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Chern connection of a pseudo-Finsler metric
as a family of affine connections
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This article is dedicated to Professor Lajos Tamássy on the occasion

of his 90th birthday

Abstract. We consider the Chern connection of a (conic) pseudo-Finsler mani-

fold (M,L) as a linear connection ∇V on any open subset Ω ⊂ M associated to any

vector field V on Ω which is non-zero everywhere. This connection is torsion-free and

almost metric compatible with respect to the fundamental tensor g. Then we show some

properties of the curvature tensor RV associated to ∇V and in particular we prove that

the Jacobi operator of RV along a geodesic coincides with the one given by the Chern

curvature.

1. Introduction

The Chern connection of a Finsler metric F on a manifold M was originally

conceived by S.-S. Chern [5] as a connection in a fiber bundle over TM \ 0 and

introduced again independently by H. Rund in [14] (see also [2]). Then it was

completely forgotten until the work of D. Bao and S.-S. Chern [3], where the
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authors show the extraordinary usefulness of the Chern connection in treating

global problems of Finsler geometry. In particular, the connection provides an

easy way to compute the flag curvature of a Finsler metric, which is an impor-

tant invariant associated to the deviation of geodesics. But when considered as

a connection in a fiber bundle over TM \ 0, it does not allow one to use the

coordinate-free global methods of Modern Differential Geometry employed in the

study of Riemannian Geometry. This can be overcome by using the osculating

Riemannian metric associated to a Finsler metric introduced by A. Nazim in his

Ph.D. thesis [10] and studied sistematically by O. Varga [16]. More precisely, for

any p ∈ M and any non-zero vector v in TpM , the fundamental tensor provides a

scalar product in TpM . In particular this idea was developed by H.-H. Matthias

in his Ph.D. Thesis [9, Definition 2.5] to define an affine connection ∇V on an

open subset Ω ⊂ M for every vector field V on Ω which is non-zero everywhere.

The connection ∇V is torsion-free and almost g-compatible, meaning that the

derivative of the osculating Riemannian metric gV is not zero, but a certain exp-

ression in terms of the Cartan tensor (see (1) and Definition 2.1). The approach

of H.-H. Matthias was collected in [15, page 100], where the author shows a

relation of the Jacobi operator of the metric gV in case that V is a geodesic field

[15, Proposition 8.4.3 and Lemma 8.1.1] and recovered again by other authors as

H-B. Rademacher [12], [13] and Z. Kovács and A. Tóth in [8] and also used

by J. C. Álvarez Paiva and C. E. Durán in [1, Theorem 6.1].

None of the cited works makes a detailed study of the properties of the

curvature tensor RV of ∇V and its relation with the flag curvature when V is

not a geodesic field. Our main goal is to write down the symmetries and basic

properties of RV in order to establish the relation of RV with the flag curvature

in the general case when V is not a geodesic field. This result can be used for

example to obtain the first and the second variation of the energy functional with

coordinate-free global methods (see [7]).

The work is structured as follows. In Section 2 we introduce the notion of

pseudo-Finsler metric, which generalizes the former notions of Finsler metric in

the sense that the function is not necessarily positive and it is positive homoge-

neous of degree two, rather than one, with non-degenerate fundamental tensor.

Then we introduce the Cartan tensor associated to (M,L) and an affine connec-

tion ∇V associated to a vector field V in an open subset Ω ⊂ M which takes

values in A ∩ TΩ . This connection is characterized as the unique one which is

torsion-free and almost metric compatible (see Definition 2.1). As it is shown in

Proposition 2.6, the connection ∇V can be identified in a certain sense with the
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Chern connection and it defines a covariant derivativ DV
γ along any curve γ with

a reference vector V along the curve which is non-zero everywhere.

In Section 3 we firstly study in Proposition 3.1 the symmetric properties of

the curvature tensor RV of ∇V . In Subsection 3.2 we establish the link between

the tensor RV and the flag curvature of (M,L). Unlike ∇V , the curvature tensor

RV depends not only on the value of V in p ∈ M , but in the whole vector

field in a neighborhood of p. Nevertheless we show that the Jacobi operator can

be defined along a curve (see Proposition 3.3) and it coincides with the Jacobi

operator obtained from the curvature of the Chern connection as a connection

on the fiber bundle π∗
A(TM) over the conic subset A when γ is a geodesic (see

Theorem 3.4).This allows us to compute the flag curvature in terms of RV (see

Corollary 3.5).

