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Characterization of projective Finsler manifolds of constant
curvature having infinite dimensional holonomy group
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Dedicated to Professor Lajos Tamássy on his 90th birthday

Abstract. In this paper we prove that the holonomy group of a simply connected

locally projectively flat Finsler manifold of constant curvature is a finite dimensional Lie

group if and only if it is flat or it is Riemannian. In particular, the holonomy group of

non-Riemannian projective Finsler manifolds of nonzero constant curvature is infinite

dimensional.

1. Introduction

In this paper we will consider some aspects of Hilberts fourth problem which

“asks to construct and study the geometries in which the straight line segment is

the shortest connection between two points”, [2], or in other words: construct and

study metrics on an open subset in an affine space whose geodesics are straight

lines. Such metrics are called projectively flat Finsler metrics. According to Bel-

trami’s theorem, a Riemannian metric is locally projectively flat if and only if it

has constant sectional curvature. In the Finslerian case the flag curvature is the

analogue of the Riemannian sectional curvature [5]. Contrary to the Riemann-

ian case, there are many locally projectively flat Finsler metrics which are not
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of constant flag curvature, and there are many Finsler metrics with constant flag

curvature which are not locally projectively flat. The first example of projectively

flat non-Riemannian Finsler metrics with constant negative flag curvature is the

famous Funk metric [6], and the first locally projectively flat non-Riemannian

Finsler metric with positive flag curvature was given by R. Bryant [4]. Z. Shen

made a systematic study of locally projectively flat Finsler metrics of constant

flag curvature in [13]. In this paper we are investigating some geometric proper-

ties (the dimension of the holonomy group) of locally projectively flat Finsler

manifolds of constant curvature.

In order to set the problem properly let us introduce some notation. A

Finsler manifold is a pair (M,F), where M is an n-manifold and F : TM → R is

a non-negative function, smooth and positive away from the zero section of TM ,

positively homogeneous of degree 1, and strictly convex on each tangent space.

A Finsler manifold of dimension 2 is called Finsler surface.

The concept of Finsler manifold is a direct generalization of the Riemann-

ian one. The fundamental tensor g = gijdx
i ⊗ dxj associated to F is formally

analogous to the metric tensor in Riemannian geometry. It is defined by

gij :=
1

2

∂2F2

∂yi∂yj
, (1)

in an induced standard coordinate system (x, y) on TM . As in Riemannian geo-

metry, a canonical connection Γ can be defined for a Finsler space [7]. However,

since the energy function E = 1
2F2 is not necessarily quadratic and only homoge-

neous, the connection is in general non-linear. In the case, when the connection

Γ is linear, the Finsler space is called Berwald space. In particular, every Rie-

mannian manifold is a Berwald space.

Due to the existence of the canonical connection, the holonomy group of a

Riemann or Finsler manifold, can be defined in a very natural way: it is the group

generated by parallel translations along closed curves. In the Riemannian case,

since the Levi–Civita connection is linear and preserves, the Riemannian metric,

the holonomy group is a Lie subgroup of the orthogonal group O(n) (see [3]).

The Riemannian holonomy theory has been extensively studied, and by now, its

complete classification is known.

The holonomy properties of Finsler spaces are essentially different from the

Riemannian one. It is proved in [9] that the holonomy group of a Finsler manifold

of nonzero constant curvature with dimension greater than 2 is not a compact

Lie group. In [11] large families of projectively flat Finsler manifolds of constant
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curvature are constructed such that their holonomy groups are not finite dimen-

sional Lie groups. There are explicitly given examples of Finsler 2-manifolds ha-

ving maximal holonomy group. In these examples the closure of the holonomy

group is isomorphic to the orientation preserving diffeomorphism group of the

1-dimensional sphere [12].

In this paper we are investigating the holonomy group of locally projectively

flat Finsler manifolds of constant curvature. A Finsler function F on an open

subset D ⊂ Rn is called projectively flat, if all geodesic curves are straight lines

in D. The Finsler manifold (M,F) is said to be locally projectively flat, if for

any point there exists a local coordinate system in which F is projectively flat.

