

synthesis holds on an Abelian group if and only if the torsion free rank of the

group is finite.

Even if spectral analysis or spectral synthesis does not hold on the group G

it may hold on some special varieties. Concerning spectral analysis, we have the

following simple result.

Theorem 4 (Spectral analysis for finite dimensional varieties). Given an

Abelian group G spectral analysis holds for all nonzero finite dimensional varieties

in CG.

Proof. We have to show that every nonzero finite dimensional variety in CG

contains an exponential. If V is a nonzero finite dimensional variety, then it is

a common invariant subspace of all translation operators τy for y in G, which

commute, hence they have a common eigenfunction in V , which generates a one

dimensional variety, and it is, as we have seen above, generated by an exponential.

�

In the subsequent paragraphs we shall obtain the corresponding result for

spectral synthesis in Corollary 19, which is one of our main results: spectral

synthesis holds for every finite dimensional variety. Also, in Theorem 18, we get

a new proof for the fact, that exponential polynomials are characterized by the

property spanning a finite dimensional variety. Similar results has been obtained

previously by several authors using different methods (see e.g. [1], [5], [7], [11],

[13], [14]). Our approach depends on the following fundamental theorem, the
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Noether–Lasker decomposition theorem (see [18]). We recall, that a ring is called

a Noether ring, if it satisfies the ascending chain condition for the ideals: every

ascending chain of ideals terminates. We shall also use another related concept:

a ring is called an Artin ring, if it satisfies the descending chain condition for the

ideals: every descending chain of ideals terminates. It is known, that every Artin

ring is Noether, however, the converse is not true in general. For basic knowledge

on Noether and Artin rings see [6], Vol. II.

Theorem 5 (Noether–Lasker). In any Noether ring every proper ideal is a

finite intersection of primary ideals.

This theorem is really the key of our work. Namely, it is obvious, that if the

ideal I in CG is the intersection of the ideals I1, I2, . . . , In, then

I⊥ = I⊥1 + I⊥2 + · · ·+ I⊥n .

Hence, to prove spectral synthesis for a given variety it is enough to show, that the

annihilators of primary ideals in CG including the variety consist of exponential

monomials. When proving this, as a by-product, we shall obtain a characteriza-

tion of exponential monomials. We shall do this in the sequel.

Theorem 6. Given an Abelian group G and a finite dimensional variety V

in CG, then the ring CG/V ⊥ is Artin.

Proof. A descending chain of ideals in CG/V ⊥ generates a descending chain

of ideals including V ⊥ in CG, which generates an ascending chain of varieties in V .

As V is finite dimensional, this chain of varieties, hence also the original chain of

ideals must be stationary, that is, CG/V ⊥ is Artin. �

Theorem 7. Given an Abelian group G and a finite dimensional variety V

in CG, then the annihilator V ⊥ is the intersection of a finite number of primary

ideals.

Proof. Indeed, as the ring CG/V ⊥, by the previous theorem, is Artin, hence

it is Noether, and, by Theorem 5, its zero ideal (0) is the intersection of a finite

number of primary ideals, which means, that V ⊥ is the intersection of a finite

number of primary ideals including V ⊥ in CG. �

Theorem 8. Given an Abelian group G and a proper variety V in CG, then

it is sufficient for an ideal I containing V ⊥ to be maximal is that its annihilator

in V is a one dimensional variety, generated by an exponential. If spectral analysis

holds for V , then it is also necessary.
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Proof. A variety is one dimensional if and only if it consists of all scalar

multiples of an exponential. For each exponentialm letMm denote the annihilator

of m. Let M ⊇ Mm be a maximal ideal, then M⊥, as a nonzero subvariety

of the variety generated by m, is necessarily equal to the variety of m, hence

M =M⊥⊥ =Mm. This means thatMm is maximal. For the converse we suppose,

that spectral analysis holds for V andM is a maximal ideal containing V ⊥. Then

its annihilator M⊥ is a nonzero subvariety in V , hence spectral analysis holds for

it, therefore it contains an exponential m. Thus M⊥ ⊇ τ(m), that is, M = Mm

and M⊥ =M⊥
m, which is the one dimensional variety generated by m. �

Theorem 9. Let G be an Abelian group and m an exponential. A proper

ideal in CG contains the measures δ−x −m(x) δ0 for all x in G if and only if it is

maximal and equals to Mm.