2. Pseudo-Finsler metrics

Let M be a smooth manifold, TM its tangent bundle and π : TM → M the

natural projection. We will say that an open subset A ⊂ TM is conic if for every

v ∈ A and λ > 0, we have λv ∈ A. We say that a function L : A ⊂ TM → R is a

(two-homogeneous, conic) pseudo-Finsler metric if it is positive homogeneous of

degree 2, that is, L(λv) = λ2L(v) for every v ∈ A and λ > 0, and the fundamental

tensor of L defined as

gv(u,w) :=
1

2

∂2

∂t∂s
L(v + tu+ sw)|t=s=0,

for any v ∈ A and u,w ∈ Tπ(v)M , is non-degenerate (see [6] for explicit comp-

utations of the fundamental tensor in some important cases). In the following,

we will assume that the pseudo-Finsler metric is two-homogeneous and conic, na-

mely, not necessarily defined in the whole tangent bundle. Observe that in some

references, a pseudo-Finsler metric is defined as a one-homogeneous function [6]

with possibly degenerate fundamental tensor. The square of such a function fits

in our definition whenever the fundamental tensor is non-degenerate.

Then we define the Cartan tensor of L as the trilinear form

Cv(w1, w2, w3) =
1

4

∂3

∂s3∂s2∂s1
L

(
v +

3∑

i=1

siwi

)∣∣∣∣
s1=s2=s3=0

, (1)

for any v ∈ A and w1, w2, w3 ∈ Tπ(v)M . It is easy to see that Cv is homogeneous

of degree −1 in v and

Cv(v, w1, w2) = Cv(w1, v, w2) = Cv(w1, w2, v) = 0 (2)



32 Miguel Angel Javaloyes

for any v ∈ A and w1, w2 ∈ Tπ(v)M (see for example [7, Proposition 2.6 and

Remark 2.9]).

2.1. Chern connection. Given a pseudo-Finsler manifold (M,L) with conic

domain A ⊂ TM \ 0, we will say that a vector field V on an open subset Ω ⊂ M

is L-admissible if V (x) ∈ A ∩ TxM for every x ∈ Ω.

Definition 2.1. Let (M,L) be a pseudo-Finsler manifold and V an L-admis-

sible vector field on an open subset Ω ⊂ M . Consider an affine connection ∇V

on Ω and denote by X(Ω) the space of vector fields on Ω. We say that

(1) ∇V is torsion-free if ∇V
XY −∇V

Y X = [X,Y ] for every X,Y ∈ X(Ω),

(2) ∇V is almost g-compatible if

X(gV (Y,Z)) = gV (∇V
XY,Z) + gV (Y,∇V

XZ) + 2CV (∇V
XV, Y, Z),

where X,Y, Z ∈ X(Ω) and gV and CV are, respectively, the fundamental

tensor and the Cartan tensor of L evaluated on the vector field V .

Remark 2.2. Observe that the condition of almost g-compatibility for the

pseudo-Finsler metric L given above is equivalent to the equation

∇V
X(gV )(Y, Z) = 2CV (∇V

XV, Y, Z),

namely, the derivative of gV is expressed in terms of Cartan tensor.

Proposition 2.3. A pseudo-Finsler manifold (M,L) and an L-admissible

vector field V on an open subset Ω ⊂ M admit a unique torsion-free and almost

g-compatible affine connection ∇V .

Proof. Observe that ∇V is determined by a “Koszul formula” as

2gV (∇V
XY,Z) = X(gV (Y, Z))− Z(gV (X,Y )) + Y (gV (Z,X)) + gV ([X,Y ], Z)

+ gV ([Z,X], Y )− gV ([Y,Z], X) + 2(−CV (∇V
XV, Y, Z)

− CV (∇V
Y V, Z,X) + CV (∇V

ZV,X, Y )).

Indeed, when X = Y = V , the terms of the Cartan tensor vanish because of (2)

determining ∇V
V V and then ∇V

XV can be determined using ∇V
V V . Moreover, it

follows from Koszul formula that ∇V
XV is f -linear in X, that is, ∇V

fXV = f∇V
XV

for any real function f on U . Then it is clear that Koszul formula determines

∇V
XY for any vector fields X, Y on U and it is an affine linear connection. ¤
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Analogous computations to those of the last proof can be found in [12, The-

orem 3.10].