Our aim is to characterize all locally projectively flat Finsler manifolds with in-

finite dimensional holonomy group. To obtain such a characterization, we will

investigate the dimension of the infinitesimal holonomy algebra which was intro-

duced in the Finsler case in [10]. In Proposition 3.2 we prove that if (M,F) is

a non-Riemannian locally projectively flat Finsler manifolds of nonzero constant

curvature, then its infinitesimal holonomy algebra is infinite dimensional. Using

this result and the tangent property of the infinitesimal holonomy algebra proved

in [10] we obtain the characterization given by Theorem 3.6: The holonomy group

of a locally projectively flat Finsler manifold of constant curvature is finite dimen-

sional if and only if it is a Riemannian manifold or a flat Finsler manifold. From

Theorem 3.6 we obtain that the holonomy group of non-Riemannian projective

Finsler manifolds of nonzero constant curvature is infinite dimensional.

2. Preliminaries

Throughout this article, M is a C∞ smooth simply connected manifold,

X∞(M) is the vector space of smooth vector fields on M and Diff∞(M) is the

group of all C∞-diffeomorphism of M . The first and the second tangent bundles

of M are denoted by (TM, π,M) and (TTM, τ, TM), respectively.

2.1. Finsler manifolds. A Finsler manifold is a pair (M,F), where the Finsler

function F : TM → R is a continuous function, smooth on T̂M := TM \ {0}, its
restriction Fx = F|TxM is a positively homogeneous function of degree one and

the symmetric bilinear form

gx,y : (u, v) 7→ gij(x, y)u
ivj =

1

2

∂2F2
x(y + su+ tv)

∂s ∂t

∣∣∣
t=s=0

(2)
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is positive definite. The Finsler manifold (M,F) is Riemannian, if F2 induces a

quadratic form on any tangent space TxM . Hence we say that (M,F) is non-

Riemannian Finsler manifold if there exists a point x ∈ M such that F2
x is not

quadratic.

A vector field X(t) = Xi(t) ∂
∂xi along a curve c(t) is said to be parallel with

respect to the associated homogeneous (nonlinear) connection if it satisfies

DċX(t) :=
(dXi(t)

dt
+Gi

j(c(t), X(t))ċj(t)
) ∂

∂xi
= 0, (3)

where the geodesic coefficients Gi(x, y) are given by

Gi(x, y) :=
1

4
gil(x, y)

(
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)
)
yjyk. (4)

and Gi
j = ∂Gi

∂yj , (cf. formulas (4.7) and (4.8) in [5]). The horizontal Berwald

covariant derivative ∇Xξ of ξ(x, y) = ξi(x, y) ∂
∂yi by the vector field X(x) =

Xi(x) ∂
∂xi is expressed locally by

∇Xξ =

(
∂ξi(x, y)

∂xj
−Gk

j (x, y)
∂ξi(x, y)

∂yk
+Gi

jk(x, y)ξ
k(x, y)

)
Xj ∂

∂yi
, (5)

where Gi
jk(x, y) :=

∂Gi
j(x,y)

∂yk .

A Finsler manifold (M,F) is said to be projectively flat, if there exists a

diffeomorphism of M to an open subset D ⊂ Rn such that the images of geodesic

curves are straight lines in D. A Finsler manifold (M,F) is said to be locally

projectively flat, if for every x ∈ M there exists a local coordinate system (U, x)

such that x = (x1, . . . , xn) is mapping the neighbourhood U into the Euclidean

space Rn such that the straight lines of Rn correspond to the geodesics of (M,F)

on U . Then there exists a function P(x, y), such that the geodesic coefficients are

given by

Gi(x, y) = P(x, y)yi, i = 1, . . . , n (6)

The function P = P(x, y) is called the projective factor of (M,F) on U . Since it

is 1-homogeneous in the y-variable, we have also the following relations:

Gi
k =

∂P
∂yk

yi + Pδik, Gi
kl =

∂2P
∂yk∂yl

yi +
∂P
∂yk

δil +
∂P
∂yl

δik. (7)

It follows from equation (6) that the associated homogeneous connection (3) is

linear if and only if the projective factor P(x, y) is linear in y. According to

Lemma 8.2.1 in [5] p.155, if (M ⊂ Rn,F) is a projectively flat Finsler manifold

with constant flag curvature λ, then we have

P =
1

2F
∂F
∂xi

yi, P2 − ∂P
∂xi

yi = λF2. (8)
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Remark 2.1. From (8) we obtain that if λ 6= 0 and P(x, y) is linear in y at

x ∈ M then F2(x, y) is a quadratic form in y at x.