Proof. Let I be a proper ideal in CG containing all measures δ−x−m(x) δ0
and let φ be in I⊥. Then τyφ is in I⊥ for each y in G, hence we have

0 = (δ−x −m(x) δ0)(τyφ) = φ(x+ y)−m(x)φ(y)

for all x, y in G. This implies that φ = φ(0)m, that is φ is in τ(m). We have

I⊥ ⊆ τ(m), which implies I =
(
I⊥

)⊥ ⊇ Mm, but the latter is maximal, hence

I = Mm. Conversely, it is obvious, that Mm contains all measures of the form

δ−x −m(x) δ0 with x in G. �

We have the two simple corollaries.

Corollary 10. Given an Abelian group and a proper variety V in CG, for

which spectral analysis holds, then it is necessary and sufficient for an ideal I

containing V ⊥ to be maximal, that it is of the form Mm with some exponential

m in V .

Corollary 11. Given an Abelian group and a proper variety V in CG, for

which spectral analysis holds, then it is necessary and sufficient for an ideal I

containing V ⊥ to be maximal, that it contains all measures of the form δ−x −
m(x) δ0 with some exponential m in V .

5. Characterization theorems

Using the above results we obtain new characterization theorems for expo-

nential monomials.
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Theorem 12. Given an Abelian groupG and a function f : G→ C such that

spectral analysis holds for τ(f). Then the following statements are equivalent:

(i) f is an exponential monomial;

(ii) CG/τ(f)⊥ is a local Artin ring.

Proof. As spectral analysis holds for τ(f), it follows, by Corollary 10, that

every maximal ideal containing τ(f)⊥ is of the form Mm with some exponential

m. Suppose, that f = pm is an exponential monomial with p : G→ C polynomial

and m : G→ C exponential. Then, clearly, the unique maximal ideal containing

τ(f)⊥ is Mm, hence the ring CG/τ(f)⊥ is local. On the other hand, τ(f) is finite

dimensional by Theorem 3, hence, by Theorem 6, the ring CG/τ(f)⊥ is Artin.

Now suppose that CG/τ(f)⊥ is a local Artin ring and letMm denote its max-

imal ideal, where m is an exponential in τ(f). By Krull’s Intersection Theorem

(see [6], Vol. II, pp. 442–443.)

∩∞n=1M
n
m = τ(f)⊥.

On the other hand, as the ring CG/τ(f)⊥ is Artin, the descending chain of ideals

Mm ⊇ M2
m ⊇ . . . terminates, that is, Mn

m = Mn+1
m = . . . for some positive

integer n. It follows τ(f)⊥ = Mn
m. For each y in G the measure δ−y −m(y) δ0

belongs to Mm, hence Πn
i=1

(
δ−yi −m(yi) δ0

)
belongs to Mn

m, which implies that

we have

∆m;y1,y2,...,ynf = 0

for each y1, y2, . . . , yn in G. This means, that f is a generalized exponential

monomial having the form f = pm with some exponential m and generalized

polynomial p of degree at most n − 1. Suppose, that p is not a polynomial.

It is clear, that the measure µ in CG annihilates f if and only if the measure

m̌ · µ annihilates p, hence the rings CG/τ(f)⊥ and CG/τ(p)⊥ are isomorphic. It

follows, that CG/τ(p)⊥ is a local Artin ring with maximal idealM1. Based on the

assumption, that p is not a polynomial we construct a strictly ascending chain

of subvarieties in τ(p), which generates a strictly descending chain of ideals in

CG/τ(p)⊥, contradicting the fact, that it is an Artin ring. By assumption n ≥ 3

and τ(p) is infinite dimensional.

Let V0 = {0} and for each i = 0, 1, . . . we define

Vi+1 = {φ | φ ∈ τ(p) and ∆yφ ∈ Vi for each y ∈ G}.