Remark 2.4. Observe that ∇V is homogeneous of degree zero in V in the

sense that if λ > 0, then ∇λV = ∇V , since ∇λV solves the same equations as ∇V

(see Definition 2.1).

Let us denote by n the dimension of M . Now fix a coordinate system on

an open subset Ω of M , that is, a map ϕ : Ω → ϕ(Ω) ⊂ Rn, given by ϕ(p) =

(x1(p), x2(p), . . . , xn(p)) for every p ∈ Ω and denote as ∂
∂x1 , . . . ,

∂
∂xn , the vector

fields associated to the system, that is, the partial derivatives of ϕ−1 (composed

with ϕ in order to have vector fields in Ω), which we will call the coordinate basis

associated to ϕ. We define the formal Christoffel symbols associated to ϕ and the

vector field V , Γk
ij(V ), by means of the equation

∇V
∂

∂xi

(
∂

∂xj

)
=

n∑

k=1

Γk
ij(V )

∂

∂xk
,

for i, j = 1, . . . , n.

Remark 2.5. Let us denote by gij(v) = gv
(

∂
∂xi ,

∂
∂xj

)
the functions defined

for any v ∈ TΩ ∩ A. Moreover, gij will be the coefficients of the inverse matrix

of {gij} with i, j = 1, . . . , n. From now on we will use the Einstein summation

convention consisting in omitting the sums from 1 to n when an index appears

up and down, and we will raise and lower indices using gij and gij , for example

Γkij(V ) =

n∑
m=1

gkm(V )Γm
ij(V ) = gkm(V )Γm

ij(V ),

for any L-admissible vector field V on Ω. Moreover, j in ∂
∂xj will be considered a

down index and then

n∑

k=1

Γk
ij(V )

∂

∂xk
= Γk

ij(V )
∂

∂xk
.

In principle, Γk
ij(V ) depends on the vector field V , but let us see that this

is not the case and in fact they are homogeneous real functions of degree zero on

A ∩ TΩ (see Remark 2.4).

Given a curve γ : [a, b] → M , we will define the vector bundle γ∗(TM) as

the vector bundle over [a, b] induced by π : TM → M through γ. The smooth

sections of γ∗(TM) are called vector fields along γ and we will denote by X(γ)

the subset of such smooth sections. We will say that V ∈ X(γ) is L-admissible

if V (t) ∈ A for every t ∈ [a, b].
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Proposition 2.6. Let (M,L) be a pseudo-Finsler manifold and V an L-

admissible vector field in an open subset Ω ⊂ M endowed with a system of

coordinates ϕ. Then the Christoffel symbols of ∇V depend only on v = V (x),

with x ∈ Ω, and not on the extension of v. Moreover, they coincide with the

Christoffel symbols of the Chern connection (see [4, Eq. (2.4.9)]). Given a smooth

curve γ : [a, b] → M , X ∈ X(γ) and W an L-admissible vector field along γ, we

can define the covariant derivative of X along γ having W as reference vector as

DW
γ X =

dXi

dt

∂

∂xi
+Xi(t)γ̇j(t)Γk

ij(W (t))
∂

∂xk
, (3)

where (X1, . . . , Xn) and (γ̇1, . . . , γ̇n) are respectively the coordinates of X and

γ̇ in the coordinate basis of ϕ. Moreover, it is almost g-compatible, namely, if

X,Y ∈ X(γ), then

d

dt
gW (X,Y ) = gW (DW

γ X,Y ) + gW (X,DW
γ Y ) + 2CW (DW

γ W,X, Y ). (4)

Proof. Let us observe that the functions gij are defined in A ∩ TΩ and we

will consider the natural coordinate system in TΩ associated to x1, x2, . . . , xn,

which will be denoted as x1, x2, . . . , xn, y1, y2, . . . , yn. Denote by V 1, . . . , V n the

coordinates of V in (Ω, ϕ). Observe that

∂(gij ◦ ϕ−1)(x, V 1(x), . . . , V n(x))

∂xk
=

∂gij
∂xk

+
∂V l

∂xk

∂gij
∂yl

=
∂gij
∂xk

+ 2
∂V l

∂xk
Clij , (5)

where Clij = CV

(
∂

∂xl ,
∂

∂xi ,
∂

∂xj

)
and x = (x1, . . . , xn) ∈ ϕ(Ω). With abuse of

notation we have omitted the composition with ϕ−1 and the point of evaluation

in the right-hand terms and in the rest of the proof. Now from Koszul formula

for X = ∂
∂xi , Y = ∂

∂xj and Z = ∂
∂xk and (5), we obtain

Γkji = γkji − V lΓp
ilCpkj − V lΓp

jlCpik + V lΓp
klCpji, (6)

where

γijk =
1

2

(
∂gij
∂xk

− ∂gjk
∂xi

+
∂gki
∂xj

)
.