2.2. Holonomy group, curvature, infinitesimal holonomy algebra. For a

Finsler manifold (M,F) of dimension n the indicatrix at x ∈ M is

IxM := {y ∈ TxM | F(y) = 1}

in TxM which is an (n − 1)-dimensional submanifold of TxM . We denote by

(IM,π,M) the indicatrix bundle of (M,F). We remark that, although the ho-

mogeneous (nonlinear) parallel translation is in general not metrical, that is it

does not preserve the Finsler metric tensor (2), but it preserves the value of the

Finsler function. That means that for any curves c : [0, 1] → M , the induced

parallel translation τc : Tc(0)M → Tc(1)M induces a map τc : Ic(0)M → Ic(1)M
between the indicatrices.

The holonomy group Holx(M) of (M,F) at a point x ∈ M is the subgroup

of the group of diffeomorphisms Diff∞(IxM) generated by (nonlinear) parallel

translations of IxM along piece-wise differentiable closed curves initiated at the

point x ∈ M .

The Riemannian curvature tensor

R = Ri
jk(x, y)dx

j ⊗ dxk ⊗ ∂

∂xi

has the expression

Ri
jk(x, y) =

∂Gi
j(x, y)

∂xk
− ∂Gi

k(x, y)

∂xj
+Gm

j (x, y)Gi
km(x, y)−Gm

k (x, y)Gi
jm(x, y).

The manifold has constant flag curvature λ ∈ R, if for any x ∈ M the local

expression of the Riemannian curvature is

Ri
jk(x, y) = λ

(
δikgjm(x, y)ym − δijgkm(x, y)ym

)
.

For any vector fields X,Y ∈ X∞(M) on M the vector field ξ = R(X,Y ) ∈
X∞(IM) is called a curvature vector field of (M,F) (see [9]). The Lie algebra

R(M) of vector fields generated by the curvature vector fields of (M,F) is called

the curvature algebra of (M,F). The restriction Rx(M) := {ξ|IxM ξ ∈ R(M)} ⊂
X∞(IxM) of the curvature algebra to an indicatrix IxM is called the curvature

algebra at the point x ∈ M .

We remark that the indicatrix of a Finsler surface is 1-dimensional at any

point x ∈ M , hence the curvature vector fields at x ∈ M are proportional to
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any given non-vanishing curvature vector field. Therefore the curvature algebra

Rx(M) is at most a 1-dimensional commutative Lie algebra.

The infinitesimal holonomy algebra of (M,F) is the smallest Lie algebra

hol∗(M) of vector fields on the indicatrix bundle IM containing the curvature

algebra and invariant with respect to the horizontal Berwald covariant differenti-

ation. The hol∗(M) is characterized by the following properties:

(i) any curvature vector field ξ belongs to hol∗(M),

(ii) if ξ, η ∈ hol∗(M) then [ξ, η] ∈ hol∗(M),

(iii) if ξ ∈ hol∗(M) and X ∈ X∞(M) then ∇Xξ ∈ hol∗(M).

The restriction

hol∗x(M) := {ξ|IxM ξ ∈ hol∗(M)} ⊂ X∞(IxM)

of the infinitesimal holonomy algebra to an indicatrix IxM is called the infinites-

imal holonomy algebra at the point x ∈ M .

Clearly, we have R(M) ⊂ hol∗(M) and Rx(M) ⊂ hol∗x(M) for any x ∈ M

(see [10]).