Obviously we have Vi ⊆ Vi+1 for i = 0, 1, . . . and Vn = τ(p). If Vn−1 is finite

dimensional, then, by part (iii) in Theorem 1, it follows, that p is a polynomial,
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which is not the case. On the other hand, V1 is finite dimensional. Hence there

exists a k with 1 ≤ k < n − 1 such that Vk is finite dimensional and Vk+1 is

infinite dimensional. It follows again from (iii) in Theorem 1, that the functions

in Vk+1 are polynomials of degree at most n. Let φ1, φ2, . . . , φd be a basis of Vk
and we choose a sequence ψ1, ψ2, . . . in Vk+1 such, that ψi+1 is not in the variety

Wi generated by the set of functions

{φ1, φ2, . . . , φd} ∪ {ψ1, ψ2, . . . , ψi}

for each i = 1, 2, . . . . This is possible, because this set consists of a finite number

of polynomials, hence it generates a finite dimensional variety, however Vk+1 is

infinite dimensional. We have, that the chain of varieties Wi (i = 1, 2, . . . ) is

strictly ascending, which is a contradiction and our theorem is proved. �

Theorem 13. Given an Abelian group a generalized exponential polynomial

is an exponential monomial if and only if the factor ring with respect to its

annihilator is a local Noether ring.

Proof. If f is an exponential monomial, then obviously spectral analysis

holds for τ(f) and, by the previous theorem, CG/τ(f)⊥ is local Artin, hence it is

local Noether.

Conversely, suppose, that f is a generalized exponential monomial, that is,

f = pm, where p is a generalized polynomial of degree n and m is an exponential,

further CG/τ(f)⊥ is a local Noether ring. Clearly, spectral analysis holds for

τ(f) and τ(f)⊥ is included in a unique maximal ideal Mm. On the other hand,

obviously Mn+1
m ⊆ τ(f)⊥, hence the maximal ideal of the local Noether ring

CG/τ(f)⊥ is nilpotent. By Theorem 7.15 in [6], Vol. II. on pp. 426–427. it

follows, that CG/τ(f)⊥ is Artin, hence, by Theorem 12, f is an exponential

monomial. �

Theorem 14. Given an Abelian group G and a variety V in CG, for which

CG/V ⊥ is Artin. Then every prime ideal containing V ⊥ is maximal.

Proof. It is enough to show that every prime ideal in CG/V ⊥ is maximal.

Let P be a prime ideal in CG/V ⊥. Then (CG/V ⊥)/P is a domain, hence, as

CG/V ⊥ is Artin, it is an Artin domain, which is a field. It follows, that P is

maximal. �

Corollary 15. Given an Abelian group G and a variety V in CG, for which

CG/V ⊥ is Artin. Then for every primary ideal I containing V ⊥ the ring CG/I
is local.
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Proof. It is enough to show, that if I ⊇ V ⊥ is primary, then there is a

unique maximal ideal containing I. Let M be the radical of I, then, as I is

primary, by Krull’s Theorem (see [6], Vol. 2, Theorem 7.1, p. 392.), M is prime,

hence, by Theorem 14,M is maximal. Suppose, thatM1 is another maximal ideal

containing I. As the radical of I is the intersection of all prime ideals containing I,

and M1 is prime, it follows, that M1 includes M , but this implies M1 =M . �
Corollary 16. Let G be an Abelian group and V a variety in CG, for which

spectral analysis holds. If V ⊥ is primary and CG/V ⊥ is Artin, then there is an

exponential m in V such that every element in V is an exponential monomial of

the form p ·m with some polynomial p.

The following theorem is a summary of our previous results.

Theorem 17. Let G be an Abelian group and f : G→ C a function. Then

the following statements are equivalent:

(i) f is an exponential monomial;

(ii) spectral analysis holds for τ(f), τ(f)⊥ is primary and CG/τ(f)⊥ is a Noether

ring;

(iii) spectral analysis holds for τ(f), τ(f)⊥ is primary and CG/τ(f)⊥ is an Artin

ring.

Corollary 18. A complex valued function on an Abelian group is an expo-

nential polynomial if and only if it is contained in a finite dimensional variety.

Proof. This is a consequence of the Noether–Lasker theorem and the re-

mark following it. �
Corollary 19 (Spectral synthesis for finite dimensional varieties). Given

an Abelian group G spectral synthesis holds for all nonzero finite dimensional

varieties in CG.

Proof. By Theorem 7, for the finite dimensional variety V its annihilator

V ⊥ is the intersection of a finite number of primary ideals, hence we have

V ⊥ =
k∩

j=1

V ⊥
j , (13)

where Vj is a subvariety of V , further, by Corollary 16, Vj consists of exponential

monomials. Obviously, we have

V =
k∑

j=1

Vj ,

which proves our statement. �
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