Observe that by 2, V lClij = 0 and Cijk is symmetric in the three indexes. Then

V iV jΓkji = V iV jγkij and raising indices we get

V iV jΓk
ji = V iV jγk

ij . (7)

From (6) and using (7) we conclude that

V iΓs
ji = gksV iΓkji = V iγs

ji − V lV iγp
lig

ksCpjk := Ns
j , (8)
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where the quantities Ns
j are the coefficients of the nonlinear connection associated

to L (see [4, Eq. (2.3.2a)]). Finally, using the last expression and (6),

Γs
ji = γs

ji + gks
(−Np

iCpjk −Np
jCpki +Np

kCpij

)
. (9)

It is clear that Christoffel symbols depend just on the vector V (x) and not in the

vector field V , since they do not depend on the derivatives of V . This allows one

to define a covariant derivative along a curve γ by fixing a vector field W along

the curve. In order to check (4), observe that if γ̇(t) 6= 0, then DW
γ X = ∇W̃

γ̇ X̃ for

any extensions X̃ and W̃ of X and W and (4) follows from the definition of ∇W̃ .

Assume now that γ̇(t) = 0. First observe that DW
γ Z(t) = dZi

dt (t)
∂

∂xi

∣∣
γ(t)

for any

Z ∈ X(γ) of coordinates Z1, . . . , Zn. Then

d

dt
(gW (X,Y )) =

d

dt
(XiY jgij(W ))

=
dXi

dt
Y jgij(W ) +Xi dY

j

dt
gij(W ) +XiY j dgij(W )

dt

= gW (DW
γ X,Y ) + gW (X,DW

γ Y ) +XiY j dW
k

dt

∂gij
∂yk

(W )

= gW (DW
γ X,Y ) + gV (X,DW

γ Y ) + 2CV (D
W
γ W,X, Y ),

as required. To check that the definition does not depend on the system of

coordinates is left to the author (see also Remark 2.7) ¤

Remark 2.7. Observe that the covariant derivative along γ with reference an

L-admissible vector field V ∈ X(γ) which has been defined in Proposition 2.6 can

be also defined as the unique map DV
γ : X(γ) → X(γ), such that

(i) DV
γ (aZ1 + bZ2) = aDV

γ Z1 + bDV
γ Z2, for Z1, Z2 ∈ X(γ) and a, b ∈ R,

(ii) DV
γ (hZ) = dh

dtZ + hDV
γ Z, for Z ∈ X(γ) and h ∈ F([a, b]),

(iii) DV
γ X(γ) = ∇V

γ̇ X for t ∈ [a, b] and X ∈ X(Ω),

where F([a, b]) is the subset of smooth real functions on [a, b], in (iii) we consider

any L-admissible extension of V to an open subset Ω and X(γ) is the vector field

along γ defined as X(t) = X(γ(t)) for every t ∈ [a, b]. See also [11, Proposit-

ion 3.18].

3. Curvature

Along this section we will fix a pseudo-Finsler manifold (M,L) and an L-

admissible vector field V defined in an open subset Ω ⊂ M , being ∇V the Chern
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connection of (M,L) having V as a reference vector field. We can define now the

curvature associated to the affine connection ∇V as a tensor (1, 3) in the open

subset Ω ⊂ M defined by

RV (X,Y )Z = ∇V
X∇V

Y Z −∇V
Y ∇V

XZ −∇V
[X,Y ]Z

for every X,Y, Z ∈ X(Ω). It is straightforward to check that RV is a tensor. The

curvature tensor satisfies some symmetries with respect to the metric gV . We will

need the covariant derivative of the Cartan tensor to express these symmetries.