3. Dimension of the holonomy group

Let (M,F ) be a Finsler manifold and x ∈ M an arbitrary point in M .

According to Proposition 3 of [10], the infinitesimal holonomy algebra hol∗x(M) is

tangent to the holonomy group Holx(M). Therefore the group generated by the

exponential image of the infinitesimal holonomy algebra at x ∈ M with respect

to the exponential map

expx : X∞(IxM) → Diff∞(IxM)

is a subgroup of the closed holonomy group Holx(M) (see Theorem 3.1 of [12]).

Consequently, we have the following estimation on the dimensions:

dim hol∗x(M) ≤ dimHolx(M). (9)

Using the result of S. Lie claiming that the dimension of a finite dimensional

Lie algebra of vector fields on a connected 1-dimensional manifold is less than 4

(cf. [1], Theorem 4.3.4) we can obtain the following

Lemma 3.1. If the infinitesimal holonomy algebra hol∗x(M) of a Finsler

surface (M,F) contains 4 simultaneously non-vanishing R-linearly independent

vector fields, then hol∗x(M) is infinite dimensional.
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Proof. If hol∗x(M) is a finite dimensional Lie algebra, then the correspond-

ing Lie group Hol∗x(M) is also finite dimensional. Since hol∗x(M) contains 4 si-

multaneously non-vanishing R-linearly independent vector fields we obtain that

Hol∗x(M) acts locally effectively on the (1-dimensional) indicatrix IxM , and its

dimension is at least 4. This is in contradiction to Lie’s theorem. ¤

Using Lemma 3.1 we can prove the following

Proposition 3.2. The infinitesimal holonomy algebra of any locally projec-

tively flat non-Riemannian Finsler surface (M,F) of constant curvature λ 6= 0 is

infinite dimensional.

Proof. Assume that the locally projectively flat Finsler surface (M,F) of

non-zero constant curvature λ is non-Riemannian at a fixed point x ∈ M . Let

(x1, x2) be a local coordinate system centered at x, corresponding to the canonical

coordinates of the Euclidean plane which is projectively related to (M,F), and

let (y1, y2) be the induced coordinate system in the tangent planes TxM .

Consider the curvature vector field ξ ∈ X(IxM) at the point x ∈ M defined

as

y → ξ(x, y) := R

(
∂

∂x1
,

∂

∂x2

)
(x, y) = λ

(
δi2g1m(x, y)ym − δi1g2m(x, y)ym

) ∂

∂xi
.

Since λ 6= 0, the vector field ξ is non-vanishing. Moreover, since (M,F) is of

constant flag curvature, the horizontal Berwald covariant derivative ∇WR of the

curvature tensor field R vanishes and one has

∇W ξ = R

(
∇k

(
∂

∂x1
∧ ∂

∂x2

))
W k.

Since

∇k

(
∂

∂x1
∧ ∂

∂x2

)
=

(
G1

k1 +G2
k2

) ∂

∂x1
∧ ∂

∂x2

we obtain ∇W ξ = (G1
k1 +G2

k2)W
kξ. According to (7) we have

Gm
km = 3

∂P
∂yk

and hence ∇kξ = 3 ∂P
∂yk ξ, where ∇k = ∇ ∂

∂xk
. Moreover we have

∇j

(
∂P
∂yk

)
=

∂2P
∂xj∂yk

−Gm
j

∂2P
∂ym∂yk

=
∂2P

∂xj∂yk
− P ∂2P

∂yk∂yj
,
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and hence

∇j (∇kξ) = 3

(
∂2P

∂xj∂yk
−P ∂2P

∂yk∂yj
+ 3

∂P
∂yk

∂P
∂yj

)
ξ.

According to Lemma 8.2.1, equation (8.25) in [5], p. 155, we have

∂2P
∂xj∂yk

=
∂P
∂yj

∂P
∂yk

+
∂2P

∂yj∂yk
− λ gjk, (10)

hence

∇j (∇kξ) = 3

(
4
∂P
∂yj

∂P
∂yk

− λ gjk

)
ξ.