This covariant derivative ∇V CV is a (0, 4) tensor defined as

∇V
XCV (Y, Z,W ) = X(CV (Y, Z,W ))− CV (∇V

XY, Z,W )

− CV (Y,∇V
XZ,W )− CV (Y,W,∇V

XW ),

for every X,Y, Z,W ∈ X(Ω). It follows easily that ∇V
XCV is trilinear, symmetric

and

∇V
XCV (V, Z,W ) = −CV (∇V

XV,Z,W ). (10)

Proposition 3.1. Let X,Y, Z,W ∈ X(Ω), then

(i) RV (X,Y ) = −RV (Y,X),

(ii) gV (R
V (X,Y )Z,W ) + gV (R

V (X,Y )W,Z) = 2BV (X,Y, Z,W ), where

BV (X,Y, Z,W ) = ∇V
Y CV (∇V

XV, Z,W )−∇V
XCV (∇V

Y V, Z,W )

+ CV (R
V (Y,X)V, Z,W ),

(iii) RV (X,Y )Z +RV (Y, Z)X +RV (Z,X)Y = 0.

Furthermore,

gV (R
V (X,Y )Z,W )− gV (R

V (Z,W )X,Y )

= BV (Z, Y,X,W ) +BV (X,Z, Y,W ) +BV (W,X,Z, Y )

+BV (Y,W,Z,X) +BV (W,Z,X, Y ) +BV (X,Y, Z,W ). (11)

Proof. As the identities are tensorial, we can assume that the brackets

between all the vector fields (excluding V ) are zero. The first identity follows

immediately. For the second one, using the definition of RV and that ∇V is

almost metric g-compatible, we get

gV (R
V (X,Y )Z,W ) + gV (R

V (X,Y )W,Z)

= gV (∇V
X∇V

Y Z −∇V
Y ∇V

XZ,W ) + gV (∇V
X∇V

Y W −∇V
Y ∇V

XW,Z)

= X(gV (∇V
Y Z,W ))− gV (∇V

Y Z,∇V
XW )− 2CV (∇V

XV,∇V
Y Z,W )
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− Y (gV (∇V
XZ,W )) + gV (∇V

XZ,∇V
Y W ) + 2CV (∇V

Y V,∇V
XZ,W )

+X(gV (∇V
Y W,Z))− gV (∇V

Y W,∇V
XZ)− 2CV (∇V

XV,∇V
Y W,Z)

− Y (gV (∇V
XW,Z)) + gV (∇V

XW,∇V
Y Z) + 2CV (∇V

Y V,∇V
XW,Z)

= X(gV (∇V
Y Z,W ) + gV (∇V

Y W,Z))− Y (gV (∇V
XZ,W ) + gV (∇V

XW,Z))

− 2CV (∇V
XV,∇V

Y Z,W ) + 2CV (∇V
Y V,∇V

XZ,W )

− 2CV (∇V
XV,∇V

Y W,Z) + 2CV (∇V
Y V,∇V

XW,Z)

= X(Y (gV (Z,W ))− 2CV (∇V
Y V,Z,W ))− Y (X(gV (W,Z))− 2CV (∇V

XV,W,Z))

− 2CV (∇V
XV,∇V

Y Z,W ) + 2CV (∇V
Y V,∇V

XZ,W )

− 2CV (∇V
XV,∇V

Y W,Z) + 2CV (∇V
Y V,∇V

XW,Z)

= [X,Y ](gV (Z,W )) + 2(−∇V
XCV (∇V

Y V,W,Z)− CV (∇V
X∇V

Y V, Z,W )

− CV (∇V
Y V,∇V

XZ,W )− CV (∇V
Y V,Z,∇V

XW ) +∇V
Y CV (∇V

XV,W,Z)

+ CV (∇V
Y ∇V

XV, Z,W ) + CV (∇V
XV,∇V

Y Z,W ) + CV (∇V
XV, Z,∇V

Y W )

− CV (∇V
XV,∇V

Y Z,W ) + CV (∇V
Y V,∇V

XZ,W )

− CV (∇V
XV,∇V

Y W,Z) + CV (∇V
Y V,∇V

XW,Z))

= 2(∇V
Y CV (∇V

XV,W,Z))−∇V
XCV (∇V

Y V,W,Z) + CV (R
V (Y,X)V,Z,W ),

as we wanted to prove (since CV and ∇V
ECV are symmetric for any E ∈ X(Ω)).

The third identity is true for any torsion-free connection (see for example the

proof in [11, Proposition 3.36]). To check (11), use the third identity to deduce

the following four ones,

gV (R
V (X,W )Y +RV (W,Y )X +RV (Y,X)W,Z) = 0,

gV (R
V (X,Y )Z +RV (Y,Z)X +RV (Z,X)Y,W ) = 0.

gV (R
V (X,W )Z +RV (W,Z)X +RV (Z,X)W,Y ) = 0,

gV (R
V (Y, Z)W +RV (Z,W )Y +RV (W,Y )Z,X) = 0.

Then summing up the four identities and using the symmetries of parts (i) and

(ii), it comes out

2gV (R
V (X,Y )Z,W )− 2gV (R

V (Z,W )X,Y )

+ 2BV (Y, Z,X,W ) + 2BV (Z,X, Y,W ) + 2BV (X,W,Z, Y )

+ 2BV (W,Y,Z,X) + 2BV (Z,W,X, Y ) + 2BV (Y,X,Z,W ) = 0.
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Taking into account that BV is anti-symmetric in the two first components and

symmetric in the two last ones we get (11). ¤

Having at hand the affine connection ∇V we can compute the derivative of

any tensor. In particular,

∇V
XRV (Y, Z)W = ∇V

X(RV (Y, Z)W )−RV (∇V
XY, Z)W

−RV (Y,∇V
XZ)W −RV (Y, Z)(∇V

XW )

for every X,Y, Z,W ∈ X(Ω). As ∇V is an affine connection, RV also satisfies the

Second Bianchi identity (see for example the proof in [11, Proposition 3.36]).

3.1. Two parameters maps. Let D be an open subset of R2 satisfying the

interval condition, namely, horizontal and vertical lines of R2 intersect D in in-

tervals. A two-parameter map is a smooth map Λ : D → M . We will use the

following notation:

(1) the t-parameter curve of Λ in s0 is the curve γs0 defined as

t → γs0(t) = Λ(t, s0)

(2) the s parameter curve of Λ in t0 is the curve βt0 defined as

s → βt0(s) = Λ(t0, s).

Moreover, we will denote by Λt(t, s) = γ̇s(t) and Λs(t, s) = β̇t(s). Let us define

Λ∗(TM) as the vector bundle over D induced by π : TM → M through Λ. Then

we denote the subset of smooth sections of Λ∗(TM) as X(Λ). Observe that a

vector field V ∈ X(Λ) induces vector fields in X(γs0) and X(βt0). We will say that

V is L-admissible if V (t, s) ∈ A for every (t, s) ∈ D. When Λ lies in the domain

of a coordinate system x1, . . . , xn, we will denote Λi = xi ◦ Λ.
Proposition 3.2. With the above notation, if V ∈ X(Λ) is L-admissible,

then DV
γs
β̇t = DV

βt
γ̇s.

Proof. Using Proposition 2.6 we get

DV
γs
β̇t =

(
∂2Λk

∂t∂s
+ Γk

ij(V )
∂Λi

∂s

∂Λj

∂t

)
∂

∂xk
,

DV
βt
γ̇s =

(
∂2Λk

∂s∂t
+ Γk

ij(V )
∂Λi

∂t

∂Λj

∂s

)
∂

∂xk
.

Both quantities coincide because Γk
ij(V ) is symmetric in i, j and ∂2Λk

∂s∂t = ∂2Λk

∂t∂s .

¤
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3.2. Jacobi operator and flag curvature. In a fixed point p ∈ M , the cur-

vature tensor RV depends not only on V (p) but on the extension V. Let us see

that the quantity RV (V,U)W depends only on the value of V along the integral

curve of V .

Proposition 3.3. Let (M,L) be a pseudo-Finsler manifold, γ : (a − ε,

a + ε) → M an L-admissible smooth curve and u,w ∈ Tγ(a)M . If V is an L-

admissible extension of γ̇ and U and W extensions of u and w, then

Rγ(γ̇(a), u)w := RV
γ(a)(V,U)W

is well-defined, namely, it does not depend on the extensions used to compute it.

Proof. As the result is local, we can assume that the image of γ is contained

in an open subset Ω that admits a system of coordinates (Ω, ϕ). First assume that

V and U are the variational vector fields of the two-parametric variation of γ,

Λ : (a − ε, a + ε)× (−ε1, ε1) → M , (t, s) → Λ(t, s), namely, V (Λ(t, s)) = Λt(t, s)

and U(Λ(t, s)) = Λs(t, s) for every (t, s) ∈ (a− ε, a+ ε)× (−ε1, ε1) and the image

of Λ lies in Ω (recall notation in Subsection 3.1). We can also assume that the

curves γs are L-admissible for s ∈ (−ε1, ε1) by taking ε1 small enough and that

W ∈ X(Λ). We will denote by W i the coordinates of W in (Ω, ϕ), being W i
t and

W i
s the partial derivatives with respect to the parameters of the variation t and s.