It follows

Lemma 3.3. For any fixed 1 ≤ j, k ≤ 2, the vector field on IxM defined as

y → ξ(x, y), y → ∇1ξ(x, y), y → ∇2ξ(x, y), y → ∇j (∇kξ) (x, y), (11)

are R-linearly independent if and only if

1,
∂P
∂y1

,
∂P
∂y2

,
∂2P

∂yj∂yk
− λ

4
gjk (12)

are R-linearly independent
(
as elements of C∞(TxM)

)
functions on TxM .

Indeed, since we assumed that the Finsler function F is non-Riemannian

at the point x, then F2(x, y) is non-quadratic in y and according to Remark

2.1, the function P(x, y) is non-linear in y on TxM . Let us choose a direction

y0 = (y10 , y
2
0) ∈ TxM with y10 6= 0, y20 6= 0 and having property that P is non-linear

1-homogeneous function in a conic neighbourhood U of y0 in TxM . By restricting

U if it is necessary we can suppose that for any y ∈ U we have y1 6= 0, y2 6= 0.

To avoid confusion between coordinate indexes and exponents, we rename

the fiber coordinates of vectors belonging to U by (u, v) = (y1, y2). Using the

values of P on U we can define a 1-variable function f = f(t) on an interval I ⊂ R
by

f(t) :=
1

v
P(x1, x2, tv, v). (13)

Then we can express P and its derivatives with f :

P = v f(u/v),
∂P
∂y1

= f ′(u/v),
∂P
∂y2

= f(u/v)− u

v
f ′(u/v),

∂2P
∂y1∂y1

=
1

v
f ′′(u/v),

∂2P
∂y1∂y2

= − u

v2
f ′′(u/v),

∂2P
∂y2∂y2

=
u2

v3
f ′′(u/v). (14)
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Lemma 3.4. The functions 1, ∂P
∂y1 ,

∂P
∂y2 are R-linearly independent.

Proof. A nontrivial relation a + b ∂P
∂y1 + c ∂P

∂y2 = 0 yields the differential

equation

a+ bf ′ + c(f − tf ′) = 0.

It is clear that both b and c cannot be zero. If c 6= 0 we get the differential

equation
(a+ cf)′

a+ cf
=

1

t− b
c

.

The solutions is f(t) = t − (a + b)/c and therefore the corresponding P(u, v) =

u − v(a + b)/c is linear which is a contradiction. If c = 0, then b 6= 0 and

f = −a
b t+K. The corresponding P(u, v) = −a

bu+Kv is again linear which is a

contradiction. ¤

Let us turn back to the proof of Proposition 3.2. Assume, that the infinites-

imal holonomy algebra is finite dimensional. We will show that this assumption

leads to contradiction which will prove then, that the infinitesimal holonomy al-

gebra is actually infinite dimensional.

Since IxM is 1-dimensional, according to the Lemma 3.1, the 4 vector fields

in (11) are R-linearly dependent for any j, k ∈ {1, 2}. Using Lemma 3.3 we obtain

that the functions

1, P1, P2, PjPk − λ

4
gjk (15)

(Pi =
∂P
∂yi , Pjk = ∂2P

∂yj∂yk

)
are R-linearly dependent for any j, k ∈ {1, 2}. However,

from Lemma 3.4 we know, that the first three functions in (15) are R-linearly
independent. Therefore by the assumption, the fourth function must be a linear

combination of the first three, that is there exist constants ai, bi, ci ∈ R, i = 1, 2, 3,

such that

λ

4
g11 = P1P1 + a1 + b1P1 + c1P2,

λ

4
g12 = P1P2 + a2 + b2P1 + c2P2,

λ

4
g22 = P2P2 + a3 + b3P1 + c3P2. (16)

Using (1) we have to have ∂1g21 − ∂2g11 = 0 and ∂1g22 − ∂2g12 = 0 which yield

P2P11 − P1P12 + b2P11 + (c2 − b1)P12 − c1P22 = 0,

P1P22 − P2P12 − b3P11 + (b2 − c3)P12 + c2P22 = 0. (17)
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Using the expressions (14) we obtain from (17) the equations