Then using (3) twice we get

DΛt

βt
DΛt

γs
W =

[
W k

ts +W i
sΛ

j
tΓ

k
ij(Λt) +W iΛj

tsΓ
k
ij(Λt) +W iΛj

t

∂

∂s
Γk

ij(Λt)

+W l
tΛ

m
s Γk

lm(Λt) +W iΛj
tΛ

m
s Γl

ij(Λt)Γ
k
lm(Λt)

] ∂

∂xk

and

DΛt
γs
DΛt

βt
W =

[
W k

st +W i
tΛ

j
sΓ

k
ij(Λt) +W iΛj

stΓ
k
ij(Λt) +W iΛj

s

∂

∂t
Γk

ij(Λt)

+W l
sΛ

m
t Γk

lm(Λt) +W iΛj
sΛ

m
t Γl

ij(Λt)Γ
k
lm(Λt)

]
∂

∂xk
.

Then

DΛt
γs
DΛt

βt
W −DΛt

βt
DΛt

γs
W =

[
W iΛj

s

∂

∂t
Γk

ij(Λt)−W iΛj
t

∂

∂s
Γk

ij(Λt)

+W iΛj
sΛ

m
t

(
Γl

ij(Λt)Γ
k
lm(Λt)− Γl

im(Λt)Γ
k
lj(Λt)

) ] ∂

∂xk
. (12)

Define Γ̃l
ij(p) = Γl

ij(V (p)) for every p ∈ Ω and observe that Γ̃l
ij are the Ch-

ristoffel symbols of the affine connection ∇V in Ω. In particular, we have that

Γ̃l
ij(Λ) = Γl

ij(Λt). Taking into account that [V,U ] = 0 (at least in the points
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Λ(t, s)), we get

RV (V,U)W = DV
V DV

UW −DV
UDV

V W =

[
W iΛj

sΛ
p
t

∂Γ̃k
ij

∂xp
(Λ)−W iΛj

tΛ
p
s

∂Γ̃k
ij

∂xp
(Λ)

+W iΛj
sΛ

m
t

(
Γ̃l

ij(Λ)Γ̃
k
lm(Λ)− Γ̃l

im(Λ)Γ̃k
lj(Λ)

)]
∂

∂xk
.

As Γ̃l
ij(Λ) = Γl

ij(Λt),
∂
∂tΓ

k
ij(Λt) = Λp

t
∂Γ̃k

ij

∂xp (Λ) and ∂
∂sΓ

k
ij(Λt) = Λp

s
∂Γ̃k

ij

∂xp (Λ), we

conclude that

RV (V,U)W = DΛt
γs
DΛt

βt
W −DΛt

βt
DΛt

γs
W

as required. Moreover,

∂

∂t
Γk

ij(Λt) = Λp
t

∂Γk
ij

∂xp
(Λt) + Λp

tt

∂Γk
ij

∂yp
(Λt), (13)

∂

∂s
Γk

ij(Λt) = Λp
s

∂Γk
ij

∂xp
(Λt) + Λp

ts

∂Γk
ij

∂yp
(Λt). (14)

Here recall that x1, . . . , xn, y1, . . . , yn is the natural coordinate system of TΩ

associated to the coordinate system (Ω, ϕ). From the above equations and (12), it

follows that RV (V,U)W depends only on the curve γ and the values of the vector

fields U and W along γ. Now given any vector field V extending γ̇, observe that

the value ofRV (V,U)W does not depend on the extensions U andW of the vectors

u,w ∈ Tγ(a)M . It is always possible to get extensions such that V and U are the

variational vector fields of a two-parametric map and W a smooth vector field

on it. Indeed, consider a system of coordinates adapted to V in a neighborhood

Ω of γ(a) small enough, in the sense that V = ∂
∂x1 in this neighborhood. If

u = ai ∂
∂xi

∣∣
γ(a)

and w = bi ∂
∂xi

∣∣
γ(a)

, then U = ai ∂
∂xi and W = bi ∂

∂xi are the

required extensions in Ω ⊂ M . ¤

Let us recall that the Chern connection can also be interpreted as a connec-

tion in the fiber bundle π∗
A : π∗

A(TM) → A (see for example [7, Remark 2.5]) and

we can define the curvature 2-forms associated to this connection. In particular,

the horizontal part of these 2-forms is the so-called hh-curvature tensor (see [4,

Chapter 3]), which in coordinates is written as

Rv(V,U)W = V jUkW lR i
j kl(v)

∂

∂xi
(15)

for v ∈ A and V = V i ∂
∂xi , U = U i ∂

∂xi ,W = W i ∂
∂xi vector fields in Ω ⊂ M , where

R i
j kl(v) =

∂Γi
jl

∂xk
(v)−Np

k(v)
∂Γi

jl

∂yp
(v)− ∂Γi

jk

∂xl
(v) +Np

l(v)
∂Γi

jk

∂yp
(v)

+ Γi
hk(v)Γ

h
jl(v)− Γi

hl(v)Γ
h
jk(v),
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and Np
k has been defined in (8) (see [4, Formula (3.3.2) and Exercise 3.9.6]).

Now given a system of coordinates (Ω, ϕ), for every L-admissible smooth curve

γ : [a, b] → Ω ⊂ M , define

Hγ(U,W ) = U iW j(Dγ̇
γ γ̇)

p
∂Γk

ij

∂yp
(γ̇)

∂

∂xk
.

It is easy to see that the definition does not depend on the choice of coordinates

and then we can define a symmetric tensor Hγ : X(γ)×X(γ) → X(γ) for every L-

admissible smooth curve γ : [a, b] → M that does not lie necessarily in a domain

of coordinates.

Theorem 3.4. Let (M,L) be a pseudo-Finsler manifold. Consider an L-ad-

missible smooth curve γ : (a− ε, a+ ε) → M . With the above notation

Rγ(γ̇(a), u)w = Rγ̇(a)(γ̇(a), u)w +Hγ(u,w) (16)

for any u,w ∈ Tγ(a)M .

Proof. First observe that we can choose any extension of u to the curve γ.

In particular, we can choose a parallel vector field U = U i(t) ∂
∂xi

∣∣
γ(t)

along γ,

which satisfies dUk

dt = −U iγ̇jΓk
ij(γ̇). Moreover, dγ̇k

dt =(Dγ̇
γ γ̇)

k− γ̇iγ̇jΓk
ij(γ̇). Let Λ

be a two-parametric variation of γ such that β̇t = U and γs are L-admissible cur-

ves (recall notation of Subsection 3.1). As Λp
tt =

dγ̇p

dt and Λp
ts =

dUp

dt , substituting

the last formulae in (13) and (14), these equations in (12) and making s = 0, we

obtain

Rγ(γ̇, u)w =

[
uiwj

(
γ̇p

∂Γk
ij

∂xp
(γ̇)− γ̇lγ̇mΓp

lm(γ̇)
∂Γk

ij

∂yp
(γ̇)

)

− wiγ̇j

(
up

∂Γi
jk

∂xp
(γ̇) + ulγ̇mΓp

lm(γ̇)
∂Γk

ij

∂yp
(γ̇)

)

+ wiuj γ̇m
(
Γl

ij(γ̇)Γ
k
lm(γ̇)− Γl

im(γ̇)Γk
lj(γ̇)

)
bigg]

∂

∂xk
+Hγ(u,w).

Observing that Np
l(γ̇) = γ̇mΓp

lm(γ̇) (see (8)), we get (16). ¤

This theorem can be used to compute the flag curvature using ∇V and RV .

Corollary 3.5. Given a plane π = span{v, u} which is gv-nondegenerate,

the quantity

Kv(u) =
gv(R

γv (v, u)u, v)

L(v)gv(u, u)− gv(v, u)2
,

where γv is the geodesic with velocity v at t = 0, is the flag curvature of π with

flagpole v.
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Proof. After Theorem 3.4, it is straightforward that this quantity is the

flag curvature for the pseudo-Finsler metric L of π with flagpole v (see [4, Section

3.9]), since Hγv
= 0 because γv is a geodesic. ¤

Finally, observe that, with the notation of the corollary, the quantity

Kv(u,w) =
gv(R

γv (v, u)w, v)

L(v)gv(u,w)− gv(v, u)gv(v, w)

is the predecessor of the flag curvature (see [4, page 69]).
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[9] H.-H. Matthias, Zwei Verallgemeinerungen eines Satzes von Gromoll und Meyer, Bonner
Mathematische Schriften [Bonn Mathematical Publications], 126, Universität Bonn Mathe-
matisches Institut, Bonn, 1980, Dissertation, Rheinische Friedrich-Wilhelms-Universität,
Bonn, 1980.
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