(
f − u

v
f ′
) 1

v
f ′′ + f ′ u

v2
f ′′ + b2

1

v
f ′′ − (c2 − b1)

u

v2
f ′′ − c1

u2

v3
f ′′ = 0,

f ′u
2

v3
f ′′ + (f − u

v
f ′)

u

v2
f ′′ − b3

1

v
f ′′ − (b2 − c3)

u

v2
f ′′ + c2

u2

v3
f ′′ = 0. (18)

Since by the non-linearity of P on U we have f ′′ 6= 0, equations (18) can divide

by f ′′/v and we get

f + b2 + (b1 − c2)
u

v
− c1u

2

v2
= 0

u

v
f − b3 + (c3 − b2)

u

v
+

c2u
2

v2
= 0. (19)

for any t = u/v in an interval I ⊂ R. The solution of this system of quadratic

equations for the function f is f(t) = −c2 t − b2 with c1 = b3 = 0, b1 = 2c2,

c3 = 2b2. But this is a contradiction, since we supposed that by the non-linearity

of P we have f ′′ 6= 0 on this interval. Hence the functions 1, P1, P2, PjPk −
λ
4 gjk can not be linearly dependent for any j, k ∈ {1, 2}, from which follows the

assertion. ¤

Remark 3.5. From Proposition 3.2 we get that if (M,F) is non-Riemannian

and λ 6= 0, then the holonomy group has an infinite dimensional tangent algebra.

Indeed, according to Theorem 6.3 in [10] the infinitesimal holonomy algebra

hol∗x(M) is tangent to the holonomy group Holx(M), from which follows the as-

sertion.

Now, we can prove our main result:

Theorem 3.6. The holonomy group of a locally projectively flat simply

connected Finsler manifold (M,F) of constant curvature λ is finite dimensional

if and only if (M,F) is Riemannian or λ = 0.

Proof. If (M,F) is Riemannian then its holonomy group is a Lie subgroup

of the orthogonal group and therefore it is a finite dimensional compact Lie group.

If (M,F) has zero curvature, then the horizontal distribution associated to the

canonical connection in the tangent bundle is integrable and hence the holonomy

group is trivial.

If (M,F) is non-Riemannian having non-zero curvature λ, then for each

tangent 2-plane S ⊂ TxM the manifoldM has a totally geodesic submanifold M̃ ⊂
M such that TxM̃ = S. This M̃ with the induced metric is a locally projectively
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flat Finsler surface of constant curvature λ. Therefore from Proposition 3.2 we get

that hol∗x(M̃) is infinite dimensional. Moreover, according to Theorem 4.3 in [11],

if a Finsler manifold (M,F) has a totally geodesic 2-dimensional submanifold M̃

such that the infinitesimal holonomy algebra of M̃ is infinite dimensional, then the

infinitesimal holonomy algebra hol∗x(M) of the containing manifold is also infinite

dimensional. Using (9) we get that Holx(M) cannot be finite dimensional. Hence

the assertion is true. ¤

Theorem 3.6 can be reformulated in the following way

Theorem 3.7. The holonomy group of a locally projectively flat Finsler

manifold of constant curvature is infinite dimensional if and only if it is non-

Riemannian with nonzero curvature.

We note that there are examples of non-Riemannian type locally projectively

flat Finsler manifolds with λ = 0 and λ 6= 0 curvature, (cf. [13], [8]).

Remark 3.8. In the discussion before Theorem 3.6, the key condition for

the Finsler metric tensor was not the positive definiteness but its non-degenerate

property. Therefore Theorem 3.6 can be generalized as follows.

A pair (M,F) is called semi-Finsler manifold if in the definition of Finsler

manifolds the positive definitness of the Finsler metric tensor is replaced by the

nondegenerate property. Then we have

Corollary 3.9. The holonomy group of a locally projectively flat simply con-

nected semi-Finsler manifold (M,F) of constant curvature λ is finite dimensional

if and only if (M,F) is semi-Riemannian or λ = 0.
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